人教版七年级数学上册知识框架图-第二章-整式的加减

合集下载

新人教版七年级数学上册第2章整式的加减复习教材全解(重难点、例题解析)

新人教版七年级数学上册第2章整式的加减复习教材全解(重难点、例题解析)

新人教版七年级数学上册第2章整式的加减复习教材全解(重难点、例题解析)复习内容:列式表示数量关系、单项式、多项式、整式等有关概念以及整式加减运算.复习目标:1.知识与技能进一步理解单项式、多项式、整式及其有关概念,准确确定单项式的系数、次数、多项式的项、次数;理解同类项概念,掌握合并同类项法则和去括号规律,熟练地进行整式加减运算.2.过程与方法通过回顾与思考,帮助学生梳理本章内容,提高学生分析、归纳、语言表达能力;提高运算能力及综合应用数学知识的能力.3.情感态度与价值观培养严谨的学习态度和积极思考的学习习惯,通过列式表示数量关系,体会数学知识与实际问题的联系.一、本章知识结构框架图二、易错知题分析误区一书写不规范致误例1 用代数式表示下列语句:(1)比x 与y 的和的平方小x 与y 的和的数 (2)a 的2倍与b 的31的差除以a 与b 的差的立方。

错解(1)(22y x +)-(x+y ) (2)(2a-1/3b )÷(x+y)剖析:(1)要表示的是“比x 与y 的和的平方小x 与y 的和的数”,应该先求和再求平方即应该是)()(2y x y x +-+,而不应该是(22y x +)-(x+y )。

(2)是书写不规范,除号要用分数线代替,即应该写成3)(312b a ba --。

正解:(1))()(2y x y x +-+ (2)3)(312b a ba -- 误区二 概念不清致误例2、判断下列各组是否是同类项:(1)0.2x 2y 与0.2xy 2 (2)4abc 与4ac (3)-130与15 (4)-532m n 与423n m(5)-++()()a b a b 332与 (6)7311pq p q n n n n ++与错解:(1)(3)(4)(6)是同类项,(2)(5)不是同类项。

剖析:(1)0.2x 2y 与0.2xy 2因为字母x 的指数不同,字母y 的指数也不同,所以不是同类项。

最新人教版七年级数学上册知识点思维导图及总结.docx

最新人教版七年级数学上册知识点思维导图及总结.docx

最新人教版七年级数学上册知识点思维导图及总结人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容 .第一章有理数一、知识框架二.知识概念1.有理数:q(p, q为整数且 p0)(1) 凡能写成p形式的数,都是有理数.正整数、 0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意: 0 即不是正数,也不是负数; -a 不一定是负数, +a 也不一定是正数;不是有理数;正有理数正整数正整数正分数整数 零有理数 零有理数 负整数负有理数负整数分数正分数负分数负分数(2) 有理数的分类 : ①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1) 只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是 0;(2) 相反数的和为 0 a+b=0 a 、 b 互为相反数 .4.绝对值:(1) 正数的绝对值是其本身, 0 的绝对值是 0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;a (a 0)a0 (a 0)aa ( a 0)a ( a 0) 或 a (a0);绝对值的问题经常分类讨(2) 绝对值可表示为:论;5.有理数比大小:( 1)正数的绝对值越大,这个数越大;( 2)正数永远比 0 大,负数永远比 0 小;( 3)正数大于一切负数;( 4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数 -小数 > 0,小数 -大数 < 0.6.互为倒数:乘积为 1 的两个数互为倒数;注意: 0没有倒数;若 a ≠ 0,那么 a的倒数是1a;若 ab=1 a 、 b 互为倒数;若ab=-1 a 、 b 互为负倒数 .7. 有理数加法法则:( 1)同号两数相加,取相同的符号,并把绝对值相加; ( 2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;( 3)一个数与 0 相加,仍得这个数 . 8.有理数加法的运算律:(1)加法的交换律: a+b=b+a ;( 2)加法的结合律:( a+b ) +c=a+ ( b+c ) .9.有理数减法法则:减去一个数,等于加上这个数的相反数;即 a-b=a+( -b ) .10 有理数乘法法则:( 1)两数相乘,同号为正,异号为负,并把绝对值相乘; ( 2)任何数同零相乘都得零;( 3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定 .11 有理数乘法的运算律:( 1)乘法的交换律: ab=ba ;( 2)乘法的结合律:( ab ) c=a (bc );( 3)乘法的分配律: a ( b+c )=ab+ac . 12 .有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即 a无意义.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时 : (-a)n =-a n 或 (a -b)n=-(b-a) n,当 n 为正偶数时 : (-a)n =a n或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10 的数记成a× 10n的形式,其中 a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字 .18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在.重点利用有理数的运算法则解决实际问题.体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力.教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位.第二章整式的加减一.知识框架二. 知识概念1.单项式:在代数式中,若只含有乘法(包括乘方)运算.或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数.通过本章学习,应使学生达到以下学习目标:1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系.2.理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号.在准确判断、正确合并同类项的基础上,进行整式的加减运算.3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立.4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来.在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生察、分析、抽象、概括等思能力和用意.第三章一元一次方程一. 知识框架二.知识概念1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数的系数不是零的整式方程是一元一次方程.2.一元一次方程的准形式:ax+b=0 ( x 是未知数, a、 b 是已知数,且a≠ 0). 3.一元一次方程解法的一般步:整理方程⋯⋯去分母⋯⋯去括号⋯⋯移⋯⋯合并同⋯⋯系数化 1 ⋯⋯(方程的解) .4.列一元一次方程解用:(1)分析法 :⋯⋯⋯⋯多用于“和,差,倍,分”仔,找出表示相等关系的关字,例如:“大,小,多,少,是,共,合,,完成,增加,减少,配套----- ”,利用些关字列出文字等式,并且据意出未知数,最后利用目中的量与量的关系填入代数式,得到方程.(2)画分析法 : ⋯⋯⋯⋯多用于“行程”利用形分析数学是数形合思想在数学中的体,仔,依照意画出有关形,使形各部分具有特定的含,通形找相等关系是解决的关,从而取得布列方程的依据,最后利用量与量之的关系(可把未知数看做已知量),填入有关的代数式是得方程的基 .11.列方程解用的常用公式:距离距离速度(1)行程:距离 =速度· 速度;工作量工工作量工效(2)工程:工作量 =工效·工工工效;比率部分部分全体(3)比率问题:部分 =全体·比率全体比率;(4)顺逆流问题:顺流速度 =静水速度 +水流速度,逆流速度=静水速度 -水流速度;1(5)商品价格问题:售价=定价·折· 10,利润=售价-成本,利润率售价成本成本100%;(6)周长、面积、体积问题: C 圆 =2πR, S 圆 =πR2, C 长方形 =2(a+b) ,S 长方形 =ab, C 正方形=4a,1S 正方形 =a2, S 环形 =π (R2-r2) , V 长方体 =abc , V 正方体 =a3, V 圆柱 =πR2h , V 圆锥 = 3 π R2h.本章内容是代数学的核心,也是所有代数方程的基础 .丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法 .第四章图形的认识初步一、知识框架本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形 .通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系 .在此基础上,认识一些简单的平面图形——直线、射线、线段和角 .二、本章书涉及的数学思想:1.分类讨论思想 . 在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画图形时,应注意图形的各种可能性 .2.方程思想 .在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决.3.图形变换思想.在研究角的概念时,要充分体会对射线旋转的认识.在处理图形时应注意转化思想的应用,如立体图形与平面图形的互相转化.4.化归思想 .在进行直线、线段、角以及相关图形的计数时,总要划归到公式。

人教版初中数学七年级上册教学课件 第二章 整式的加减 (第1课时)

人教版初中数学七年级上册教学课件 第二章 整式的加减 (第1课时)

探究新知
知识点 1 同类项的概念
猴子要搬新家啦!有八只小猴子,每只身上都标有一个
单项式,你能根据这些单项式的特征将这些小猴子分到
不同的房间里吗?(用几个房间都可以)
8n
-7a2b
3ab2
2a2b
8n 6xy
5n
-3xy
-ab2
探究新知
8n 5nn
3ab2 -ab2
6xy -3xy
-7a2b 2a2b
法则
(1)系数相加;
合并同类项 (一加两不变) (2)字母连同它的指数不变.
步骤 一容
教材作业 从课后习题中选取
自主安排 配套练习册练习
3
3
巩固练习
当x=2019时,求多项式x4-5x2+2x3-x4+5x2-2x3+2x-1的值.
解: x4-5x2+2x3-x4+5x2-2x3+2x-1 = (x4-x4)+(-5x2+5x2)+(2x3-2x3)+2x-1 = 2x-1 当x=2019时,原式=2×2019-1=4037.
探究新知
(2)3a+2b=5ab ×
(5)3x2+2x3=5x5 ×
(3)5y2-3y2=2 ×
(6)a+a-5a=-3a √
注:(2)(4)(5)中的单项式不是同类项,不能合并. (3)是同类项,但合并结果不对.
的同类探项究.新知
素养考点 1 合并同类项
4a2 3b2 2ab 3a2 b2.
解: 4a2 3b2 2ab 3a2 b2 找
探究新知
归纳总结
同类项的判别方法: (1)同类项只与字母及其指数有关,与系数无关,与

最新人教版七年级数学上册第二章整式的加减复习(精品课件40页,知识点总结,经典考点考题附答案)

最新人教版七年级数学上册第二章整式的加减复习(精品课件40页,知识点总结,经典考点考题附答案)

例 4
-36C 的值,其中 x=-6.
[解析] 如果把x的值直接代入,分别求出A,B,C的值,然
后再求3A+2B-36C的值显然很麻烦,不如先把原式化简,再
把x值代入计算.
数学·新课标(RJ)
第2章 |复习
解:3A+2B-36C=3(3x
2
1 2 4 -x+2)+2(x+1)-364x -9
一定是(
)
A.三次多项式 B.四次多项式或单项式 C.七次多项式 D.四次七项式 [答案] B
数学·新课标(RJ)
第2章 |复习
6.若A是一个四次多项式,B是一个二次多项式,则“A- B”( )
A.可能是六次多项式
B.可能是二次多项式
C.一定是四次多项式或单项式 D.可能是0 [答案] C
数学·新课标(RJ)
第2章 |复习
7.已知式子x2+3x+5的值为7,那么式子3x2+9x-2的值是
(
)
A.0 B.2 C.4 D.6 [答案] C
数学·新课标(RJ)
第2章 |复习
8. 若多项式 2x2 - ax + 3y - b + bx2 + 2x - 6y + 5 的值与字母 x
无关,试求多项式6(a2-2ab-b2)-(2a2-3ab+4b2)的值.
3.整式的加减 去括号 ,然 一般地,几个整式相加减,如果有括号就先________ 后再_____________ 合并同类项 .
数学·新课标(RJ)
第2章 |复习
考点攻略
►考点一
例1 是( ) A.3
整式的有关概念
x- b 在式子 3m+n, -2mn, p, , 0 中,单项式的个数 2 B.4 C. 5 D.6

人教版七年级数学上册知识点思维导图及总结

人教版七年级数学上册知识点思维导图及总结

人教版七年级数学上册知识点思维导图及总结人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一、知识框架二.知识概念1.有理数:q(1)凡能写成(p, q为整数且p 0) 形式的数,都是有理数.正整数、0、负整数统称整数;正p分数、负分数统称分数;整数和分数统称有理数.注意:0 即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;正有理数正整数正分数整数正整数零(2)有理数的分类: ①有理数零②有理数负整数负有理数负整数负分数分数正分数负分数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是0;(2)相反数的和为0 a+b=0 a、b 互为相反数.2.绝对值:(1)正数的绝对值是其本身,0 的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:a(a(a0)0)a 0 (a0) 或aa (a 0)a ;绝对值的问题经常分类讨论;a (a 0)3.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0 大,负数永远比0 小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.4.互为倒数:乘积为 1 的两个数互为倒数;注意:0 没有倒数;若a≠0,那么a 的倒数是若ab=1 a、b 互为倒数;若ab=-1 a、b 互为负倒数. 1a ;5. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0 相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .a12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即无意义.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a) n=-a n 或(a -b) n=-(b-a) n , 当n 为正偶数时: (-a)n =a n 或(a-b)n=(b-a) n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;n 的形式,其中 a 是整数数位只有一位的数,15.科学记数法:把一个大于10 的数记成a×10这种记数法叫科学记数法.6.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.7.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.8.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

人教版七年级数学上册知识点思维导图及总结-七年级整数思维导图

人教版七年级数学上册知识点思维导图及总结-七年级整数思维导图

人教版七年级数学上册知识点思维导图及总结-七年级整数思维导图-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN人教版七年级数学上册知识点思维导图及总结 人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =a n 或 (a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

人教版七年级数学上册知识点思维导图及总结

人教版七年级数学上册知识点思维导图及总结

人教版七年级数学上册知识点思维导图及总结 人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a -b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b -a)n , 当n 为正偶数时: (-a)n =a n 或 (a -b)n =(b -a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

人教版七年级上册数学第二章整式的加减课件-整式的加减(五)

人教版七年级上册数学第二章整式的加减课件-整式的加减(五)

当a=2 cm时,
窗户的面积 =
π+8
×
2
2 cm2

代入求值
例2.窗户的形状如图所示(图中长度单位:cm),其上部是半圆形,下部
是边长相同的四个小正方形.已知下部小正方形的边长是a cm.计算:
(3)当a=2 cm时,窗户的面积是多少?(单位: cm2 )
解:窗户的面积 =
π+8 2

2
cm2
2
5
= 6 2 − − .
当x =
去括号
合并同类项
2
时,
原式 = 6 ×
1 2
2的值.书写格式2 212
1
2
写出条件

1
2
5

2
= 6×
1
4
1

2

5
=
2

3
.
2
代入、求值
三、典型例题
1
2
1
3
3
2
1
3
2
3
例1.求 − 2 − 2 + − + 2 的值,其中x= − 2,y= .
解: − 2 − 2 + − + 2
=
1

2
− 2 +
2 2

3
3

2
+
先化简
1 2

3
= − 3x+ 2 .
当 x = − 2,y=

时,

原式= −3 × − +
再求值
2

=6+
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档