第2课时在数轴上表示一元一次不等式的解集

合集下载

七年级-人教版-数学-下册-第2课时-一元一次不等式组的应用

七年级-人教版-数学-下册-第2课时-一元一次不等式组的应用

生产线每天组装(x+2)台产品.
由题意,得
2 30x 520, 2 30(x 2) 520.
解得 230<x<236.
思考:你能给出一个合理化的答案吗?
解:设每条生产线原来每天组装 x 台产品,则加班生产后每条
生产线每天组装(x+2)台产品.
由题意,得
2 30x 520, 2 30(x 2) 520.
解得 230<x<236.
因为 x 只能取正整数, 所以 x=7 或 x=8. 所以 x 最大为 8. 答:每条生产线原来每天最多能组装 8 台产品.
思考 列一元一次不等式组解决实际问题的一般步骤是什么?
(1)审,弄清题中的已知量、未知量,找出题中的两个不等关系. (2)设,设出适当的未知数. (3)列,根据两个不等关系分别列出不等式,从而得到不等式组. (4)解,解不等式组. (5)验,检验解(或解集)是否符合实际意义. (6)答,写出答案.
-5-2 -1 0 1 2 3 4 2
由图可知,不等式组所以 x 可取的整数值是 -2,-1,0,1,2,3,4.
总结
要求不等式组的特殊解,先要求出不 等式组的解集,然后在不等式组的解集中 找出符合条件的特珠解(如正整数解、最 小整数解等).为了便于观察,还可以借 助数轴来找特殊解.
问题 有 2 条生产线计划在一个月(30天)内组装 520 台产品(每天
的产品产量相同),按原来的组装速度,不能完成任务;若加班生 产,则每条生产线每天多组装 2 台产品,能提前完成任务.每条生 产线原来每天最多能组装多少台产品?
思考:你能从题目中得到哪些信息?
问题 有 2 条生产线计划在一个月(30天)内组装 520 台产品(每天
解:(2)设甲种商品购进 a 件,则乙种商品购进(120-a)件.

湘教版数学八年级上册4.3《在数轴上表示一元一次不等式的解集》教学设计

湘教版数学八年级上册4.3《在数轴上表示一元一次不等式的解集》教学设计

湘教版数学八年级上册4.3《在数轴上表示一元一次不等式的解集》教学设计一. 教材分析《在数轴上表示一元一次不等式的解集》是湘教版数学八年级上册4.3的内容。

本节课主要让学生掌握一元一次不等式的解集在数轴上的表示方法,培养学生数形结合的数学思想。

通过本节课的学习,学生能够理解一元一次不等式与数轴之间的关系,提高解决实际问题的能力。

二. 学情分析学生在七年级已经学习了不等式的概念和性质,对一元一次不等式有一定的了解。

但他们在表示解集方面可能还存在一些困难,因此,在教学过程中,需要关注学生的认知基础,引导学生逐步掌握数轴表示解集的方法。

三. 教学目标1.知识与技能:让学生掌握一元一次不等式的解集在数轴上的表示方法。

2.过程与方法:通过数形结合,培养学生解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:一元一次不等式的解集在数轴上的表示方法。

2.难点:如何引导学生理解和掌握数形结合的数学思想。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探究、积极思考,提高学生的数学素养。

六. 教学准备1.准备数轴图片和一元一次不等式的例子。

2.准备小组合作学习的任务单。

3.准备PPT课件。

七. 教学过程1.导入(5分钟)利用数轴图片,引导学生回顾已学过的知识,如不等式的性质、一元一次不等式的解法等。

提问:我们在解决不等式问题时,如何表示它的解集呢?2.呈现(10分钟)呈现一元一次不等式2x-3>1,引导学生思考:如何表示这个不等式的解集在数轴上?让学生尝试画出数轴,并在数轴上标出解集。

3.操练(10分钟)让学生独立完成练习题,如3x-4<7等。

在学生完成练习后,教师选取部分学生的作品进行展示和点评,引导学生总结解集表示的方法。

4.巩固(10分钟)采用小组合作学习的方式,让学生分组讨论如何表示更复杂的一元一次不等式的解集。

七年级数学上册3.1一元一次方程及其解法(2)教案沪科版

七年级数学上册3.1一元一次方程及其解法(2)教案沪科版

3.1一元一次方程及其解法七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列四个图形中,通过旋转和平移能够全等图形的是()A.③和④B.②和③C.②和④D.①②④【答案】D【解析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案【详解】、②和④都可通过平移或旋转完全重合.故选D.【点睛】此题主要考查了全等图形,关键是掌握全等图形的概念.2.若点P(m,1-2m)的横坐标与纵坐标互为相反数,则点P一定在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】m+(1-2m)=0,解得m=1,所以点P的坐标为(1,-1).故选D.3.用加减法解方程组87208516x yx y+=-⎧⎨-=⎩①②解题步骤如下:(1)①﹣②,得12y=﹣36,y=﹣3;(2)①×5+②×7,得96x=12,x=18,下列说法正确的是()A.步骤(1),(2)都不对B.步骤(1),(2)都对C.此题不适宜用加减法D.加减法不能用两次【答案】B【解析】先观察方程组中两方程的特点,结合加减法可用排除法求出答案.【详解】解:因为在解方程组时并不限制加减消元法使用的次数,所以D显然错误;由于两方程中x的系数相等,故适合用加减法,故C错误;①﹣②,得12y=﹣36,y=﹣3,步骤(1)正确,故A错误;故选:B.【点睛】本题考查加减消元法解二元一次方程组,用加法消元的条件:未知数的绝对值相等,符号相反.用减法消元的条件:未知数的绝对值相等,符号相同.4.下列长度的木棒可以组成三角形的是()A.1,2,3 B.3,4,5 C.2,3,6 D.2,2,4【答案】B【解析】根据三角形任意两边的和大于第三边进行判断.+=,不能组成三角形,不符合题意;【详解】A、123+>,能构成三角形,符合题意;B、345+<,不能组成三角形,不符合题意;C、236+=,不能组成三角形,不符合题意;D、224故选B.【点睛】本题考查三角形的三边关系,一般用两条较短的线段相加,如果大于最长那条线段就能够组成三角形.5.某商品的进价是1000元,售价为1500元,为促销商店决定降价出售,在保证利润率不低于5%的前提下,商店最多可降( )A.400元B.450元C.550元D.600元【答案】B【解析】分析:根据题意列出不等式进行解答即可.详解:设商店最多可降价x元,根据题意可得:--≥⨯,x1500100010005%x≤,解得:450∴该商店最多降价450元.故选B.点睛:读懂题意,知道:“利润=售价-进价-降价的金额,利润=进价×利润率”是解答本题的关键.6.若m3,则估计m值的所在的范围是()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<5【答案】C【解析】根据被开方数越大算术平方根越大以及不等式的性质,可得答案.【详解】解:∵36<42<49∴67∴3<42﹣3<4即3<m <4故选:C .【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出6<42<7是解题关键. 7.据5月23日“人民日报”微信公众号文章介绍,中国兵器工业集团豫西集团中南钻石公司推出大颗粒“首饰用钻石”,打破了国外垄断,使我国在钻石饰品主流领域领跑全球,钻石、珠宝等宝石的质量单位是克拉(ct ),1克拉为100分,已知1克拉0.2=克,则“1分”用科学计数法表示正确的是( )A .20.210-⨯克B .2210-⨯克C .3210-⨯ 克D .4210-⨯克【答案】C 【解析】利用科学计数法即可解答.【详解】解:已知1克拉为100分,已知1克拉=0.2克,则一分=0.01克拉=0.002克= 2×10-3克, 故选C.【点睛】本题考查科学计数法,掌握计算方法是解题关键.8.下列说法正确的是( )A .等腰三角形的高、中线、角平分线互相重合B .等腰三角形的两个底角相等C .顶角相等的两个等腰三角形全等D .等腰三角形一边不可以是另一边的2倍【答案】B【解析】根据等腰三角形的性质和判定以及全等三角形的判定方法即可一一判断.【详解】解:A 、等腰三角形的底边上的高、底边上的中线、顶角的平分线互相重合;故本选项错误; B 、等腰三角形的两个底角相等,故本选项正确;C 、腰不一定相等,所以不一定是全等三角形,故本选项错误;D、腰可以是底的两倍,故本选项错误。

在数轴上表示一元一次不等式的解集(共4张PPT)

在数轴上表示一元一次不等式的解集(共4张PPT)
在数轴上表示一元一次不等式 的解集
不等式的性质:
不等式的性质1:不等式两边同时加上或减去同一个数(式),不等号的方向不变; 不等式的性质2:不等式两边同时乘以或除以一个正数,不等号的方向不等号的方要改变。
解不等式的步骤:
去分母,去括号,移项,合并同类项,系数化为1.
去移分项母 :,4x去-括9x号≤9,-移24项+,10合并同类项,系数化为1.
在移不数项等轴 : 式上4解解x表集-:示的9x一表≤去9元示-分一方24母次法+不:1:0等2式(2的x解-集5)≤3(3x+2)-24
移不在项等数: 式 轴4的上去x性表-括质示9x一21≤号:9元-不:一2等4次4+式不x1两-0等边1式5同的≤时9解x乘加集+以上9或-除减2以去4一同个一正个数,(式不),等不号等的号方的向方不向变不;变;
12
去不分等母 式,的解去性括质集号2表:,不移示等项式如,两合下边并同:同时类乘项以,或系除数以化一为个1正. 数,不等号的方向不变;
34
求 x 7 1< 3x 2 的负整数解;
2
2
解:解不等式得 x﹥ 3 , 2
-3
-2
-
3
-1
0
2
12
∴负整数解为x=-1
34
不等式的性质1:不等式两边同时加上或减去同一个数(式),不等号的方向不变;-3 -2 -1 0
在不解数等:轴 式 去上的分系表性母数示质:一122化(:2元x不为-一等5次1)式≤不:3两(等3x边x式≥+同12的)时-解加乘2集4上以或减除去以同一一个个正数,(式不),等不号等的号方的向方不向变不;变;
在数轴上表示一元一次不等式的解集
在移数项轴 :上4移x表-项示9x一≤:9元-4一2x4-次+不91x0等≤式9-的解24集+10

一元一次不等式的应用 教学设计

一元一次不等式的应用 教学设计

.一元一次不等式(二)本节课是义务教育课程标准实验教科书(北师大版)八年级下册第二章《一元一次不等式与一元一次不等式组》的第4节第2课时的内容.一方面,在本节课之前,学生已经学习了一元一次不等式的概念和不等式的基本性质,知道解一元一次不等式的依据是不等式的三个基本性质,并且会解简单的一元一次不等式,而且能在数轴上表示其解集.另一方面,利用一元一次不等式解决实际问题也是继利用一元一次方程和一元一次方程组解决实际问题的进一步学习,为以后把实际问题转化成数学问题的思维的培养打下一定的基础,因此本节课在教材中具有承上启下的作用.二、学情分析在方程与方程组的知识学习过程中,学生已经经历了将生活中的数学现象抽象为数学问题或数学模型的形式,获得并积累了解决实际问题的数学经验的基础.另外,在本章的前面几节课,学生已经学会了解一元一次不等式,为今天的问题解决打下了一个基础.三、教学任务分析本节课的目标为:【知识与技能】(1)进一步熟练掌握一元一次不等式的解法.(2)利用一元一次不等式解决简单的实际问题.【过程与方法】通过分析实际问题中的不等关系,建立不等式模型,通过对不等式的求解来对实际问题的解决,训练学生的分析问题和建立数学模型的能力.【情感态度价值观】(1)通过利用一元一次不等式解决实际问题,使学生认识数学与实际生活的密切联系,以激发学生学习数学的兴趣和信心.(2)通过小组间的合作与交流,培养学生自主参与的学习态度,合作交流的学习方法.【教学重点】一元一次不等式的实际应用问题.【教学难点】将实际问题抽象成数学问题的思维过程.四、教法与学法分析【教法分析】当前,教师不再是古人所推崇的“传道”、“授业”的师长,而是课堂教学活动的组织者、指导者、参与者.其作用在于营造师与生、生与生交往互动的氛围,为学生提供参与、创造、表现和成功的机会,有效地组织、指导、调控学生学习的兴趣.因此本节课我们将采用启发式、讨论式结合的教学方式,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我构建.在学生的展示交流中,对同一个问题去发现不同的解决方法,并对不同的方法进行比较.【学法分析】现代课堂教学的重点由如何“教会”转向如何“学会”,本节课学生通过观察、分析、归纳等过程,得到解决问题的方法.再通过小组合作、交流展示等环节,让学生在这个过程中成为课堂的主导者.让整个课堂洋溢在轻松和谐、探索进取的气氛中,而我则在其中当好课堂教学的组织者和参与者.五、教学过程分析根据本节课的教学目标以及教学重难点,本节课一共设置了以下七个教学环节:环节一:引用名言,引入新课著名数学家华罗庚先生曾经说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。

初中数学 如何在数轴上表示一元一次不等式的解集

初中数学  如何在数轴上表示一元一次不等式的解集

初中数学如何在数轴上表示一元一次不等式的解集在数轴上表示一元一次不等式的解集是一种常见的方法,它可以帮助我们直观地理解不等式的解集在数轴上的位置。

下面我将详细讲解如何在数轴上表示一元一次不等式的解集。

一元一次不等式的形式通常为ax + b < c 或ax + b > c,其中a、b 和c 是已知的实数,而x 是未知数。

我们将按以下步骤来在数轴上表示一元一次不等式的解集:步骤1:将一元一次不等式转化为标准形式-对于不等式ax + b < c,我们可以移项得到ax < c - b。

-对于不等式ax + b > c,我们可以移项得到ax > c - b。

这样,我们将不等式转化为了x 的标准形式。

步骤2:找到关键点-对于标准形式的不等式ax < c - b,我们需要找到关键点c - b,这是解集的分界点。

-对于标准形式的不等式ax > c - b,我们同样需要找到关键点c - b。

步骤3:在数轴上标记关键点-在数轴上标记出找到的关键点c - b。

步骤4:确定解的区域-对于不等式ax < c - b,解的区域位于关键点c - b 的左边。

如果不等式为≤,则解的区域还包括关键点上的点。

-对于不等式ax > c - b,解的区域位于关键点c - b 的右边。

如果不等式为≥,则解的区域还包括关键点上的点。

步骤5:标记解集-在数轴上根据步骤4中确定的解的区域标记解集。

可以使用箭头表示解集的方向。

需要注意的是,当a 的值为负数时,解的区域与上述步骤相反。

对于不等式ax < c - b,解的区域位于关键点c - b 的右边。

对于不等式ax > c - b,解的区域位于关键点c - b 的左边。

综上所述,用数轴表示一元一次不等式的解集的步骤如下:1. 将一元一次不等式转化为标准形式,得到x 的表达式。

2. 找到关键点c - b。

3. 在数轴上标记关键点。

4.3 第2课时 在数轴上表示一元一次不等式的解集

4.3 第2课时 在数轴上表示一元一次不等式的解集
(2)x233x45 . 解:(1)原不等式的解集为x<5,在数轴上表示为
-1 0 1 2 3 4 5 6
(2)原不等式的解集为x≤-11,在数轴上表示为:
-11
0
4. 先用不等式表示下列数量关系,然后求出它们 的解集,并在数轴上表示出来:
(1)
x的
1 2
大于或等于2;
解:
1 2
x ≥ 2,
解得 x ≥ 4 .
其中正整数解有1和2.
当堂练习
1. 不等式x>-2与x ≥-2的解集有什么不同?在数 轴上表示它们时怎样区别?分别在数轴上把这两个解 集表示出来.
2. 用不等式表示图中所示的解集.
x<2 x≤2 x≥ -7.5
3. 解下列不等式,并把它们的解集在数轴上表示出来: (1) 4x-3 < 2x+7 ;
把表示2 的点A
画成空心圆圈,表 示解集不包括2.
A -1 0 1 2 3 4 5 6
画一画: 利用数轴来表示下列不等式的解集.
(1) x>-1
1
(2) x< 2
-1 0
01
用数轴表示不等式的解集,应记住下面的规律: 大于向右画,小于向左画; >,<画空心圆.
问题2 在数轴上表示x ≤ 5的解集.
移项得:20y-8y≤21-8-16,
合并同类项得:12y≤-3,
把y的系数化为1得:y≤
1 4
在数轴上表示如下:
由图可知,满足条
件的最大整数是-1.
课堂小结
不等式解集的表示
解一元一 次不等式
↓ →将解集在数
轴上表示
→找符合条件 的整数解

应用不等式 的基本性质

2022年初中数学《一元一次不等式组的解法2》教案(推荐)

2022年初中数学《一元一次不等式组的解法2》教案(推荐)

9.3 一元一次不等式组第1课时 一元一次不等式组的解法1.理解一元一次不等式组及其解集的概念; 2.掌握一元一次不等式组的解法;(重点)3.会利用数轴表示一元一次不等式组的解集.(难点)一、情境导入你能列出上面的不等式并将其解集在数轴上表示出来吗? 二、合作探究探究点一:在数轴上表示不等式组的解集不等式组⎩⎪⎨⎪⎧x <3,x ≥1的解集在数轴上表示为( )解析:把不等式组中每个不等式的解集在数轴上表示出来,它们的公共局部是1≤x C. 方法总结:利用数轴确定不等式组的解集,如果不等式组由两个不等式组成,其公共局部在数轴上方应当是有两根横线穿过.探究点二:解一元一次不等式组解以下不等式组,并把它们的解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2x -3≥1,x +2<2x ; (2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,x 4≥x -13.解析:先求出不等式组中每一个不等式的解集,再求它们的公共局部.解:(1)⎩⎪⎨⎪⎧2x -3≥1,①x +2<2x .②解不等式①,得x ≥2,解不等式②,得x >2.所以这个不等式组的解集为x >2.将不等式组的解集在数轴上表示如下:(2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,①x 4≥x -13.②解不等式①,得x >1,解不等式②,得x ≤4. 所以这个不等式组的解集是1<x ≤4. 将不等式组的解集在数轴上表示如下:方法总结:解一元一次不等式组的一般步骤:先分别求出不等式组中每一个不等式的解集,并把它们的解集在数轴上表示出来,然后利用数轴确定这几个不等式解集的公共局部.也可利用口诀确定不等式组的解集:大大取较大,小小取较小,大小小大中间找,大大小小无处找.探究点三:求不等式组的特殊解求不等式组⎩⎪⎨⎪⎧2-x ≥0,x -12-2x -13<13的整数解.解析:分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的整数值即可.解:⎩⎪⎨⎪⎧2-x ≥0,①x -12-2x -13<13.②解不等式①,得x ≤2,解不等式②,得x >-3.故此不等式组的解集为-3<x ≤2,x 的整数解为-2,-1,0,1,2.方法总结:求不等式组的特殊解时,先解每一个不等式,求出不等式组的解集,然后根据题目要求确定特殊解.确定特殊解时也可以借助数轴.探究点四:根据不等式组的解集求字母的取值范围假设不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,那么实数a 的取值范围是( )A .a ≥-1B .a <-1C .a ≤1D .a ≤-1解析:解第一个不等式得x ≥-a ,解第二个不等式得x ,所以-a ≥1,解得a ≤D. 方法总结:根据不等式组的解集求字母的取值范围,可按以下步骤进行:①解每一个不等式,把解集用数字或字母表示;②根据条件即不等式组的解集情况,列出新的不等式.这时一定要注意是否包括边界点,可以进行检验,看有无边界点是否满足题意;③解这个不等式,求出字母的取值范围.三、板书设计一元一次不等式组⎩⎪⎨⎪⎧概念解法不等式组的解集⎩⎪⎨⎪⎧利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的根底之上,解不等式组时,先解每一个不等式,再确定各个不等式的解集的公共局部.教学中可以把利用数轴与利用口诀确定不等式组的解集结合起来,互相验证第2课时 余弦和正切【知识与技能】1.理解余弦、正切的概念,了解锐角三角函数的定义;2.能运用余弦、正切的定义解决问题. 【过程与方法】逐步培养学生观察、分析、类比、概括的思维能力. 【情感态度】在探索结论的过程中,体验探索的乐趣,增强数学学习的信心,感受成功的快乐.【教学重点】掌握余弦、正切的概念,并能运用它们解决具体问题.【教学难点】灵活运用三角函数的有关定义进行计算.一、情境导入,初步认识问题我们知道,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都是一个固定值.试问:∠A的邻边与斜边的比、∠A的对边与邻边的比是否分别也是一个固定值呢?为什么?【教学说明】这种设置问题的方式既是对上节课重要知识的回忆,又为引入本节知识做好铺垫,同时也暗示着解决问题的方法与上节课利用相似获得结论的方法完全类似,让学生有法可依.学生可相互交流,教师巡视,听取学生的看法、见解,随时参与讨论,帮助学生获取正确认知.二、思考探究,获取新知问题如图,在Rt △ABC和Rt △A B C''',中,∠C=∠C'=90°∠A =∠A'.求证:〔1〕ACAB=A CA B'''';〔2〕BCAC=B CA C''''【教学说明】这个问题可由学生自主探究,得出结论.教师在学生探讨过程中,提出问题∠A确定后,∠A的邻边与斜边的比也确定吗?它的对边与邻边的比呢?在学生得出结论后,应与学生一道进行总结归纳.余弦:在Rt△ABC中,∠C=90°,我们把锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA ,即cosA =A bc ∠的对边=斜边正切:在RtAABC中,∠C=90°,我们把锐角A的对边与邻边的比叫做∠A的正切,记作tanA,tanA =A aA b∠的对边=∠的邻边.锐角A的正弦、余弦、正切叫做∠A的锐角三角函数.三、典例精析,掌握新知例1 在Rt△ABC中,∠C = 900,BC= 6,sinA = 35,求 cosA,tanB的值.分析与解由正弦函数定义及sinA = 35知,sinA =BCAB=35,又BC = 6,故AB = 10,所以AC = 22AB BC- = 8,从而 cosA = ACAB=810=4 5,tanB =8463ACBC==.【教学说明】此题可先让学生独立完成,教师巡视指导,时时关注学生解题时是否能紧扣定义,即sinA = BCAB,cosA =ACAB,tanB= ACBC的运用是否得当,有没有出现混淆情形.例2在△ABC中,AB = AC = 20,BC = 30,试求 tanB,sinC 的值.【分析】由于∠B和∠C都不是直角三角形中的锐角,而题意却要求出tanB,sinC的值,这样迫使我们要将∠B,∠C放到直角三角形中去,这时,过A作AD丄BC于D可到达这一目的,问题可逐步解决.解过A作AD丄BC于D. AB = AC,∴BD = CD = 12BC=12⨯30 = 15.又 AB = AC = 20,∴AD = 57,因此tanB = BCAC= 577153=,sinC =AD577AC204==.四、运用新知,深化理解1.分别求出以下直角三角形中两个锐角的正弦值、余弦值和正切值.2.如图,在Rt△ABC中,∠C=90°,AC=8,tanA=,求cosB,sinA,tanB的值.△ABC中,∠C=90°,cosB=〔1〕求cosA和tanA的值;〔2〕假设AB=5,求BC和AC的长.△ABC中,∠C=90°,AC=b,BC=a,AB=c.〔1〕sinA与cosB的关系如何?为什么?〔2〕sin2A与cos2A的关系如何?说说你的理由〔sin2A=(sinA)2).〔3〕找出tanA与tanB的关系;〔4〕由〔1〕,〔2〕,〔3〕,你能发现什么有趣的结论?【教学说明】让学生通过对上述问题的思考,稳固所学知识,增强运用解决问题的能力.其中第2题在学生探究交流后,教师应予以评讲,让学生的分析能力和解决问题能力得到进一步开展.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学〞局部.【答案】 1.〔1〕sinA =513,sinB =1213,cosA =1213,cosB =513,tanA=5 12tanB = 125.31313=21313=21313=, cosB =313 13=,tanA = 32,tanB = 23.2.解:tanA =BCAC = 34,AC = 8. ∴BC = 6,在△ABC 中,AB = 22AC BC += 10. ∴ cosB =63105=,tanB = 8463=. 3.解:〔1〕由于cosB = BC 1AB 3=,设BC = x,那么AB = 3x.∴AC =22AB BC - = 22(3x)2x x -=2.∴cosA = AC AB= 223,tanA =BC AC= 24.(2) 假设AB = 5,即3x = 5, ∴x = 53,∴BC = 53,AC = 1023.4.解:〔1〕sinA = cosB (2)sin 2A + cos 2A = 1 (3)tanA ·tanB = 1 (4)略五、师生互动,课堂小结通过本节课的学习你有哪些收获?你还有哪些疑虑,请与同伴交流. 【教学说明】 教师应与学生一起进行交流,共同回忆本节知识,理清例题思路方法,对普遍存在的疑虑,可共同探讨解决,对少数同学还面临的问题,可让学生与同伴交流获得结果,也可课后个别辅导,帮助他分析,找出问题原因,及时查漏补缺.1.布置作业:从教材P 68~70习题28.1中选取.“课时作业〞局部.本节课的引入可采用探究的形式.首先引导学生认知特殊角直角三角形的余弦、正切,进而引出锐角三角函数的定义.其次利用一个联系生活实际的问题,让学生对三角函数有关定义能够灵活运用.最后,应注重让学生用自己的语言归纳和表达经由探索得出的结论,引导学生对知识与方法进行回忆总结,形成良好的反思习惯,掌握高效的学习方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档