高考解答题专项训练:数列
精品高考复习资料数列解答题100题精校详解

9.已知数列 {an }
的前
n
项之积 Tn
满足条件:①
1
Tn
是首项为
2
的等差数列:②
T2
−
T5
=
1 6
.
(1)求数列{an} 的通项公式;
(2)设数列{bn} 满= 足 bn
n
n +
2
−
an ,其前 n
项和为
Sn
.求证:对任意正整数
n
,都有 0
<
Sn
<
1 4
.
试卷第 2 页,总 25 页
10.已知{an} 为公差不为 0 的等差数列, Sn 是等比数列{bn} 的前 n 项和,若 a2 是 a1 和 a4 的等比中项,
( ) 5.设数列{an} 的前 n 项和为 Sn ,若 Sn + an = n n ∈ N∗ .
(Ⅰ)证明{an −1} 为等比数列并求数列{an} 的通项公式;
(Ⅱ)设 bn = (2n −1) (1− an ) ,数列{bn} 的前 n 项和为 Tn ,求 Tn ;
(Ⅲ)求证:
1 a1
+
1 a2
(1)求 {an } 的通项公式;
(2)设 b1
=
4 3
,
bn+1
=
−bn
an , n为奇数, + (−2)n , n为偶数
(
n
∈
N*
),求 {bn } 的前
n
项和 Tn
;
(3)在(2)的条件下,若数列{cn}满足 cn =
b2n
+
b2n+1
+
高考数学解答题(新高考)数列求和(通项含绝对值,,取整,取小数,数列求和)(解析版)

专题09 数列求和(通项含绝对值数列求和)(典型例题+题型归类练)一、必备秘籍类型一:通项含绝对值 如:求|211|n a n =-的前n 项和n T类型二:通项含取整函数类型三:通项含自定义符号如:记x 〈〉表示x 的个位数字,如20222,20233〈〉=〈〉=二、典型例题类型一:通项含绝对值例题1.(2022·全国·高二)已知n S 是数列{}n a 的前n 项和,且210n S n n =-.(1)求n a ;(2)求数列{}n a 的前n 项和为n T .感悟升华(核心秘籍)对于通项含绝对值问题,如本例求{}n a 的前n 项和n S ,其核心技巧是考虑当n 取何值时0n a >,0n a <, 此时的n 就是讨论的临界值,找到临界值后再进行讨论.第(2)问解题思路点拨:由(1)知,代入即:,注意到当,,所以在求时,去绝对值,要添“”号,当时,,在求时,可直接去掉绝对值. 根据通项正负,去绝对值是否添“”号,进行分类讨论当时,当时,综上:【答案】(1)211n a n =-;(2)2210,151050,6n n n n T n n n ⎧-≤≤=⎨-+≥⎩.(1)由210n S n n =-,可得119a S ==-,2n ≥时,221 10(1)1010211n n n a S S n n n n n -=-=---+-=-,对1n =也成立,可得211n a n =-;(2)当15n ≤≤时,0n a <,即有()2121210n n n n T a a a a a a S n n =++⋯+=-++⋯+=-=-. 当6n ≥时,0n a >,()()21256551050n n n T a a a a a S S S n n =-++⋯+++⋯+=-+-=-+,即有2210,151050,6n n n n T n n n ⎧-≤≤=⎨-+≥⎩.类型二:通项含取整函数例题2.(2022·江苏连云港·模拟预测)已知数列{}n a 是递增的等差数列,{}n b 是各项均为正数的等比数列13a =,12b =,63a b =,528b a =. (1)求数列{}n a 和{}n b 的通项公式;(2)设3n n a c ⎡⎤=⎢⎥⎣⎦,求数列{}n n b c 的前9项的和9S .(注:[]x 表示不超过x 的最大整数)【答案】(1)2n a n =+,2nn b =(2)2926第(2)问解题思路点拨:由(1)知:,,可代入到第(2)问中,求出的通项公式:,再代入求解由于本例求解的是,而不是,故可直接列举,则有代入求解(1)设{}n a 的公差为d ,{}n b 的公比为q ,由113,2,a b == 得()21141158a d b q b q a d ⎧+=⎪⎨=+⎪⎩ ,而0d ≠,0q >,解得391,()25d d ==-舍,22(q q ==-,舍),于是得2n a n =+,2nn b =, 所以数列{}n a 和{}n b 的通项公式分别为2n a n =+,2nn b =;(2)由(1)知,2[][]33n n a n c +==,则有1234567981,2,3c c c c c c c c c =========, 依题意,234678995121212222222323232S =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=2926,综上,2n a n =+,2nn b =,92926S = .类型三:通项含自定义符号例题3.(2022·广东汕头·高二阶段练习)已知数列{}n a {}n a 是以2为公差的等差数列,125,,a a a 成等比数列,数列{}n b 前n 项和为n S ,且22n S n n =+.(1)求数列{}n a 和{}n b 的通项公式;(2)记x 〈〉表示x 的个位数字,如20222,20233〈〉=〈〉=, 求数列1nn a b ⎧⎫⎨⎬〈〉⋅〈〉⎩⎭的前20项的和20T .感悟升华(核心秘籍)第(2)问解题思路点拨:由(1)知:,,根据题意表示的个位数字,可将,,列举,通过特殊值探路,寻找规律.列举,,通过特殊值探路,寻找规律.通过列举数列发现:,均为周期数列,且周期为5,故将数列中每5个一组,前20项和可分为4组,1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 1 3 5 7 9 1 33 5 7 9 11 13 15 17 19 21 23 25 35791 3579135代入求解【答案】(1)*21()n a n n =-∈N ,21n b n =+;(2)9. (1)由125,,a a a 成等比数列可得2215a a a =,即2111(2)(8)a a a +=⋅+,解得11a =,所以*21()n a n n =-∈N ,又22,n S n n =+,则有11123b S ==+=,当n ≥2时,2212(1)2(1)21n n n b S S n n n n n -=-=+----=+,所以21n b n =+,又13b =满足此式综上,21,N n b n n *=+∈.(2)因为n a 〈〉,n b 〈〉分别表示n a ,n b 的个位数, 所以{}n a 〈〉,{}n b 〈〉均为周期数列,且周期为5,将数列1nn a b ⎧⎫⎨⎬〈〉⋅〈〉⎩⎭中每5个一组,前20项和可分为4组,其前20项的和20T 为201111141335577991T ⎡⎤=++++⎢⎥⨯⨯⨯⨯⨯⎣⎦1111111114(1)233557799⎡⎤=-+-+-+-+⎢⎥⎣⎦111204(1).2999⎡⎤=-+=⎢⎥⎣⎦三、题型归类练1.(2022·海南·嘉积中学高三阶段练习)已知n S 是数列{}n a 的前n 项和,且29n S n n =-.(1)求n a ;(2)求数列{}||n a 的前n 项和为n T .【答案】(1)210n a n =-,*n ∈N ;(2)229,15940,6n n n n T n n n ⎧-≤≤=⎨-+≥⎩. 【详解】(1)由29n S n n =-,可得118a S ==-,2n ≥时,2219(1)99210n n n a S S n n n n n -=-=---+-=-,对1n =也成立,可得210n a n =-,*n ∈N ;(2)当15n ≤≤时,0n a ≤,即有29n n T S n n =-=-; 当6n ≥时,0n a >,255940n n T S S S n n =--=-+,即有229,15940,6n n n n T n n n ⎧-≤≤=⎨-+≥⎩.2.(2022·全国·高三专题练习)数列{}n a 的前n 项和()2=1003n S n n n N *-+∈.(1)求数列{}n a 的通项公式;(2)设n n b a =,求数列{}n b 的前n 项和n T . 【答案】(1) ()()102110122n n a nn ⎧=⎪=⎨-≥⎪⎩ (2) ()()22100350100500351n n n n T n n n ⎧-++≤⎪=⎨-+≥⎪⎩(1)当1n =时,11=10013=102a s =-+,当2n ≥时,()()221=10010011=1012n n n a S S n n n n n -=-------. 综上所述()()102110122n n a nn ⎧=⎪=⎨-≥⎪⎩. (2)当50n ≤时,n n b a =,所以123n n T a a a a =+++⋅⋅⋅+39997951012n =++++⋅⋅⋅+-()()991012331002n n n n +-=+=+-,当51n ≥时,n n b a =-,123505152n n T a a a a a a a =+++⋅⋅⋅+---⋅⋅⋅-()5012312n n T a a a a a -=-+++⋅⋅⋅++ ()50063100n n =---21005003n n =-+.综上所述()()22100350100500351n n n n T n n n ⎧-++≤⎪=⎨-+≥⎪⎩.3.(2022·全国·高三专题练习)已知数列{}n a 是公差不为零的等差数列,{}n b 是各项均为正数的等比数列,11337522,21a b a b a b ====.(1)求数列{}n a 和{}n b 的通项公式;(2)设2n n a c ⎡⎤=⎢⎥⎣⎦,求数列1n n c b +⎧⎫⎨⎬⎩⎭的前10项的和10S .注.[]x 表示不超过x 的最大整数. 【答案】(1)1n a n =+,112n n b -⎛⎫⎪⎝⎭=;(2)109558S =.(1)设{}n a 的公差为d ,{}n b 的公比为q ,由11337522,21a b a b a b ====得:()()242211262d q d q ⎧+=⎪⎨+=⎪⎩, 而0d ≠,0q >,解得1d =,12q =,于是得1n a n =+,112n n b -⎛⎫⎪⎝⎭=,所以数列{}n a 和{}n b 的通项公式分别为1n a n =+,112n n b -⎛⎫⎪⎝⎭=.(2)由(1)知,1[][]22n n a n c +==,则有123456879101,2,3,4,5c c c c c c c c c c ==========, 依题意,23456789101012122222323242425252S =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯()357931222324252⨯⨯⨯⨯=++⨯++,令35791222324252T ⨯⨯⨯⨯+++⨯=+, 则37911541222324252T ⨯⨯⨯⨯++⨯=++, 两式相减得:()5357911111221472322222525221433T --=++++-⨯=-⨯=-⨯--,所以123295587233T =+=⨯,即109558S =.4.(2022·重庆八中高三阶段练习)已知各项均为正数的数列{}n a 的前n项和为)*1,1,,2n n S a a n N n =∈≥.(1)求证;数列是等差数列,并求{}n a 的通项公式;(2)若[]x 表示不超过x 的最大整数,如][1,22,2,12⎡⎤-=-=⎣⎦,求22212111n a a a ⎡⎤+++⎢⎥⎣⎦的值. 【答案】(1)证明见解析,21n a n =-(2)1(1)因为n a2n ≥时,1n nS S --=0n a >0>()12n≥所以数列1=为首项,公差为1的等差数列; ()111n n +-⨯=,则2,n S n =当2n ≥时,121n a n n n ==+-=-,又11a =满足上式, 所以{}n a 的通项公式为21n a n =-. (2)222111(21)441n a n n n ==--+,当2n ≥时,22111114441n a n n n n ⎛⎫<=- ⎪--⎝⎭, 故22212111111111111151111412231444n a a a n n n ⎛⎫⎛⎫+++<+-+-++-=+-<+= ⎪ ⎪-⎝⎭⎝⎭, 当1n =时,211514a =<,所以对任意的*n ∈N ,都有2221211154n a a a +++<, 又222212111111n a a a a +++≥=,所以22212111514n a a a ≤+++<.所以222121111n a a a ⎡⎤+++=⎢⎥⎣⎦. 5.(2022·全国·高三专题练习(理))已知等比数列{}n a 的首项为2-,前n 项和为n S ,且21,,n n n S S S ++成等差数列.(1)求{}n a 的通项公式;(2)设12n n b +⎡⎤=⎢⎥⎣⎦,求数列{}n n a b 的前10项和10T .([]x 表示不超过x 的最大整数) 【答案】(1)(2)n n a =-;(2)3186.(1)因为2n S +,n S ,1n S +成等差数列,所以21n n n n S S S S ++-=-, 所以211n n n a a a +++--=,即212n n a a ++=-,设{}n a 的公比为q ,则2q =-,所以12(2)(2)n n n a -=-⨯-=-.(2)依题意,123456789101,1,2,2,3,3,4,4,5,5b b b b b b b b b b ==========,则2345678910102(2)2(2)2(2)3(2)3(2)4(2)4(2)5(2)5(2)T =-+-+⨯-+⨯-+⨯-+⨯-+⨯-+⨯-+⨯-+⨯-23456789102(2)2(2)(2)3(2)(2)4(2)(2)5(2)(2)⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=-+-+⨯-+-+⨯-+-+⨯-+-+⨯-+-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦457922324252=++⨯+⨯+⨯216965122560=++++ 3186=.6.(2022·全国·高三阶段练习)已知公差不为零的等差数列{}n a 和等比数列{}n b ,满足1112b a =+=,221b a =+,341b a =+.(1)求数列{}n a 、{}n b 的通项公式:(2)记数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n T .若m 表示不大于m 的正整数的个数,求1210T T +++.【答案】(1)21n a n =-,2nn b =(2)121016T T +++=(1)设{}n a 的公差为d ,{}n b 的公比为q ,12b =,11a =,由题意可得:22112131q d q d =++⎧⎨=++⎩整理可得:2320-+=q q ,解得:22q d =⎧⎨=⎩或10q d =⎧⎨=⎩(舍)所以()11221n a n n =+-⨯=-,1222n nn b -=⋅=;(2)因为212n n n a n b -=,则23135212222-=++++n nn T , ∴234111352122222+-=++++n n n T 两式相减得23411111111213232222222222n n n n n n T ++-+⎛⎫=+++++-=- ⎪⎝⎭ 所以2332n nn T +=-显然3n T <,且112102n n n n T T +++-=>,即{}n T 为递增数列, 1112T =<,25124T <=<,315128T <=<,437216T =>, 所以10=,231T T ==,4n ≥时,2n =, 所以121016T T +++=.7.(2022·全国·高二课时练习)在①39S =,520S =;②公差为2,且1S 、2S 、4S 成等比数列;③238n S n n =+;三个条件中任选一个,补充在下面问题中,并给出解答.问题:已知数列{}n a 为公差不为零的等差数列,其前项和为n S ,______. (1)求数列{}n a 的通项公式;(2)令[]2log n n c a =,其中[]x 表示不超过x 的最大整数,求1220c c c +++的值.【答案】(1)答案见解析(2)答案见解析 (1)解:选①,设{}n a 的公差为d ,则()112n n n S na d -=+, 由已知可得315133951020S a d S a d =+=⎧⎨=+=⎩,解得121a d =⎧⎨=⎩,则()111n a a n d n =+-=+;选②,11S a =,2111221222S a a ⨯=+⨯=+,41134424122S a a ⨯=+⨯=+, 由题意可得2214S S S =,则()()211122412a a a +=+,解得11a =,所以,()12121n a n n =+-=-;选③,1111a S ==,当2n ≥时,()()()22138318165n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦. 111a =也满足65n a n =+,故对任意的N n *∈,65n a n =+.(2)解:选①,1n a n =+,则12a =,20162132a <=<, 当[]()22log log 11n n c a n ==+=⎡⎤⎣⎦,则214n ≤+<,可得13n ≤<, 当[]()22log log 12n n c a n ==+=⎡⎤⎣⎦,则418n ≤+<,可得37n ≤<, 当[]()22log log 13n n c a n ==+=⎡⎤⎣⎦,则8116n ≤+<,可得715n ≤<,当[]()22log log 14n n c a n ==+=⎡⎤⎣⎦,则16132n ≤+<,可得1531n ≤<,此时1520n ≤≤. 所以,1,132,373,7154,1520n n n c n n ≤<⎧⎪≤<⎪=⎨≤<⎪⎪≤≤⎩,故12201224384658c c c +++=⨯+⨯+⨯+⨯=;选②,21n a n =-,则11a =,20323964a <=<,当[]()22log log 210n n c a n ==-=⎡⎤⎣⎦时,则0211n <-≤,此时1n =, 当[]()22log log 211n n c a n ==-=⎡⎤⎣⎦时,则2214n ≤-<,此时2n =, 当[]()22log log 212n n c a n ==-=⎡⎤⎣⎦时,则4218n ≤-<,此时34n ≤≤, 当[]()22log log 213n n c a n ==-=⎡⎤⎣⎦时,则82116n ≤-<,此时58n ≤≤, 当[]()22log log 214n n c a n ==-=⎡⎤⎣⎦时,则162132n ≤-<,此时916n ≤≤, 当[]()22log log 215n n c a n ==-=⎡⎤⎣⎦时,则322164n ≤-<,此时1720n ≤≤.所以,0,11,22,343,584,9165,1720n n n n c n n n =⎧⎪=⎪⎪≤≤=⎨≤≤⎪⎪≤≤⎪≤≤⎩,故122001112234485469c c c +++=⨯+⨯+⨯+⨯+⨯+⨯=;选③,65n a n =+,则181116a <=<,2064125128a <=<, 当[]()22log log 653n n c a n ==+=⎡⎤⎣⎦,则86516n ≤+<,此时1n =; 当[]()22log log 654n n c a n ==+=⎡⎤⎣⎦,则166532n ≤+<,此时24n ≤≤; 当[]()22log log 655n n c a n ==+=⎡⎤⎣⎦,则326564n ≤+<,此时59n ≤≤; 当[]()22log log 656n n c a n ==+=⎡⎤⎣⎦,则6465128n ≤+<,此时1020n ≤≤.所以,3,14,245,596,1020nnncnn=⎧⎪≤≤⎪=⎨≤≤⎪⎪≤≤⎩,故1220134355611106c c c+++=⨯+⨯+⨯+⨯=.。
高考解答题专项突破(三) 数列的综合问题--2025年高考数学复习讲义及练习解析

[考情分析]预计2025年高考会从以下两个角度对数列的综合问题进行考查:(1)考查等差、等比数列的基本运算和数列求和的问题,可能与函数、方程、不等式等知识综合起来进行考查;(2)以新定义为载体,考查对新数列性质的理解及应用,以创新型题目的形式出现.考点一等差、等比数列的综合问题例1(2024·山东滨州模拟)已知等差数列{a n }和等比数列{b n }满足a 1=2,b 2=4,a n =2log 2b n ,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)设数列{a n }中不在数列{b n }中的项按从小到大的顺序构成数列{c n },记数列{c n }的前n 项和为S n ,求S 100.解(1)设等差数列{a n }的公差为d ,因为b 2=4,所以a 2=2log 2b 2=4,所以d =a 2-a 1=2,所以a n =2+(n -1)×2=2n .又a n =2log 2b n ,即2n =2log 2b n ,所以n =log 2b n ,所以b n =2n .(2)由(1)得b n =2n =2·2n -1=a 2n -1,即b n 是数列{a n }中的第2n -1项.设数列{a n }的前n 项和为P n ,数列{b n }的前n 项和为Q n ,因为b 7=a 26=a 64,b 8=a 27=a 128,所以数列{c n }的前100项是由数列{a n }的前107项去掉数列{b n }的前7项后构成的,所以S 100=P 107-Q 7=107×(2+214)2-2-281-2=11302.对等差、等比数列的综合问题,应重点分析等差、等比数列项之间的关系.利用方程思想和通项公式、前n 项和公式求解,求解时注意对性质的灵活运用.1.(2022·浙江高考)已知等差数列{a n }的首项a 1=-1,公差d >1.记{a n }的前n项和为S n (n ∈N *).(1)若S 4-2a 2a 3+6=0,求S n ;(2)若对于每个n ∈N *,存在实数c n ,使a n +c n ,a n +1+4c n ,a n +2+15c n 成等比数列,求d 的取值范围.解(1)因为S 4-2a 2a 3+6=0,a 1=-1,所以-4+6d -2(-1+d )(-1+2d )+6=0,所以d 2-3d =0,又d >1,所以d =3,所以a n =3n -4,所以S n =n (a 1+a n )2=3n 2-5n2.(2)因为a n +c n ,a n +1+4c n ,a n +2+15c n 成等比数列,所以(a n +1+4c n )2=(a n +c n )(a n +2+15c n ),(nd -1+4c n )2=(-1+nd -d +c n )(-1+nd +d +15c n ),c 2n +(14d -8nd +8)c n +d 2=0,由已知可得方程c 2n +(14d -8nd +8)c n +d 2=0的判别式大于等于0,所以Δ=(14d -8nd +8)2-4d 2≥0,所以(16d -8nd +8)(12d -8nd +8)≥0对于任意的n ∈N *恒成立,所以[(n -2)d -1][(2n -3)d -2]≥0对于任意的n ∈N *恒成立,当n =1时,[(n -2)d -1][(2n -3)d -2]=(d +1)(d +2)≥0,当n =2时,由(2d -2d -1)(4d -3d -2)≥0,可得d ≤2,当n ≥3时,[(n -2)d -1][(2n -3)d -2]>(n -3)(2n -5)≥0,又d >1,所以1<d ≤2,即d 的取值范围为(1,2].考点二通项与求和问题例2(2023·黑龙江哈九中模拟)在①S 3=2a 3-15;②a 2+6是a 1,a 3的等差中项;③2S n =t n +1-3(t ≠0)这三个条件中任选一个作为已知条件,补充在下面的问题中,并解答.已知正项等比数列{a n }的前n 项和为S n ,a 1=3,且满足________.(1)求数列{a n }的通项公式;(2)设a n =b n -1b n ,求数列2n n 项和T n .注:若选择多个条件分别解答,按第一个解答计分.解(1)设正项等比数列{a n }的公比为q (q >0),若选①:由S 3=2a 3-15,得a 1+a 2+a 3=2a 3-15,所以a 3-a 2-a 1=15,又由a 1=3,可得3q 2-3q -18=0,解得q =3或q =-2(舍去),所以a n =3×3n -1=3n (n ∈N *).若选②:由a 2+6是a 1,a 3的等差中项,可得a 1+a 3=2(a 2+6),又因为a 1=3,可得3+3q 2=2(3q +6),即q 2-2q -3=0,解得q =3或q =-1(舍去),所以a n =3×3n -1=3n (n ∈N *).若选③:由2S n =t n +1-3(t ≠0),当n =1时,2a 1=6=2S 1=t 2-3,解得t =3或t =-3(舍去),所以2S n =3n +1-3,当n ≥2时,2a n =2S n -2S n -1=3n +1-3-(3n -3)=2·3n ,所以a n =3n (n ≥2).经验证当n =1时,满足a n =3n ,所以a n =3n (n ∈N *).(2)由(1)知a n =3n ,所以b n -1b n =3n ,n =9n ,所以b 2n +1b 2n=9n+2,所以T n 2122 (2)n (91+2)+(92+2)+…+(9n +2)=91+92+…+9n+2n =9(1-9n )1-9+2n =9n +1+16n -98.解决非等差、等比数列求和问题的两种思路思路一转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成思路二不能转化为等差或等比数列的数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和2.(2024·广东深圳中学月考)若一个数列的奇数项为公差为正的等差数列,偶数项为公比为正的等比数列,且公差、公比相同,则称数列为“摇摆数列”,其表达式为a n =1+n -12d ,n =2k +1,k ∈N ,2qn -22,n =2k ,k ∈N *,若数列{a n }(n ∈N *)为“摇摆数列”且a 1=1,a 1+a 2=a 3,a 2a 3=20.(1)求{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前2n 项和T 2n ∑ni =1i 2解(1)+a 2=a 3,2a 3=202=4,3=52=-5,3=-4(舍去),∴d =q =4,∴a n n -1,n =2k +1,k ∈N ,n ,n =2k ,k ∈N *.(2)b n =na n n 2-n ,n =2k +1,k ∈N ,·2n ,n =2k ,k ∈N *.先求奇数项的和:b n =2n 2-n ,n =2k +1,k ∈N ,S n =2×[12+32+…+(2n -1)2]-n 2,引入W n =22+42+…+(2n )2=4(12+22+…+n 2),12(S n +n 2)+W n =∑2ni =1i 2=n (2n +1)(4n +1)3⇒S n=2(∑2ni =1i 2-W n )-n 2=2n (2n +1)(4n +1)3-4×n (n +1)(2n +1)6-n 2=8n 3-3n 2-2n 3,再求偶数项的和:b n =n ·2n ,n =2k ,k ∈N *,S n ′=2×22+4×24+…+2n ×22n ,4S n ′=2×24+4×26+…+2(n -1)×22n +2n ×22n +2,两式相减,得-3S n ′=2×22+2×24+2×26+…+2×22n -2n ×22n+2=8×(1-4n )1-4-2n ×22n +2=(1-3n )×22n +3-83,∴S n ′=(3n -1)22n +3+89,∴T 2n =S n +S n ′=8n 3-3n 2-2n3+(3n -1)22n +3+89.考点三数列与不等式的综合问题例3(2023·安徽十校联考)已知数列{a n }满足a 1+a 2+…+a n -1-a n =-2(n ≥2且n ∈N *),a 2=4.(1)求数列{a n }的通项公式;(2)n 项和为T n ,求证:23≤T n <1.解(1)因为a 1+a 2+…+a n -1-a n =-2,所以a 1+a 2+…+a n -a n +1=-2,两式相减得a n +1=2a n (n ≥2),当n =2时,a 1-a 2=-2,又a 2=4,所以a 1=2,a 2=2a 1,所以a n +1=2a n (n ∈N *),所以{a n }是首项为2,公比为2的等比数列,所以a n =2n (n ∈N *).(2)证明:因为2n(a n -1)(a n +1-1)=2n (2n -1)(2n +1-1)=12n -1-12n +1-1,所以T n …1-12n +1-1<1,由n ≥1,得2n +1≥4,所以1-12n +1-1≥23,综上,2≤T n <1.1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.2.放缩法常见的放缩技巧(1)1k 2<1k 2-1=121k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k.(3)2(n +1-n )<1n<2(n -n -1).(4)12n +1<12n +1<12n ,13n <13n -1≤12·3n -1.3.(2023·河南五市高三二模)已知数列{a n }满足a 1=23,且2a n +1-a n +1a n =1,n∈N *.(1){a n }的通项公式;(2)记T n =a 1a 2a 3…a n ,n ∈N *,S n =T 21+T 22+…+T 2n .证明:S n 解(1)由2a n +1-a n +1a n =1,得a n +1=12-a n ,则11-a n +1-11-a n=1,是首项为11-a 1=3,公差d =1的等差数列,所以11-a n =3+(n -1)=n +2,整理得a n =n +1n +2(n ∈N *),经检验,符合要求.(2)证明:由(1)得a n =n +1n +2(n ∈N *),T n =a 1a 2…a n =2n +2,∴T 2n =4(n +2)2>4(n +2)(n +3)=∴S n =T 21+T 22+…+T 2n -14+…+1n +2-即S n 考点四数列与函数的综合问题例4(2024·江苏辅仁中学阶段考试)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列前n 项和T n .解(1)由已知,得b 7=2a 7,b 8=2a 8=4b 7,有2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2,所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x 的图象在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),它在x 轴上的截距为a 2-1ln 2.则a 2-1ln 2=2-1ln 2,解得a 2=2,所以d =a 2-a 1=1,从而a n =n ,b n =2n .所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n 2n -1.因此2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n.所以T n =2n +1-n -22n.数列与函数综合问题的常见类型及注意事项常见类型类型一已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题类型二已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形注意事项注意点一数列是一类特殊的函数,其定义域是正整数集(或有限子集),它的图象是一群孤立的点注意点二转化为以函数为背景的条件时,应注意题中的限制条件,如函数的定义域,这往往是非常容易忽视的问题注意点三利用函数的方法研究数列中相关问题时,应准确构造函数,注意数列中相关限制条件的转化4.(2024·湖南湘潭一中阶段考试)设函数f (x )=x2+sin x 的所有正的极小值点从小到大排成的数列为{x n }.(1)求数列{x n }的通项公式;(2)设{x n }的前n 项和为S n ,求sin S n .解(1)令f ′(x )=12+cos x =0,所以cos x =-12,解得x =2k π±2π3(k ∈Z ).由x n 是f (x )的第n 个正极小值点知,x n =2n π-2π3(n ∈N *).(2)由(1)可知,S n =2π(1+2+…+n )-2n π3=n (n +1)π-2n π3,所以sin S n =sinn (n +1)π-2n π3.因为n (n +1)表示两个连续正整数的乘积,所以n (n +1)一定为偶数,所以sin S n =-sin2n π3.当n =3m -2(m ∈N *)时,sinS n =-m π=-32;当n =3m -1(m ∈N *)时,sin S n =-m π=32;当n =3m (m ∈N *)时,sin S n =-sin2m π=0.综上所述,sin S nn =3m -2(m ∈N *),=3m -1(m ∈N *),3m (m∈N *).课时作业1.(2023·新课标Ⅱ卷){a n }为等差数列,b n n -6,n 为奇数,a n ,n 为偶数,记S n ,T n 分别为数列{a n },{b n }的前n 项和,S 4=32,T 3=16.(1)求{a n }的通项公式;(2)证明:当n >5时,T n >S n .解(1)设等差数列{a n }的公差为d ,而b n n -6,n 为奇数,a n ,n 为偶数,则b 1=a 1-6,b 2=2a 2=2a 1+2d ,b 3=a 3-6=a 1+2d -6,4=4a 1+6d =32,3=4a 1+4d -12=16,1=5,=2,所以a n =a 1+(n -1)d =2n +3,所以{a n }的通项公式是a n =2n +3.(2)证法一:由(1)知,S n =n (5+2n +3)2=n 2+4n ,b n n -3,n 为奇数,n +6,n 为偶数,当n 为偶数时,b n -1+b n =2(n -1)-3+4n +6=6n +1,T n =13+(6n +1)2·n 2=32n 2+72n ,当n >5时,T n -S n 2+72n (n 2+4n )=12n (n -1)>0,因此T n >S n ;当n 为奇数时,T n =T n +1-b n +1=32(n +1)2+72(n +1)-[4(n +1)+6]=32n 2+52n -5,当n >5时,T n -S n 2+52n -(n 2+4n )=12(n +2)(n -5)>0,因此T n >S n .所以当n >5时,T n >S n .证法二:由(1)知,S n =n (5+2n +3)2=n 2+4n ,b n n -3,n 为奇数,n +6,n 为偶数,当n 为偶数时,T n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n )=-1+2(n -1)-32·n 2+14+4n +62·n 2=32n 2+72n ,当n >5时,T n -S n 2+72n (n 2+4n )=12n (n -1)>0,因此T n >S n ;当n 为奇数时,若n ≥3,则T n =(b 1+b 3+…+b n )+(b 2+b 4+…+b n -1)=-1+2n -32·n +12+14+4(n -1)+62·n -12=32n2+52n -5,显然T 1=b 1=-1满足上式,因此当n 为奇数时,T n =32n 2+52n -5,当n >5时,T n -S n 2+52n -(n 2+4n )=12(n +2)(n -5)>0,因此T n >S n .所以当n >5时,T n >S n .2.(2023·江苏徐州第七中学校考一模)已知等比数列{a n }的前n 项和为S n =12·3n +b (b 为常数).(1)求b 的值和数列{a n }的通项公式;(2)记c m 为{a n }在区间[-3m ,3m ](m ∈N *)内的项的个数,求数列{a m c m }的前n 项和T n .解(1)由题设S n =12·3n +b ,显然等比数列{a n }的公比不为1,设{a n }的公比为q ,则S n =a 1(1-q n )1-q=a 11-q -a 1q n1-q ,∴b =a 11-q =-12且q =3,∴a 1=1,故数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)令-3m ≤3n -1≤3m ,n ∈N *,解得0≤n -1≤m ,∴1≤n ≤m +1,数列{a n }在区间[-3m ,3m ](m ∈N *)内的项的个数为m +1,则c m =m +1,∴a m c m =(m +1)×3m -1,∵T n =2×30+3×31+…+(n +1)×3n -1,①3T n =2×31+3×32+…+(n +1)×3n ,②两式相减,得-2T n =2×30+31+…+3n-1-(n +1)×3n=1+1-3n1-3-(n +1)·3n =(-1-2n )·3n +12,∴T n n -14.3.(2024·河南郑州外国语学校阶段考试)已知f (x )=-4+1x2,数列{a n }的前n 项和为S n ,点P n n ∈N *)在曲线y =f (x )上,且a 1=1,a n >0.(1)求数列{a n }的通项公式;(2)数列{b n }的前n 项和为T n ,且满足T n +1a 2n =T na 2n +1+16n 2-8n -3,确定b 1的值使得数列{b n }是等差数列.解(1)因为f (x )=-4+1x2,且点P n ,n ∈N *)在曲线y =f (x )上,所以1a n +1=4+1a 2n ,即1a 2n +1-1a 2n=4,1为首项,4为公差的等差数列,所以1a 2n=1+4(n -1)=4n -3,即a n =14n -3(n ∈N *).(2)由(1)知T n +1a 2n =T n a 2n +1+16n 2-8n -3,即为(4n -3)T n +1=(4n +1)T n +(4n -3)(4n +1),整理得T n +14n +1-T n 4n -3=1,T 1为首项,1为公差的等差数列,则T n 4n -3=T 1+n -1,即T n =(4n -3)(T 1+n -1),当n ≥2时,b n =T n -T n -1=4b 1+8n -11,若{b n }是等差数列,则b 1适合上式,令n =1,得b 1=4b 1-3,解得b 1=1.4.(2023·黑龙江齐齐哈尔模拟)在①S n =32a n -3,其中S n 为数列{a n }的前n 项和;②a 1=1,a n -a n +1=a n a n +1这两个条件中任选一个,补充在下面问题中,并解答.问题:已知数列{a n }满足________.(1)求数列{a n }的通项公式;(2)是否存在正整数m ,使得a m +a m +1为数列{a n }中的项?若存在,求出m ;若不存在,说明理由.注:如果选择多个条件分别解答,按第一个解答计分.解若选择条件①:(1)令n =1,则a 1=321-3,所以a 1=6,由于S n =32a n -3,则当n ≥2时,S n -1=32a n -1-3,两式相减,得a n =32a n -32a n -1,则a n a n -1=3,所以{a n }是首项为6,公比为3的等比数列,则数列{a n }的通项公式为a n =6×3n -1=2×3n .(2)假设存在正整数m ,使得a m +a m +1=a k (k ∈N *),则2×3m +2×3m +1=2×3k ,所以4×3m =3k ,此等式左边为偶数,右边为奇数,所以不存在正整数m 满足题意.若选择条件②:(1)因为a 1=1,a n -a n +1=a n a n +1,所以a n ≠0,1a n +1-1a n=1,是首项为1a 1=1,公差为1的等差数列,所以1a n =1+(n -1)×1=n ,所以a n =1n.(2)假设存在正整数m ,使得a m +a m +1=a k (k ∈N *),则1m +1m +1=1k,化简得m 2+(1-2k )m -k =0,解得m =2k -1+1+4k 22,因为2k <1+4k 2<2k +1,所以2k -12<m <2k ,m 无正整数解,故不存在正整数m 满足题意.5.已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6.(1)求数列{a n }的通项公式与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ成立,求实数λ的取值范围.解(1)由a 2+a 7+a 12=-6,得a 7=-2,∴a 1=4,∴a n =5-n ,S n =n (9-n )2.(2)由题意知b 1=4,b 2=2,b 3=1,设等比数列{b n }的公比为q ,则q =b 2b 1=12,∴T m 1-1281m ,的值随m 增加而减小,∴{T m }为递增数列,得4≤T m <8.又S n =n (9-n )2=-12(n 2-9n )-814,故(S n )max =S 4=S 5=10,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ,则10<8+λ,解得λ>2.故实数λ的取值范围为(2,+∞).6.(2024·河北衡水调研)已知数列{a n }满足a 1=37,3a n ,2a n +1,a n a n +1成等差数列.(1){a n }的通项公式;(2)记{a n }的前n 项和为S n ,求证:1271S n <7528.解(1)由已知得4a n +1=3a n +a n a n +1,因为a 1=37≠0,所以由递推关系可得a n ≠0恒成立,所以4a n =3a n +1+1,所以4a n -4=3an +1-3,即1a n +1-1又因为1a 1-1=73-1=43,是首项为43,公比为43的等比数列,所以1a n -1,所以a n =11.(2)证明:由(1)可得a n =111-1=37×-1,所以S n ≥37+37×+…+37×-1=1271a n =11<1,S 1=37<7528,当n ≥2时,S n <37++ (37)1-34=7528-<7528.综上所述,1271S n <7528成立.。
专题06数列解答题2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

2013-2022十年全国高考数学真题分类汇编专题06 数列解答题1.(2022年全国甲卷理科·第17题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.【答案】(1)证明见解析:; (2)78-.解析:(1)解:因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列.(2)解:由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=-- ⎪⎝⎭,所以,当12n =或13n =时()min 78n S =-.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022年全国甲卷理科·第17题2.(2022新高考全国II 卷·第17题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.【答案】(1)证明见解析; (2)9.解析:(1)设数列{}n a 的公差为d ,所以,()11111111224283a d b a d b a d b b a d +-=+-⎧⎨+-=-+⎩,即可解得,112db a ==,所以原命题得证.(2)由(1)知,112d b a ==,所以()1111121k k m b a a b a m d a -=+⇔⨯=+-+,即122k m -=,亦即[]221,500k m -=∈,解得210k ≤≤,所以满足等式的解2,3,4,,10k = ,故集合{}1|,1500k m k b a a m =+≤≤中的元素个数为10219-+=.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022新高考全国II 卷·第17题3.(2022新高考全国I 卷·第17题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .【答案】(1)()12n n n a +=(2)见解析解析:(1)∵11a =,∴111S a ==,∴111S a =,又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=,∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111nn n an a --=+,即111n n a n a n -+=-,∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯()1341123212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--,显然对于1n =也成立,∴{}n a 的通项公式()12n n n a +=;(2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111n a a a +++ 1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2022新高考全国I 卷·第17题4.(2021年新高考全国Ⅱ卷·第17题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==.(1)求数列{}n a 的通项公式n a ;(2)求使n n S a >成立的n 的最小值.【答案】解析:(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-,从而:22d d -=-,由于公差不为零,故:2d =,数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214262n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->,解得:1n <或6n >,又n 为正整数,故n 的最小值为7.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年新高考全国Ⅱ卷·第17题5.(2021年新高考Ⅰ卷·第17题)已知数列{}n a 满足11a =,11,,2,.n n n a n a a n +⎧+=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.【答案】122,5b b ==;300.解析:(1)由题设可得121243212,1215b a a b a a a ==+===+=++=又22211k k a a ++=+,2122k k a a +=+,故2223k k a a +=+即13n n b b +=+即13n n b b +-=所以{}n b 为等差数列,故()21331n b n n =+-⨯=-.(2)设{}n a 的前20项和为20S ,则2012320S a a a a =++++ ,因为123419201,1,,1a a a a a a =-=-=- ,所以()20241820210S a a a a =++++- ()1291091021021023103002b b b b ⨯⎛⎫=++++-=⨯⨯+⨯-= ⎪⎝⎭.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年新高考Ⅰ卷·第17题6.(2020年新高考I 卷(山东卷)·第18题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .【答案】(1)2nn a =;(2)100480S =.解析:(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍),所以2nn a =,所以数列{}n a 的通项公式为2nn a =.(2)由于123456722,24,28,216,232,264,2128=======,所以1b 对应的区间为:(]0,1,则10b =;23,b b 对应的区间分别为:(](]0,2,0,3,则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为:(](](](]0,4,0,5,0,6,0,7,则45672b b b b ====,即有22个2;8915,,,b b b 对应的区间分别为:(](](]0,8,0,9,,0,15 ,则89153b b b ==== ,即有32个3;161731,,,b b b 对应的区间分别为:(](](]0,16,0,17,,0,31 ,则1617314b b b ==== ,即有42个4;323363,,,b b b 对应的区间分别为:(](](]0,32,0,33,,0,63 ,则3233635b b b ==== ,即有52个5;6465100,,,b b b 对应的区间分别为:(](](]0,64,0,65,,0,100 ,则64651006b b b ==== ,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年新高考I 卷(山东卷)·第18题7.(2020新高考II 卷(海南卷)·第18题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.【答案】(1)2nn a =;(2)2382(1)55n n +--解析:(1)设等比数列{}n a 的公比为q (q >1),则32411231208a a a q a q a a q ⎧+=+=⎨==⎩,整理可得:22520q q -+=,11,2,2q q a >== ,数列的通项公式为:1222n n n a -=⋅=.(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:112231(1)n n n a a a a a a -+-+⋯+-35791212222(1)2n n -+=-+-+⋯+-⋅()()3223221282(1)5512nn n +⎡⎤--⎢⎥⎣⎦==----.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020新高考II 卷(海南卷)·第18题的8.(2021年高考全国乙卷理科·第19题)记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.【答案】(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.解析:(1)由已知212n n S b +=得221n nn b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以12112222121n b b b b b +⋅=--,所以111221n n n nb b b b +++=-,由于10n b +≠所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈所以数列{}n b 是以132b =为首项,以12d =为公差等差数列;(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n nb n ∴=+-⨯=+,22211n n n b nS b n+==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S nn n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【点睛】本题考查等差数列的证明,考查数列的前n 项和与项的关系,数列的前n 项积与项的关系,其中由1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,得到1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,进而得到111221n n n nb b b b +++=-是关键一步;要熟练掌握前n 项和,积与数列的项的关系,消和(积)得到项(或项的递推关系),或者消项得到和(积)的递推关系是常用的重要的思想方法.【题目栏目】数列\等差、等比数列的综合应用【题目来源】2021年高考全国乙卷理科·第19题9.(2021年高考全国甲卷理科·第18题)已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a是等差数列:②数列是等差数列;③213aa =.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】答案见解析解析:选①②作条件证明③:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n aa n =-,所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列,所以公差2112d a a a =-=,所以()21112n n n S na d n a -=+==,)1n =+=,所以是等差数列.选②③作条件证明①:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-;当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a =+-03a=-<不合题意,舍去.综上可知{}n a 为等差数列.【点睛】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,等差数列的证明通常采用定义法或者等差中项法.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2021年高考全国甲卷理科·第18题10.(2020年高考数学课标Ⅰ卷理科·第17题)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【答案】(1)2-;(2)1(13)(2)9nn n S -+-=.【解析】(1)设{}n a 的公比为q ,1a 为23,a a 的等差中项,212312,0,20a a a a q q =+≠∴+-= ,1,2q q ≠∴=- ;(2)设{}n na 前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++- ,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+- ,②①-②得,2131(2)(2)(2)(2)n nn S n -=+-+-++--- 1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--,1(13)(2)9nn n S -+-∴=.【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年高考数学课标Ⅰ卷理科·第17题11.(2020年高考数学课标Ⅲ卷理科·第17题)设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.解析:(1)由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+,证明如下:当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n N ∈,都有21n a n =+成立;的(2)由(1)可知,2(21)2n nn a n ⋅=+⋅231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅ ,①23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅ ,②由①-②得:()23162222(21)2nn n S n +-=+⨯+++-+⋅ ()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2020年高考数学课标Ⅲ卷理科·第17题12.(2019年高考数学课标全国Ⅱ卷理科·第19题)已知数列{}n a 和{}n b 满足11a =,10b =,1434n n n a a b +=-+,1434n n n b b a +=--.()1证明:{}n n a b +是等比数列,{}n n a b -是等差数列;()2求{}n a 和{}n b 的通项公式.【答案】()1见解析;()21122n n a n =+-,1122n n b n =-+.【官方解析】()1由题设得114()2()n n n n a b b +++=+,即111()2n n n n a b a b +++=+.又因为111a b +=,所以{}n n a b +是首项为1,公比为12的等比数列.由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+.又因为111a b -=,所以{}n n a b -是首项为1,公差为2的等差数列.()2由()1知,112n n n a b -+=,21n n a b n -=-.所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.【分析】()1可通过题意中的1434n n n a b a +=-+以及1434n n n b a b +=--对两式进行相加和相减即可推导出数列{}n n a b +是等比数列以及数列{}n n a b -是等差数列;()2可通过()1中的结果推导出数列{}n n a b +以及数列{}n n a b -的通项公式,然后利用数列{}n n a b +以及数列{}n n a b -的通项公式即可得出结果.【解析】()1由题意可知,,,,所以,即111()2n n n n a b a b +++=+,所以数列是首项为、公比为的等比数列,,因为,所以,数列是首项、公差为等差数列,.()2由()1可知,112n n n a b -+=,,所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.【点评】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.【题目栏目】数列\数列的综合应用\数列的综合问题【题目来源】2019年高考数学课标全国Ⅱ卷理科·第19题13.(2018年高考数学课标Ⅲ卷(理)·第17题)(12分)等比数列{}n a 中,11a =,534a a =(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和,若63m S =,求m .(1)12n n a -=或()12n n a -=-;(2)6m =【答案】【官方解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=由已知得424q q =,解得0q =(舍去),2q =-或2q =故()12n n a -=-或12n n a -=(2)若()12n n a -=-,则()123mm S --=,由63m S =,得()2188m-=-,此方和没有正整数解若12n n a -=,则21m m S =-,由63m S =,得264m =,解得6m =综上,6m =.1434n n n a a b +-=+1434n n n b b a +-=-111a b +=111a b -=1144323442n n n n n n n n a b a b b a a b ++=+=--+++-{}n n a b +112(112n n n a b -+=()11443434448n n n n n n n n a b a b b a a b ++---=+-=-+-112n n n n a b a b ++=-+-{}n n a b -12的21n n a b n -=-21n n a b n -=-【民间解析】(1)设等比数列{}n a 的公比为q ,由11a =,534a a =可得42141q q ⨯=⨯⨯,所以24q =所以2q =±当2q =时,1112n n n a a q --==;当2q =-时,()1112n n n a a q --==-(2)由(1)可知2q =±当2q =时,由()1163631m m a q S q-=⇒=-即126312m-=-,即62642m ==,所以6m =;当2q =-时,由()1163631m m a q S q-=⇒=-即()126312m--=+,即()2188m-=-,无解综上可知6m =.【题目栏目】数列\等比数列\等比数列的综合应用【题目来源】2018年高考数学课标Ⅲ卷(理)·第17题14.(2018年高考数学课标Ⅱ卷(理)·第17题)(12分)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【答案】解析:(1)设{}n a 的公差为d ,由题意得13315a d +=-.由17a =得2d =,所以{}n a 的通项公式为29n a n =-.(2)由(1)得228(4)16n S n n n =-=--.所以当4n =时,n S 取得最小值,最小值为16-.【题目栏目】数列\等差数列\等差数列的前n 项和【题目来源】2018年高考数学课标Ⅱ卷(理)·第17题15.(2016高考数学课标Ⅲ卷理科·第17题)已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.(Ⅰ)证明{}n a 是等比数列,并求其通项公式;(Ⅱ)若53132S =,求λ.【答案】(Ⅰ)11(11n n a λλλ-=--;(Ⅱ)1λ=-.【解析】(Ⅰ)由题意得1111a S a λ==+,故1λ≠,111a λ=-,10a ≠.由1n n S a λ=+,111n n S a λ++=+得11n n n a a a λλ++=-,即1(1)n n a a λλ+-=.由10a ≠,0λ≠得0n a ≠,所以11n n a a λλ+=-.因此{}n a 是首项为11λ-,公比为1λλ-的等比数列,于是11()11n n a λλλ-=--.(Ⅱ)由(Ⅰ)得1()1n n S λλ=--,由53132S =得5311(132λλ-=-,即51()132λλ=-,解得1λ=-.【题目栏目】数列\等比数列\等比数列的前n 项和【题目来源】2016高考数学课标Ⅲ卷理科·第17题16.(2016高考数学课标Ⅱ卷理科·第17题)(本题满分12分)n S 为等差数列{}n a 的前n 项和,且17=128.a S ,=记[]=lg n nb a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg 99=1,.(I)求111101b b b ,,;(II)求数列{}n b 的前1 000项和.【答案】(1)[]1lg10b ==,[]11lg111b ==,[]101lg1012b ==;(2)1893.【解析】(1)设{}n a 的公差为d ,据已知有72128d +=,解得1d =.所以数列{}n a 的通项公式为n a n =.[]1lg10b ==,[]11lg111b ==,[]101lg1012b ==.(2)因为0,110,1,10100,2,1001000,3,1000,n n n b n n ≤<⎧⎪≤<⎪=⎨≤<⎪⎪=⎩所以数列{}n b 的前1000项和为1902900311893⨯+⨯+⨯=.【题目栏目】数列\等差数列\等差数列的前n 项和【题目来源】2016高考数学课标Ⅱ卷理科·第17题17.(2015高考数学新课标1理科·第17题)(本小题满分12分)n S 为数列{}n a 的前n 项和.已知20,24 3.n n n n a a a S >+=+(Ⅰ)求{}n a 的通项公式:(Ⅱ)设112n n n b a a +=,求数列{}n b 的前n 项和【答案】(Ⅰ)21n +(Ⅱ)11646n -+分析:(Ⅰ)先用数列第n 项与前n 项和的关系求出数列{n a }的递推公式,可以判断数列{n a }是等差数列,利用等差数列的通项公式即可写出数列{n a }的通项公式;(Ⅱ)根据(Ⅰ)数列{n b }的通项公式,再用拆项消去法求其前n 项和.解析:(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3,当2n ≥时,2211n n n n a a a a --+--=14343n n S S -+--=4n a ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{n a }是首项为3,公差为2的等差数列,所以n a =21n +;(Ⅱ)由(Ⅰ)知,n b =1111((21)(23)22123n n n n =-++++,所以数列{n b }前n 项和为12n b b b +++ =1111111[((()]235572123n n -+-++-++ =11646n -+.考点:数列前n 项和与第n 项的关系;等差数列定义与通项公式;拆项消去法【题目栏目】数列\数列的求和\裂项相消法求和问题【题目来源】2015高考数学新课标1理科·第17题18.(2014高考数学课标2理科·第17题)(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:12111na a a ++<…+【答案】解析:(Ⅰ)由131n n a a +=+,得1113(22n n a a ++=+,且11322a +=所以{}12n a +是首相为32,公比为3的等比数列。
高考数学——数列解答题专项试题练习

1 / 4高考数学数列解答题专项试题练习1、已知公比大于1的等比数列{}n a 满足24320,8a a a +==、(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S 、2、已知公比大于1的等比数列{}n a 满足24320,8a a a +==、(1)求{}n a 的通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-3、已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-、 (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和、2 / 44、已知数列{a n },{b n },{c n }中,1111121,,()nn n n n n n b a b c c a a c c n b +++====-=⋅∈*N 、 (Ⅰ)若数列{b n }为等比数列,且公比0q >,且1236b b b +=,求q 与{a n }的通项公式; (Ⅱ)若数列{b n }为等差数列,且公差0d >,证明:1211n c c c d+++<+、*()n N ∈模拟试题1、已知等比数列{}n a 是首项为1的递减数列,且3456a a a +=. (1)求数列{}n a 的通项公式;(2)若n n b na =,求数列{}n b 的前n 项和n T2、等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==.(1)求数列{}n a 的通项公式;(2)设 31323log log ......log n n b a a a =+++,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T3、已知等比数列{}n a 的前n 项和为n S ,22743a a a =,且3-,4S ,39a 成等差数列.(1)求数列{}n a 的通项公式;(2)设()()111nn n b a n n =-++,求数列{}n b 的前n 项和n T3 / 44、已知数列{}n a 中,11a =,当2n ≥时,其前n 项和n S 满足212n n n S a S ⎛⎫=-⎪⎝⎭(1)求n S 的表达式;(2)设21nn S b n =+,求数列{}n b 的前n 项和n T5、已知数列{}n a 的前n 项和为n S ,且满足()*22,n n S a n N =-∈.数列{}nb 是首项为1a ,公差不为零的等差数列,且1311,,b b b 成等比数列、 (1)求数列{}n a 与{}n b 的通项公式、(2)若nn nb C a =,数列{}n c 的前项和为,n n T T m <恒成立,求m 的范围6、已知等差数列{}n a 的公差0d >,27a =,且1a ,6a ,35a 成等比数列. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()*111N n n n a n b b +-=∈,且113b =,求数列{}n b 的前n 项和n T7、在①224n n n a a S b +=+,且25a =,②224n n n a a S b +=+,且1b <-,③224n n n a a S b +=+,且28S =这三个条件中任选一个,补充在下面问题中,若问题中的b 存在,求出b 和数列{}n a 的通项公式与前n 项和;若b 不存在,请说明理由.4 / 4设n S 为各项均为正数的数列{}n a 的前n 项和,满足________,是否存在b ,使得数列{}n a 成为等差数列?8、在等差数列{}n a 中,已知616a =,1636a = (1)求数列{}n a 的通项公式n a ; (2)若______,求数列{}n b 的前n 项和n S .在①14n n n b a a +=,①()1nn n b a =-⋅,①2na n nb a =⋅,这三个条件中任选一个补充在第(2)问中并对其求解9、已知项数为()*2m m N m ∈≥,的数列{}n a 满足如下条件:①()*1,2,,n a Nn m ∈=;②12···.m a a a <<<若数列{}n b 满足()12*···1m n n a a a a b N m +++-=∈-,其中1,2,,n m =则称{}n b 为{}n a 的“伴随数列”.(I )数列13579,,,,是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(II )若{}n b 为{}n a 的“伴随数列”,证明:12···m b b b >>>; (III )已知数列{}n a 存在“伴随数列”{}n b ,且112049m a a ==,,求m 的最大值.。
高考解答题专题:数列

高考解答题专题:数列1.(本小题满分14分)等差数列{}n a 中,13a =,前n 项和为nS ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =(1)求na 与nb ;(2)求数列1{}nS 的前n 项和2.设正数组成的数列{}n a 是等比数列,其前n 项和为n S ,且21=a , 143=S(1)求数列{}n a 的通项公式;(2)若n n a a a T ⋅⋅⋅⋅=21,其中*N n ∈; 求n T 的值,并求n T 的最小值. 3.已知数列{}n a 为等差数列,n S 为其前项和,1596,63a a S +== (1)求数列{}n a 的通项公式及前项和n S ;(2)若数列{}n b 满足对,2na n n Nb *∀∈=求数列{}n n a b 的前n 项和n T ;4.设数列{}n a 满足1a a =,11n n a ca c +=+-,*n N ∈,其中a 、c 为实数,且0c ≠。
(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设12a =,12c =,(1),*n n b n a n N =-∈,求数列{}n b 的前n 项的和n S ;5.已知数列{} 的前n 项和,数列{}的前n 项和(Ⅰ)求数列{}与{}的通项公式;(Ⅱ)设,证明:当且仅当n ≥3时,<6.设1c ,2c ...,n c ,...是坐标平面上的一列圆,它们的圆心都在x 轴的正半轴上,且都与直线y=33x 相切,对每一个正整数n,圆n c 都与圆1n c +相互外切,以n r 表示nc 的半径,已知{}nr 为递增数列.(Ⅰ)证明:{}nr 为等比数列;(Ⅱ)设1r =1,求数列n n r ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和.7.在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令,lg n n a T =1n ≥.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1tan tan ,n n n b a a += 求数列{}n b 的前n 项和n S .。
数列大题训练50题及答案

数列大题训练50题及答案本卷含答案及知识卡片,同学们做题务必认真审题,规范书写。
保持卷板整洁。
一.解答题(共50题),2a n+1a n+a n+1−a n=0.1. (2019•全国)数列{an}中, a1=13(1)求{aₙ}的通项公式 ;(2)求满足a1a2+a2a3+⋯+a n−1a n<1的n的最大值 .72.( 2019•新课标Ⅰ )记 Sn为等差数列{aₙ}的前 n项和 .已知Sg= -a₅.(1)若 a₃=4,求{aₙ}的通项公式 ;(2)若 a₁>0, 求使得Sₙ≥aₙ的n的取值范围 .3.( 2019·新课标Ⅱ)已知数列aₙ和bₙ满足a₁=1,b₁=0,4aₙ₊₁=3aₙ−bₙ+4,4bₙ₊₁=3bₙ−aₙ−4.( 1) 证明 : aₙ+bₙ是等比数列,aₙ−bₙ是等差数列;(2)求{aₙ}和bₙ的通项公式 .4.( 2019•新课标Ⅱ)已知{ aₙ}是各项均为正数的等比数列, a₁=2,a₃=2a₂+16.(1)求{aₙ}的通项公式 ;(2)设bₙ=log₂aₙ,求数列bₙ的前n项和 .5.(2018•新课标Ⅱ)记 Sn为等差数列aₙ}的前 n项和 , 已知a₁= - 7 , S₃= -15 .(1)求{ aₙ}的通项公式;(2)求Sₙ,并求Sₙ,的最小值 ..6 .( 2018•新课标Ⅰ )已知数列{ aₙ满足a₁=1,naₙ₊₁=2(n+1)aₙ,设b n=a nn(1)求b₁,b₂,b₃;( 2) 判断数列{bₙ}是否为等比数列,并说明理由;(3)求{aₙ}的通项公式 .7.( 2018•新课标Ⅲ ) 等比数列{aₙ}中 ,a₁=1,a₅=4a₃·(1)求{aₙ}的通项公式 ;(2)记 Sn为{aₙ}的前 n项和 .若Sₙ=63,求m..8.(2017•全国)设数列{bₙ}的各项都为正数 , 且b n+1=b nb n+1}为等差数列;( 1) 证明数列{1b n(2)设 b₁=1,求数列{ bₙbₙ₊₁的前n项和Sₙ.9 .( 2017•新课标Ⅱ )已知等差数列{aₙ}的前 n项和为 Sₙ,等比数列{bₙ}的前 n项和为Tₙ,a₁=−1,b₁=1,a₂+b₂=2(1)若 a₃+b₃=5,又求{bₙ}的通项公式 ;(2)若 T₃=21, 求 S₃.10 .( 2017•新课标Ⅰ )记. Sₙ,为等比数列{aₙ}的前 n项和 .已知 S₂=2,S₃=-6.(1)求{aₙ}的通项公式 ;(2)求Sₙ,并判断Sₙ₊₁,Sₙ,Sₙ₊₂是否成等差数列 .11 .( 2017•新课标Ⅲ)设数列{aₙ}满足a1+3a2++(2n−1)a n=2n.(1)求{an}的通项公式 ;}的前 n项和 .(2)求数列{a n2n+112.( 2016·全国) 已知数列aₙ}的前 n项和Sₙ=n².( Ⅰ )求{aₙ}的通项公式 ;,求数列{bₙ}的前 n项和 .(Ⅱ)记b n=√a n+√a n+113 .( 2016•新课标Ⅲ ) 已知数列aₙ}的前n项和Sₙ=1+λaₙ,其中λ≠0.(1) 证明{aₙ}是等比数列,并求其通项公式;,求λ .(2)若S5=313214 .( 2016•新课标Ⅰ ) 已知{aₙ}是公差为 3 的等差数列 , 数列{ bₙ满足b₁=1,,a n b n+1+b n+1=nb n.b2=13( Ⅰ )求{aₙ}的通项公式 ;(Ⅱ)求{bₙ}的前n项和.15 .( 2016•新课标Ⅲ) 已知各项都为正数的数列aₙ满足a1=1,a n2−(2a n+1(1)aₙ−2aₙ₊₁=0.(1)求 a₂, a₃;(2)求{aₙ}的通项公式 .16 .( 2016•新课标Ⅱ ) 等差数列{aₙ}中 ,a₃+a₄=4,a₅+a₇=6.( Ⅰ )求{aₙ}的通项公式 ;数列全国高考数学试题 参考答案与试题解析一 . 解答题(共50 小题)1.( 2019•全国)数列{a ₙ}中 , a 1=13,2a n+1a n +a n+1−a n =0.(1)求{a ₙ}的通项公式 ;( 2)求满足 a 1a 2+a 2a 3+⋯+a n−1a n <17的n 的最大值 .【解答】解:(1) ∵2a n+1a n +a n+1−a n =0.∴1a n+1−1a n=2,∴a 1a 2+a 2a 3++a n−1a n =12[(13−15)+(15−17)+⋯+(12n−1−12n+1)]=12(13−12n+1),∵a 1a 2+a 2a 3++a n−1a n <17,∴12(13−12n+1)<17, ∴4n +2<42,∴n <10,∵n ∈N ∗, ∴n 的最大值为9.【点评】本题考查了等差数列的定义 ,通项公式和裂项相消法求出数列的前 n【分析】(1)由 2aₙ₊₁aₙ+aₙ₊₁−aₙ=0可得−=2,可知数列 {}是等差数列 ,求出- 的通项公式可得 an ;(2)由(1)知1a a =1(2n−1)(2n+1)=12(12n−1−12n+1)(n ≥2),然后利用裂项相消法求出 a 1a 2+a 2a 3+⋯+a n−1a n 再解不等式可得n 的范围,进而得到n 的最大值 . 又1a =3,∴数列 {}是以3为首项 ,2 为公差的等差数列 , ∴1a =2n +1,∴a n =12n+1;(2)由(1)知 , a n−1a n =1(2n−1)(2n+1)=12(12n−1−12n+1)(n ≥2),。
高中数学--数列大题专项训练(含详解)

高中数学--数列大题专项训练(含详解)一、解答题(本大题共16小题,共192.0分)1.已知{}n a 是等比数列,满足12a =,且2a ,32a +,4a 成等差数列,数列{}n b 满足*1231112()23n b b b b n n N n+++⋅⋅⋅+=∈(1)求{}n a 和{}n b 的通项公式;(2)设(1)()n n n n c a b =--,求数列{}n c 的前2n 项和2.n S 2.已知数列{}n a 的前n 项和为n S ,且233.n n S a +=(1)求数列{}n a 的通项公式;(2)若32log n n n b a a +=⋅,求数列{}n b 的前n 项和.n T 3.在数列{}n a 中,111,(1n n n a a a c c a +==⋅+为常数,*)n N ∈,且1a ,2a ,5a 成公比不为1的等比数列.(1)求证:数列1{}na 是等差数列;(2)求c 的值;(3)设1n n n b a a +=,求数列{}n b 的前n 项和.n S4.在ABC 中,已知三内角A ,B ,C 成等差数列,且11sin().214A π+=()Ⅰ求tan A 及角B 的值;()Ⅱ设角A ,B ,C 所对的边分别为a ,b ,c ,且5a =,求b ,c 的值.5.在数列{}n a 中,11a =,11(1)(1)2nn n a a n n +=+++⋅(1)设n n a b n=,求数列{}n b 的通项公式(2)求数列{}n a 的前n 项和nS 6.已知数列的各项均为正数,前项和为,且()Ⅰ求证数列是等差数列;()Ⅱ设求7.已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立.(1)求1a ,2a 的值;(2)设10a >,数列110lg n a a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值.8.已知等差数列{}n a 的前四项和为10,且2a ,3a ,7a 成等比数列.(1)求通项公式na (2)设2n a nb =,求数列n b 的前n 项和.n S 9.已知在数列{}n a 中,13a =,1(1)1n n n a na ++-=,*.n N ∈(1)证明数列{}n a 是等差数列,并求n a 的通项公式;(2)设数列11{}n n a a +的前n 项和为n T ,证明:1.(126n T <分)10.已知函数2(1)4f x x +=-,在等差数列{}n a 中,1(1)a f x =-,232a =-,3().a f x =(1)求x 的值;(2)求数列{}n a 的通项公式.n a 11.已知数列{}n a 是公比大于1的等比数列,1a ,3a 是函数2()109f x x x =-+的两个零点.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足3log n n b a n =+,求数列{}n b 的前n 项和n S 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两式相减得12Tn=32+12+212+…+2n1-1-22nn++11 =32+1-12n-1-22nn++11 =52-22nn++15, 所以 Tn=5-2n2+n 5.
6.已知等差数列{an}与等比数列{bn}满足:a1=b1=1,a2+ b2=52且 a3=-10b2.
(1)求数列{an},{bn}的通项公式; (2)设 cn=a1b1+a2b2+…+anbn,是否存在正整数 k,使得 cn≥ck 恒成立?若存在,求出 k 的值;若不存在,请说明理由.
2.(2019·安徽淮南一模)已知数列{an}为等差数列,且 a3=5,a5 =9,数列{bn}的前 n 项和为 Sn=23bn+13.
(1)求数列{an}和{bn}的通项公式; (2)设 cn=an|bn|,求数列{cn}的前 n 项和 Tn.
解:(1)∵数列{an}为等差数列,且 a3=5,a5=9, ∴d=a55--3a3=9-2 5=2, ∴a1=a3-2d=5-4=1, ∴an=1+(n-1)×2=2n-1.
∵数列{bn}的前 n 项和为 Sn=23bn+13, ∴n=1 时,S1=23b1+13, 由 S1=b1,解得 b1=1, 当 n≥2 时,bn=Sn-Sn-1=23bn-23bn-1, ∴bn=-2bn-1,∴{bn}是首项为 1,公比为-2 的等比数列, ∴bn=(-2)n-1.
(2)cn=an|bn|=(2n-1)·2n-1, ∴数列{cn}的前 n 项和 Tn=1×1+3×2+5×22+…+(2n- 1)×2n-1, ∴2Tn=1×2+3×22+5×23+…+(2n-1)×2n, 两式相减,得: -Tn=1+2(2+22+…+2n-1)-(2n-1)·2n=1+2×21--22n- (2n-1)·2n=1+2n+1-4-(2n-1)·2n=-3+(3-2n)·2n, ∴Tn=(2n-3)·2n+3.
5.(2017·山东卷)已知{an}是各项均为正数的等比数列,且 a1+ a2=6,a1a2=a3.
(1)求数列{an}的通项公式; (2){bn}为各项非零的等差数列,其前 n 项和为 Sn.已知 S2n+1=bnbn +1,求数列abnn的前 n 项和 Tn.
解:(1)设{an}的公比为 q, 由题意知 a1(1+q)=6,a21q=a1q2. 又 an>0,解得 a1=2,q=2,所以 an=2n.
高考解答题专项训练:数列
1.(2019·咸阳模拟)在△ABC 中,角 A,B,C 的对边分别为 a, b,c,B=60°,三边 a,b,c 成等比数列,且面积为 4 3,在等差数 列{an}中,a1=4,公差为 b.
(1)求数列{an}的通项公式; (2)数列{cn}满足 cn=an1a6n+1,设 Tn 为数列{cn}的前 n 项和,求 Tn.
3.已知等差数列{an}的公差为 2,前 n 项和为 Sn,且 S1,S2, S4 成等比数列.
(1)求数列{an}的通项公式; (2)令 bn=(-1)n-1an4ann+1,求数列{bn}的前 n 项和 Tn.
解:(1)因为 S1=a1,S2=2a1+2×2 1×2=2a1+2, S4=4a1+4×2 3×2=4a1+12, 所以由题意得(2a1+2)2=a1(4a1+12), 解得 a1=1, 所以 an=2n-1.
解:(1)f′(x)=2ax+b, 由题意知 b=2n,16n2a-4nb=0, ∴a=12,则 f(x)=12x2+2nx,n∈N*. 数列{an}满足an1+1=f′a1n, 又 f′(x)=x+2n, ∴an1+1=a1n+2n,∴an1+1-a1n=2n, 由叠加法可得a1n-14=2+4+6+…+2(n-1)=n2-n,
解:(1)设等差数列{an}的公差为 d,等比数列{bn}的公比为 q,
则1+d+q=52, 1+2d=-10q,
解得dq= =2-,12,
故 an=2n-1,bn=-12n-1. (2)由 cn=a1b1+a2b2+…+anbn 可得, cn=1+3×-12+5×-122+…+(2n-1)×-12n-1,① -12 ×cn = 1× -12 + 3× -12 2 + 5× -12 3 + … + (2n - 1)×-12n,②
(2)由题意知,S2n+1=2n+1b21+b2n+1=(2n+1)bn+1, 又 S2n+1=bnbn+1,bn+1≠0,所以 bn=2n+1. 令 cn=bann,则 cn=2n2+n 1, 因此 Tn=c1+c2+…+cn=32+252+273+…+22nn--11+2n2+n 1, 又12Tn=232+253+274+…+2n2-n 1+22nn++11,
解:(1)由 a,b,c 成等比数列得 b2=ac, 因为 S△ABC=4 3=12acsinB,所以 b=4, 所以{an}是以 4 为首项,以 4 为公差的等差数列, 其通项公式为 an=4n. (2)由(1)可得 cn=nn1+1=1n-n+1 1, Tn=1-12+12-13+…+1n-n+1 1=1-n+1 1=n+n 1.
所以 Tn=222nnn2+++n 211,,nn为为奇偶数数.,
或Tn=2n+12+n+-1 1n-1
4.(2019·烟台模拟)已知二次函数 f(x)=ax2+bx 的图象过点 (-4n,0),且 f′(0)=2n,n∈N*,数列{an}满足an1+1=f′a1n,且 a1=4.
(1)求数列{an}的通项公式; (2)记 bn= anan+1,求数列{bn}的前 n 项和 Tn.
①-②得:32cn=1+2-12+-122+…+ -12n-1-(2n-1)×-12n,从而得 cn=29+6n+ 9 1-12n-1.
令 dn=6n+ 9 112n-1,显然数列{dn}是递减数列, 于是,对于数列{cn},当 n 为奇数时,即 c1,c3,c5…为递减 数列,最大项为 c1=1,最小项大于29;
(2)bn=(-1)n-1an4ann+1 =(-1)n-12n-14n2n+1 =(-1)n-12n1-1+2n1+1. 当 n 为偶数时, Tn=1+13-13+15+…+ 2n1-3+2n1-1- 2n1-1+2n1+1 =1-2n1+1=2n2+n 1.
当 n 为奇数时,
Tn=1+13-13+15+…- 2n1-3+2n1-1+ 2n1-1+2n1+1 =1+2n1+1=22nn++21.
化简可得 an=2n-4 12(n≥2), 当 n=1 时,a1=4 也符合, ∴an=2n-4 12(n∈N*).
(2)∵bn= anan+1=2n-142n+1=22n1-1-2n1+1, ∴Tn=b1+b2+…+bn = a1a2+ a2a3+…+ anan+1 =21-13+13-15+…+2n1-1-2n1+1 =21-2n1+1=2n4+n 1.
当 n 为偶数时,即 c
所以数列{cn}的最小项为 c2. 故存在正整数 k=2,使 cn≥c2 恒成立.