9.2一元一次不等式(第2课时)一元一次不等式的应用同步练习
9.2 一元一次不等式 人教版数学七年级下册同步练习(含解析)

第九章 不等式与不等式组9.2 一元一次不等式基础过关全练知识点1 一元一次不等式1.下列式子中,是一元一次不等式的有( )①3a -2=4a +9;②3x -6>3y +7;③5<32x ;④x 2>1;⑤2x +6>x ;⑥1x +5≤5.A.1个 B.2个 C.3个 D.4个2.【新独家原创】当m = 时,不等式(m -2 023)x |m |-2 022+2 021>0是关于x 的一元一次不等式. 知识点2 一元一次不等式的解法3.(2022辽宁大连中考)不等式4x <3x +2的解集是 ( )A .x >-2B .x <-2C .x >2D .x <24.若关于x 的不等式(a -2)x >2a -5的解集是x <4,则关于y 的不等式2a -5y >1的解集是( )A.y <52 B.y <25 C.y >52 D.y >255.(2021四川自贡中考)请写出不等式x +2>7的一个整数解: .6.若关于x 的不等式2x ―0.53>a 2与5(1-x )<a -20的解集完全相同,则它们的解集为 .7.(2022江苏连云港中考)解不等式2x -1>3x ―12,并把它的解集在数轴上表示出来.8.请根据小明同学解不等式的过程,完成各项任务.解不等式:x+16≥2x―54+1.解:去分母,得2(x+1)≥3(2x-5)+1,①去括号,得2x+2≥6x-5+1,②移项,得2x-6x≥-5+1+2,③合并同类项,得-4x≥-2,④系数化为1,得x≥12,⑤所以不等式的解集为x≥12.任务一:以上解题过程中,从第 步开始出现错误,错误的原因是 ;任务二:请从出现错误的步骤开始,把正确的解答过程写出来;任务三:以上解题过程中,除了开始出现的错误外,还有哪些错误值得注意?知识点3 一元一次不等式的应用9.(2021重庆綦江期末)把一些书分给几名同学,若 ;若每人分11本,则有剩余.依题意,设有x名同学,可列不等式为7(x+9)>11x,则横线上的信息可以是( )A.每人分7本,则剩余9本B.每人分7本,则可多分9个人C.每人分9本,则剩余7本D.其中一个人分7本,则其他同学每人可分9本10.(2022山西中考)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价 元.11.【教材变式·P125T2变式】为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?12.(2022广西玉林中考)某果蔬加工公司先后两次购买龙眼共21吨,第一次购买龙眼的价格为0.4万元/吨,因为龙眼大量上市,价格下跌,所以第二次购买龙眼的价格为0.3万元/吨,已知两次购买龙眼共用了7万元.(1)求两次购买龙眼各多少吨;(2)公司把两次购买的龙眼加工成桂圆肉和龙眼干,1吨龙眼可加工成桂圆肉0.2吨或龙眼干0.5吨,桂圆肉和龙眼干的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成桂圆肉?能力提升全练13.(2022辽宁盘锦中考,5,★☆☆)不等式12x ―1≤7―32x 的解集在数轴上表示为( )A B C D14.(2022山东聊城中考,6,★★☆)关于x ,y 的方程组2x ―y =2k ―3,x ―2y =k 的解中x 与y 的和不小于5,则k 的取值范围为( )A .k ≥8B .k >8C .k ≤8D .k <815.(2022福建福州期末,15,★★☆)在实数范围内规定新运算“△”,其规则是a △b =2a -b ,已知不等式x △k ≥2的解集在数轴上的表示如图所示,则k 的值是 .16.(2021北京东城广渠门中学期中,16,★★☆)已知关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,如图,数轴上的A ,B ,C ,D 四个点中,实数m 对应的点可能是 .17.(2020四川绵阳中考,18,★★★)若不等式x +52>―x ―72的解都能使不等式(m -6)x <2m +1成立,则实数m 的取值范围是 . 18.(2022湖南邵阳中考,23,★☆☆)2022年2月4日至20日第24届冬季奥运会在北京举行.某商店购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11 400元,请分别求出购进“冰墩墩”摆件和挂件的数量;(2)该商店计划将“冰墩墩”摆件的售价定为100元/个,挂件的售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2 900元,则购进的“冰墩墩”挂件不能超过多少个?19.【学科素养·应用意识】(2022江苏宿迁中考,26,★★☆)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动.该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的支付费用为 元,在乙超市的支付费用为 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?素养探究全练20.【应用意识】【跨学科·生物】某营养餐公司为学生提供的300克早餐食品中,蛋白质总含量占8%,该早餐食品包括一份牛奶,一份谷物食品和一个鸡蛋(一个鸡蛋的质量约为60 g,蛋白质含量占15%;谷物食品和牛奶的部分营养成分如表所示).牛奶项目每100克(g)能量261千焦(kJ)蛋白质3.0克(g)脂肪3.6克(g)碳水4.5克(g)化合物钙100毫克(mg)谷物食品项目每100克(g)能量 2 215千焦(kJ)蛋白质9.0克(g)脂肪32.4克(g)碳水50.8克(g)化合物钠280毫克(mg)(1)设该份早餐中谷物食品为x克,牛奶为y克,则谷物食品中所含的蛋白质为 克,牛奶中所含的蛋白质为 克;(用含有x,y的式子表示)(2)x= ,y= ;(3)该公司为学校提供的午餐有A,B两种套餐(每天只提供一种):套餐主食(克)肉类(克)其他(克)A15085165B18060160为了膳食平衡,建议合理控制学生的主食摄入量.如果在一周内,学生午餐主食摄入总量不超过830克,那么该校在一周内可以选择A,B套餐各几天?写出所有的方案.(说明:一周按5天计算)答案全解全析基础过关全练1.A ①3a-2=4a+9是等式;②3x-6>3y+7中含有两个未知数,不是一元一次不等式;③5<3的右边不是整式;2x④x2>1中x的次数不是1,不是一元一次不等式;⑤2x+6>x符合一元一次不等式的定义;≤5的左边不是整式.故选A.⑥1x+52.答案-2 023解析 根据一元一次不等式的定义,得|m|-2 022=1且m-2 023≠0,解得m=-2 023.3.D 移项,得4x-3x<2,合并同类项,得x<2.故选D.4.B ∵关于x的不等式(a-2)x>2a-5的解集是x<4,=4,∴a-2<0,2a―5a―2,可得a=32.∴关于y的不等式2a-5y>1即为3-5y>1,其解集为y<25故选B.5.答案6(答案不唯一)解析 解不等式得x>7-2,∵1<2<2,∴5<7-2<6,因此不等式的整数解是大于或等于6的任何整数.6.答案x>4解析 解不等式2x―0.53>a2,得x>3a+14,解不等式5(1-x)<a-20,得x>25―a5.由两个不等式的解集完全相同,得3a+14=25―a5,解得a=5.所以它们的解集为x>4.7.解析 去分母,得4x-2>3x-1,移项,得4x-3x>-1+2,合并同类项,得x>1,将不等式的解集表示在数轴上如下:8.解析 任务一:从第①步开始出现错误,错误的原因是不等式两边都乘12时右边的1漏乘.任务二:正确的解答过程如下:去分母,得2(x+1)≥3(2x-5)+12,去括号,得2x+2≥6x-15+12,移项,得2x-6x≥-15+12-2,合并同类项,得-4x≥-5,系数化为1,得x≤54,所以不等式的解集为x≤54.任务三:去括号时括号内每项都要乘括号前的常数,移项要变号,系数化为1时,不等式两边都乘或除以负数,不等号的方向要改变.9.B 10.答案32解析 设该护眼灯降价x元,根据“以利润率不低于20%的价格降价出×100%≥20%,解得x≤32,故答案售”列一元一次不等式,得320―x―240240为32.11.解析 (1)设该参赛同学一共答对了x道题,则答错了(25-1-x)道题,依题意得4x-(25-1-x)=86,解得x=22.答:该参赛同学一共答对了22道题.(2)设参赛者答对y道题,则答错(25-y)道题,依题意得4y-(25-y)≥90,解得y≥23.答:参赛者至少需答对23道题才能被评为“学党史小达人”.12.解析 (1)设第一次购买龙眼x吨,则第二次购买龙眼(21-x)吨,由题意得0.4x+0.3(21-x)=7,解得x=7,∴21-x=21-7=14.答:第一次购买龙眼7吨,第二次购买龙眼14吨.(2)设把y吨龙眼加工成桂圆肉,则把(21-y)吨龙眼加工成龙眼干,由题意得10×0.2y+3×0.5(21-y)≥39,解得y≥15,∴至少需要把15吨龙眼加工成桂圆肉.答:至少需要把15吨龙眼加工成桂圆肉.能力提升全练13.C ∵解不等式12x ―1≤7―32x ,移项,得12x +32x ≤7+1,合并同类项,得2x ≤8,系数化为1,得x ≤4,∴解集在数轴上表示如下:故选C .14.A 把两个方程相减,可得x +y =k -3,根据题意得k -3≥5,解得k ≥8.所以k 的取值范围是k ≥8.故选A .15.答案 -4解析 根据题图知,不等式的解集是x ≥-1.∵x △k =2x -k ≥2,解得x ≥2+k 2,∴2+k 2=-1,∴k =-4.故答案是-4.16.答案D解析 2x -1>3+mx ,移项、合并同类项得(2-m )x >4,∵关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,∴2-m <0,∴m >2,∵数轴上的A ,B ,C ,D 四个点中,只有点D 表示的数大于2,∴实数m 对应的点可能是点D.17.答案 236≤m ≤6解析 解不等式x +52>―x ―72得x >-4,根据题意得,当x >-4时,不等式(m -6)x <2m +1恒成立,①当m-6=0,即m=6时,不等式(m-6)x<2m+1可化为0<13,恒成立,符合题意;②当m-6≠0时,要满足题意,需不等式(m-6)x<2m+1的不等号方向与其解集的不等号方向不同,∴m-6<0,即m<6,∴不等式(m-6)x<2m+1的解集为x>2m+1m―6,∵x>-4都能使x>2m+1m―6成立,∴-4≥2m+1m―6,∴-4m+24≤2m+1,∴m≥236,∴236≤m<6.综上所述,m的取值范围是236≤m≤6.18.解析 (1)设购进“冰墩墩”摆件x个,购进“冰墩墩”挂件y个.依题意得x+y=180,80x+50y=11 400,解得x=80,y=100.答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180-m)个,依题意得(60-50)m+(100-80)(180-m)≥2 900,解得m≤70.答:购进的“冰墩墩”挂件不能超过70个.19.解析 (1)∵10×30=300(元),300<400,∴在甲超市的支付费用为300元.在乙超市的支付费用为300×0.8=240(元).故答案为300;240.(2)设购买x件这种文化用品.当0<x≤40时,在甲超市的支付费用为10x元,在乙超市的支付费用为0.8×10x=8x(元),10x>8x.当x>40时,在甲超市的支付费用为400+0.6(10x-400)=(6x+160)元,在乙超市的支付费用为0.8×10x=8x(元),若6x+160>8x,则x<80;若6x+160=8x,则x=80;若6x+160<8x,则x>80.综上,当购买数量不足80件时,选择乙超市支付的费用较少;当购买数量为80件时,选择两超市支付的费用相同;当购买数量超过80件时,选择甲超市支付的费用较少.素养探究全练20.解析 (1)谷物食品中所含的蛋白质为9%x克,牛奶中所含的蛋白质为3%y克.故答案为9%x;3%y.(2)依题意,列方程组为9%x+3%y+60×15%=300×8%,x+y+60=300,解得x=130, y=110.故答案为130;110.(3)设该学校一周内共有a天选择A套餐,则有(5-a)天选择B套餐.依题意,得150a+180(5-a)≤830,解得a≥73.方案如表所示.方案A套餐B套餐方案13天2天方案24天1天方案35天0天。
人教版七年级数学下册课件 第九章 不等式与不等式组 一元一次不等式 第2课时 一元一次不等式的应用

购买数量(件)
A
第一次 第二次
B
购买总费用(元)
2
1
55
1
3
65
解:(1)设 A 种商品的单价为 x 元,B 种商品的单价为 y 元,根据题 意,可得2xx++3yy= =5655, , 解得xy==1250,,
答:A 种商品的单价为 20 元,B 种商品的单价为 15 元
(2)设第三次购买商品A种a件,则购买B种商品(12-a)件,根据题意, 可得a≥2(2y=y=59940000,,
解得xy==13
500, 200,
答:每台 A 型电脑
的价格为 3 500 元,每台 B 型打印机的价格为 1 200 元
(2)设学校购买 a 台 B 型打印机,则购买 A 型电脑为(a-1)台,根据题 意,得 3 500(a-1)+1 200a≤20 000,解得 a≤5.答:该学校至多能购买 5 台 B 型打印机
9.某大型超市从生产基地购进一批水果,运输过程中质量损失10%, 假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水 果的售价在进价的基础上应至少提高( B )
A.40% B.33.4% C.33.3% D.30%
10.马师傅计划用10天时间加工320个零件,前两天每天加工20个零件, 后改进了工作方式,结果提前一天完成了加工任务,马师傅在两天后每天 至少加工__4_0_个零件.
∵m=20a+15(12-a)=5a+180,∴当a=8时所花钱数最少,即购买 A商品8件,B商品4件
(1)求每台A型电脑和每台B型打印机的价格分别是多少元? (2)如果学校购买A型电脑和B型打印机的预算费用不超过20 000元,并 且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至 多能购买多少台B型打印机?
人教版数学七年级下册第九章 9.2一元一次不等式习题练习(附答案)

人教版数学七年级下册第九章 9.2一元一次不等式习题练习(附答案)一、选择题1.若关于x 、y 的二元一次方程组{3x −y =−1−a,x −3y =3的解满足x -y >-2,则a 的取值范围是( ) A .a <4B . 0<a <4C . 0<a <10D .a <102.若不等式ax -2>0的解集为x <-2,则关于y 的方程ay +2=0的解为( )A .y =-1B .y =1C .y =-2D .y =23.小明用100元钱去购买笔记本和钢笔共30件,如果每枝钢笔5元,每个笔记本2元,那么小明最多能买多少枝钢笔.( )A . 11B . 12C . 13D . 144.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计),某人从甲地到乙地经过的路程是x 千米,出租车费为21.5元,那么x 的最大值是( )A . 11B . 8C . 7D . 55.初三的几位同学拍了一张合影作留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为( )A . 至多6人B . 至少6人C . 至多5人D . 至少5人6.定义运算:a *b ,当a >b 时,有a *b =a ,当a <b 时,有a *b =b ,如果(x +3)*2x =x +3,那么x 的取值范围是( )A .x <3B .x >3C .x <1D . 1<x <37.不等式|x -2|>1的解集是( )A .x >3或x <1B .x >3或x <-3C . 1<x <3D . -3<x <3二、填空题8.关于x 的方程3(x +2)=k +2的解是正数,则k 的取值范围是________.9.若-3是关于x 的方程x−a 3-2−x 4=1的解,则x−a 3-2−x 4≥1的解集是__________.10.为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,最多用____________资金购买书桌、书架等设施.11.一个工程队计划用6天完成300土方的工程,实际上第一天就完成了60方土,因进度需要,剩下的工程所用的时间不能超过3天,那么以后几天平均至少要完成的土方数是_________. 12.若关于x 的不等式(a -2)x >a -2解集为x <1,化简|a -3|=______.三、解答题13.已知方程组{x −y =2a,2x +3y =5−a的解为非负数,求整数a 的值. 14.若关于x 的方程2x -3m =2m -4x +4的解不小于78-1−m 3,求m 的最小值.15.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4:3,单价和为42元.(1)甲、乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,问甲种票最多买多少张?16.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为________.(2)解不等式|x -3|+|x +4|≥9;(3)若|x -3|+|x +4|≥a 对任意的x 都成立,求a 的取值范围.17.解不等式:5x+12-x−24>5x−16+x−33.答案解析1.【答案】D【解析】在关于x 、y 的二元一次方程组{3x −y =−1−a①,x −3y =3②中, ①+②,得4x -4y =2-a ,即x -y =12-a 4,∵x -y >-2,∴12-a 4>-2,解得a <10,故选D.2.【答案】D【解析】ax -2>0,移项,得ax >2,∵解集为x <-2,则a =-1,则ay +2=0,即-y +2=0,解得y =2.故选D.3.【答案】C【解析】设买x 支钢笔,则笔记本有(30-x )本,则有5x +2(30-x )≤100,即3x ≤40,解得x ≤1313.因此最多能买13支钢笔.故答案为13.4.【答案】B【解析】根据题意得8+2.6(x -3)≤21.5,解得x ≤8.19,∵不足1千米按1千米计,∴x 的最大值是8.故选B.5.【答案】B【解析】设参加合影的同学人数为x 人,则有5+0.5x <1.5x ,解得x >5,∵x 取正整数,∴参加合影的同学人数至少为6人.故选B.6.【答案】A【解析】∵(x +3)*2x =x +3,∴x +3>2x ,x <3,故选A.7.【答案】A【解析】∵|x -2|>1,∴x -2>1或x -2<-1;所以解集为x >3或x <1;故选A.8.【答案】k >4【解析】由方程3(x +2)=k +2去括号移项,得3x =k -4,∴x =k−43, ∵关于x 的方程3(x +2)=k +2的解是正数,∴x =k−43>0,∴k >4. 9.【答案】x ≥-3【解析】把x =-3代入方程x−a 3-2−x 4=1,可得a =-394, 把a =-394代入x−a 3-2−x 4≥1,解得x ≥-3,故答案为x ≥-3.10.【答案】7 500元【解析】设用于购买书桌、书架等设施的资金为x 元,则购买书籍的有(30 000-x )元, 根据题意得30 000-x ≥3x ,解得x ≤7 500.即最多用7 500元购买书桌、书架等设施;故答案是7 500元.11.【答案】80【解析】设以后几天平均每天完成x 土方.由题意得:3x ≥300-60,解得x ≥80答:以后几天平均至少要完成的土方数是80土方.故答案为80.12.【答案】3-a【解析】∵关于x 的不等式(a -2)x >a -2解集为x <1,∴a -2<0,即a <2,∴原式=3-a .故答案为3-a .13.【答案】解:{x −y =2a①,2x +3y =5−a②,①×3+②,得5x =6a +5-a ,即x =a +1≥0,解得a ≥-1;②-①×2,得5y =5-a -4a ,即y =1-a ≥0,解得a ≤1;则-1≤a ≤1,即a 的整数值为-1,0,1.【解析】用加减消元法解方程组,求出x 和y (x 和y 均为含有a 的代数式),再根据x 、y 的取值即可列出关于a 的不等式组,即可求出a 的取值范围,进一步即可求解.14.【答案】解:关于x 的方程2x -3m =2m -4x +4的解为x =5m+46, 根据题意,得5m+46≥78-1−m 3,去分母,得4(5m +4)≥21-8(1-m ),去括号,得20m +16≥21-8+8m ,移项,合并同类项,得12m ≥-3,系数化为1,得m ≥-14.所以当m ≥-14时,方程的解不小于78-1−m 3,m 的最小值为-14. 【解析】首先求解关于x 的方程2x -3m =2m -4x +4,即可求得x 的值,根据方程的解的解不小于78-1−m 3,即可得到关于m 的不等式,即可求得m 的范围,从而求解.15.【答案】解:(1)设甲票价为4x 元,乙为3x 元,∴3x +4x =42,解得x =6,∴4x =24,3x =18, 答:甲乙两种票的单价分别是24元、18元;(2)设甲种票有y 张,则乙种票(36-y )张,根据题意得24y +18(36-y )≤750,解得y ≤17,答:甲种票最多买17张.【解析】(1)设甲票价为4x元,乙为3x元,根据单价和为42元得到关于x的一元一次方程,解方程得x的值,然后分别计算4x与3x即可;(2)设甲种票有y张,则乙种票(36-y)张,根据购买的钱不超过750元得到不等式,求出解集中的最大整数即可.16.【答案】解:(1)方程|x+3|=4的解就是在数轴上到-3这一点,距离是4个单位长度的点所表示的数,是1和-7.故解是1和-7;(2)由绝对值的几何意义知,该方程表示求在数轴上与3和-4的距离之和为大于或等于9的点对应的x的值.在数轴上,即可求得x≥4或x≤-5.(3)|x-3|+|x+4|即表示x的点到数轴上与3和-4的距离之和,当表示对应x的点在数轴上3与-4之间时,距离的和最小,是7.故a≤7.【解析】(1)根据已知条件可以得到绝对值方程,可以转化为数轴上,到某个点的距离的问题,即可求解;(2)不等式|x-3|+|x+4|≥9表示到3与-4两点距离的和,大于或等于9个单位长度的点所表示的数;(3)|x-3|+|x+4|≥a对任意的x都成立,即求到3与-4两点距离的和最小的数值.17.【答案】解:去分母得6(5x+1)-3(x-2)>2(5x-1)+4(x-3),去括号得30x+6-3x+6>10x-2+4x-12,移项得30x-3x-10x-4x>-2-12-6-6,合并同类项,得13x>-26,系数化为1,得x>-2.【解析】利用不等式的基本性质,即可求得原不等式的解集.。
人教版数学七年级下册:9.2 一元一次不等式 同步练习(附答案)

9.2 一元一次不等式 第1课时 一元一次不等式的解法1.下列不等式中,是一元一次不等式的是( ) A .2x -3y >4 B .-2<3 C .3x -1<0 D .y 2-3>22.若(m +1)x |m|+2>0是关于x 的一元一次不等式,则m =1. 3.不等式1-2x ≥0的解集是( ) A .x ≥2 B .x ≥12C .x ≤2D .x ≤124.不等式2x -1≤3的解集在数轴上表示正确的是( ) A. B. C.D.5.当x 时,式子x -3的值是正数. 6.不等式x -3<6-2x 的解集是 . 7.解不等式,并把解集在数轴上表示出来: (1)5x -2≤3x ;(2)5x -5<2(2+x);(3)2-x 4≥1-x 3.8.小明解不等式1+x 2-2x +13≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.9.与不等式2x -4≤0的解集相同的不等式是( ) A .-2x ≤x -1 B .-2x ≤x -10 C .-4x ≥x -10 D .-4x ≤x -10 10.不等式6-4x ≥3x -8的非负整数解为( ) A .2个 B .3个 C .4个 D .5个11.若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( ) A .m ≥2 B .m >2 C .m <2 D .m ≤212.如果a<2,那么不等式ax>2x +5的解集是x<5a -2.13.在实数范围内规定新运算“△”,其规则是:a △b =2a -b.已知不等式x △k ≥1的解集在数轴上如图表示,则k 的值是 .14.解不等式,并把解集在数轴上表示出来: (1)2(x +1)-1≥3x +2;(2)3(x -1)<4(x -12)-3;(3)x +12≥3(x -1)-4;(4)x -25-x +42>-3.15.如图,在数轴上,点A ,B 分别表示数1,-2x +3. (1)求x 的取值范围;(2)数轴上表示数-x +2的点应落在 .A .点A 的左边B .线段AB 上C .点B 的右边第2课时一元一次不等式的应用1.小明借到一本有87页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里平均每天至少要读多少页才能读完?设以后几天里平均每天要读x页,所列不等式为( )A.2+10x≥87 B.2+10x≤87C.10+8x≤87 D.10+8x≥872.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为( )A.5 B.4 C.3 D.23.某超市花费1 140元购进苹果100千克,销售中有5%的正常损耗,为避免亏本(其他费用不考虑),售价至少定为多少?设售价为x元/千克,根据题意所列不等式正确的是( )A.100(1-5%)x≥1 140B.100(1-5%)x>1 140C.100(1-5%)x<1 140D.100(1-5%)x≤1 1404.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x千米,出租车费为21元,那么x的最大值是( )A.11 B.8 C.7 D.55.为了举行班级晚会,孔明准备去商店购买20个乒乓球作道具,并买一些乒乓球拍作奖品,已知乒乓球每个1.5元,球拍每副22元.如果购买金额不超过200元,那么孔明最多可以买多少副球拍?6.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为( )A.13 B.14 C.15 D.167.九(2)班的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片,共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数至少为人.8.某人要在18分钟内完成2.1千米的路程,已知他每分钟走90米,每分钟跑210米.问这人完成这段路程,至少要跑多少分钟?设要跑x分钟,则列出的不等式为( ) A.210x+90(18-x)≥2 100B.90x+210(18-x)>2 100C.210x+90(18-x)≥2.1D.210x+90(18-x)>2.19.马师傅计划用10天时间加工320个零件,前两天每天加工20个零件,后改进了工作方式,结果提前一天完成了加工任务,两天后马师傅每天至少加工40个零件.10.已知导火线的燃烧速度是0.7 cm/s,爆破员点燃后跑开的速度是5 m/s,为了点火后跑到130 m及以外的安全地带,则导火线至少长多少厘米?11.某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?( )A.8 B.6 C.7 D.912.国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过115 cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20 cm,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为 cm.13.2020年的5月20日是第31个全国学生营养日,某市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息:信息若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克蛋白质.14.在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品60件,B种物品45件,共需1 140元;如果购买A种物品45件,B种物品30件,共需840元.(1)求A、B两种防疫物品每件各多少元;(2)现要购买A、B两种防疫物品共600件,总费用不超过7 000元,那么A种防疫物品最多购买多少件?15.新冠肺炎疫情期间,某口罩厂为生产更多的口罩满足疫情防控需求,决定拨款560万元购进A,B两种型号的口罩机共30台.两种型号口罩机的单价和工作效率分别如表:(1)购进A种型号的口罩机台,B种型号的口罩机台;(2)现有200万只口罩的生产任务,计划安排新购进的口罩机共15台进行生产.若工厂的工人每天工作10 h,则至少购进B种型号的口罩机多少台才能在5天内完成任务?16.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”,这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动,投放A,B两种款型的单车共100辆,总价值36 800元,试问本次试点投放A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开,按照试点投放中A,B两种车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?第3课时利用一元一次不等式解决方案设计问题1.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?2.某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9 000元.(1)求购买甲、乙两种树苗各多少棵;(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案.3.某景区售出的门票分为成人票和儿童票,成人票每张100元,儿童票每张50元,若干家庭结伴到该景区旅游,成人和儿童共30人.售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式.4.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知购买较为合算;(只填“方案一”或“方案二”,不要求写解题过程)(2)当x>20时,①该客户按方案一购买,需付款元;(用含x的式子表示)②该客户按方案二购买,需付款元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?5.友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.6.某企业为了提高污水处理的能力,决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格、月处理污水量如下表:经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业可能的购买方案;(2)若企业每月产生的污水量为2 040吨,为了节约资金,应选择哪种购买方案?请说明理由.参考答案:9.2 一元一次不等式第1课时 一元一次不等式的解法1.下列不等式中,是一元一次不等式的是(C)A .2x -3y >4B .-2<3C .3x -1<0D .y 2-3>22.若(m +1)x |m|+2>0是关于x 的一元一次不等式,则m =1.3.不等式1-2x ≥0的解集是(D)A .x ≥2B .x ≥12C .x ≤2D .x ≤124.不等式2x -1≤3的解集在数轴上表示正确的是(C)A.B. C. D. 5.当x >3时,式子x -3的值是正数.6.不等式x -3<6-2x 的解集是x <3.7.解不等式,并把解集在数轴上表示出来:(1)5x -2≤3x ;解:移项,得5x -3x ≤2.合并同类项,得2x ≤2.系数化为1,得x ≤1.其解集在数轴上表示为:(2)5x -5<2(2+x);解:去括号,得5x -5<4+2x.移项,得5x -2x <4+5.合并同类项,得3x <9.系数化为1,得x <3.这个不等式的解集在数轴上表示为:(3)2-x 4≥1-x 3. 解:去分母,得3(2-x)≥4(1-x).去括号,得6-3x ≥4-4x.移项、合并同类项,得x ≥-2.其解集在数轴上表示为:8.小明解不等式1+x 2-2x +13≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.解:错误的是①②⑤,正确的解答过程如下:去分母,得3(1+x)-2(2x +1)≤6.去括号,得3+3x -4x -2≤6.移项,得3x -4x ≤6-3+2.合并同类项,得-x ≤5. 两边都除以-1,得x ≥-5.9.与不等式2x -4≤0的解集相同的不等式是(C)A .-2x ≤x -1B .-2x ≤x -10C .-4x ≥x -10D .-4x ≤x -1010.不等式6-4x ≥3x -8的非负整数解为(B)A .2个B .3个C .4个D .5个11.若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是(C)A .m ≥2B .m >2C .m <2D .m ≤212.如果a<2,那么不等式ax>2x +5的解集是x<5a -2. 13.在实数范围内规定新运算“△”,其规则是:a △b =2a -b.已知不等式x △k ≥1的解集在数轴上如图表示,则k 的值是-3.14.解不等式,并把解集在数轴上表示出来:(1)2(x +1)-1≥3x +2;解:去括号,得2x +2-1≥3x +2.移项,得2x -3x ≥2-2+1.合并同类项,得-x ≥1.系数化为1,得x ≤-1.其解集在数轴上表示为:(2)3(x -1)<4(x -12)-3;解:去括号,得3x -3<4x -2-3.移项,得3x -4x<3-2-3.合并同类项,得-x<-2.系数化为1,得x >2.其解集在数轴上表示为:(3)x +12≥3(x -1)-4;解:去分母,得x +1≥6(x -1)-8.去括号,得x +1≥6x -6-8.移项,得x -6x ≥-6-1-8. 合并同类项,得-5x ≥-15.系数化为1,得x ≤3.其解集在数轴上表示为:(4)x -25-x +42>-3. 解:去分母,得2(x -2)-5(x +4)>-30.去括号,得2x -4-5x -20>-30.移项,得2x -5x >-30+4+20.合并同类项,得-3x >-6.系数化为1,得x <2.其解集在数轴上表示为:15.如图,在数轴上,点A ,B 分别表示数1,-2x +3.(1)求x 的取值范围;(2)数轴上表示数-x +2的点应落在B .A .点A 的左边B .线段AB 上C .点B 的右边解:由数轴上的点表示的数右边的总比左边的大,得-2x +3>1,解得x <1.第2课时 一元一次不等式的应用1.小明借到一本有87页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里平均每天至少要读多少页才能读完?设以后几天里平均每天要读x 页,所列不等式为(D)A .2+10x ≥87B .2+10x ≤87C .10+8x ≤87D .10+8x ≥872.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为(B)A.5 B.4 C.3 D.23.某超市花费1 140元购进苹果100千克,销售中有5%的正常损耗,为避免亏本(其他费用不考虑),售价至少定为多少?设售价为x元/千克,根据题意所列不等式正确的是(A) A.100(1-5%)x≥1 140B.100(1-5%)x>1 140C.100(1-5%)x<1 140D.100(1-5%)x≤1 1404.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x千米,出租车费为21元,那么x的最大值是(B)A.11 B.8 C.7 D.55.为了举行班级晚会,孔明准备去商店购买20个乒乓球作道具,并买一些乒乓球拍作奖品,已知乒乓球每个1.5元,球拍每副22元.如果购买金额不超过200元,那么孔明最多可以买多少副球拍?解:设孔明可以买x副球拍.根据题意,得1.5×20+22x≤200,解得x≤7811.答:孔明最多可以买7副球拍.6.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为(C)A.13 B.14 C.15 D.16 7.九(2)班的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片,共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数至少为6人.8.某人要在18分钟内完成2.1千米的路程,已知他每分钟走90米,每分钟跑210米.问这人完成这段路程,至少要跑多少分钟?设要跑x分钟,则列出的不等式为(A)A.210x+90(18-x)≥2 100B.90x+210(18-x)>2 100C .210x +90(18-x)≥2.1D .210x +90(18-x)>2.19.马师傅计划用10天时间加工320个零件,前两天每天加工20个零件,后改进了工作方式,结果提前一天完成了加工任务,两天后马师傅每天至少加工40个零件.10.已知导火线的燃烧速度是0.7 cm/s ,爆破员点燃后跑开的速度是5 m/s ,为了点火后跑到130 m 及以外的安全地带,则导火线至少长多少厘米?解:设导火线长x cm.由题意,得x 0.7≥1305, 解得x ≥18.2.答:导火线至少长18.2 cm.11.某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?(B)A .8B .6C .7D .912.国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过115 cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20 cm ,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为55cm.13.2020年的5月20日是第31个全国学生营养日,某市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息:信息若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克蛋白质.解:设这份快餐含有x 克蛋白质,则这份快餐含有4x 克的碳水化合物.根据题意,得 x +4x ≤400×70%,解得x ≤56.答:这份快餐最多含有56克蛋白质.14.在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A 、B 两种防疫物品.如果购买A 种物品60件,B 种物品45件,共需1 140元;如果购买A 种物品45件,B 种物品30件,共需840元.(1)求A 、B 两种防疫物品每件各多少元;(2)现要购买A 、B 两种防疫物品共600件,总费用不超过7 000元,那么A 种防疫物品最多购买多少件?解:(1)设A 种防疫物品每件x 元,B 种防疫物品每件y 元,根据题意,得⎩⎪⎨⎪⎧60x +45y =1 140,45x +30y =840,解得⎩⎪⎨⎪⎧x =16,y =4.答:A 种防疫物品每件16元,B 种防疫物品每件4元.(2)设购买A 种防疫物品m 件,则购买B 种防疫物品(600-m)件,根据题意,得16m +4(600-m)≤7 000.解得m ≤38313. 又∵m 为正整数,∴m 的最大值为383.答:A 种防疫物品最多购买383件.15.新冠肺炎疫情期间,某口罩厂为生产更多的口罩满足疫情防控需求,决定拨款560万元购进A ,B 两种型号的口罩机共30台.两种型号口罩机的单价和工作效率分别如表:(1)购进A 种型号的口罩机10台,B 种型号的口罩机20台;(2)现有200万只口罩的生产任务,计划安排新购进的口罩机共15台进行生产.若工厂的工人每天工作10 h ,则至少购进B 种型号的口罩机多少台才能在5天内完成任务? 解:设购进B 型口罩机m 台,根据题意,得5×10×[2 500(15-m)+3 000m]≥2 000 000.解得m ≥5.答:至少购进B 型号口罩机5台.16.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”,这批单车分为A ,B 两种不同款型,其中A 型车单价400元,B 型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动,投放A ,B 两种款型的单车共100辆,总价值36 800元,试问本次试点投放A 型车与B 型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开,按照试点投放中A ,B 两种车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A 型车与B 型车各多少辆?解:(1)设本次试点投放A 型车x 辆,则投放B 型车(100-x)辆.依题意,得400x +320(100-x)=36 800.解得x =60.则100-x =40.答:本次试点投放A 型车60辆,B 型车40辆.(2)由(1)可知,试点投放的A ,B 两车型数量比为3∶2,设城区10万人口平均每100人享有A 型车3y 辆,B 型车2y 辆.依题意,得100 000100×3y ×400+100 000100×2y ×320≥1 840 000 解得y ≥1.则3y ≥3,2y ≥2.答:城区10万人口平均每100人至少享有A 型车3辆,B 型车2辆.第3课时 利用一元一次不等式解决方案设计问题1.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?解:(1)120×0.95=114(元).答:实际应支付114元.(2)设购买商品的价格为x元.由题意,得0.8x+168<0.95x,解得x>1 120.答:当购买商品的价格超过1 120元时,采用方案一更合算.2.某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9 000元.(1)求购买甲、乙两种树苗各多少棵;(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案.解:(1)设购买甲种树苗x棵,则购买乙种树苗(2x-40)棵,由题意,得30x+20(2x-40)=9 000,解得x=140.∴2x-40=240.答:购买甲种树苗140棵,乙种树苗240棵.(2)设购买甲种树苗y棵,乙种树苗(10-y)棵,根据题意,得30y+20(10-y)≤230,解得y≤3.购买方案一:购买甲树苗3棵,乙树苗7棵;购买方案二:购买甲树苗2棵,乙树苗8棵;购买方案三:购买甲树苗1棵,乙树苗9棵;购买方案四:购买甲树苗0棵,乙树苗10棵.3.某景区售出的门票分为成人票和儿童票,成人票每张100元,儿童票每张50元,若干家庭结伴到该景区旅游,成人和儿童共30人.售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式.解:设参加旅游的儿童有m人,则成人有(30-m)人.根据题意,得按团体票购买时,总费用为100×80%×30=2 400(元).分别按成人票、儿童票购买时,总费用为100(30-m)+50m=(3 000-50m)元.①若3 000-50m=2 400,解得m=12.即当儿童为12人时,两种购票方式花费相同.②若选择购买团体票花费少,则有3 000-50m>2 400,解得m<12.即当儿童少于12人时,选择购买团体票花费少.③若选择分别按成人票、儿童票购票花费少,则有3 000-50m<2 400,解得m>12.即当儿童多于12人时,选择分别按成人票、儿童票购票花费少.4.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知方案一购买较为合算;(只填“方案一”或“方案二”,不要求写解题过程)(2)当x>20时,①该客户按方案一购买,需付款(40x+3_200)元;(用含x的式子表示)②该客户按方案二购买,需付款(36x+3_600)元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?解:若按方案一购买更省钱,则40x+3 200<36x+3 600.解得x<100.若按方案二购买更省钱,则40x+3 200>36x+3 600.解得x>100.若两种方案付费一样,则40x+3 200=36x+3 600,解得x=100.∴当x<100时,方案一更省钱;当x>100时,方案二更省钱;当x=100时,两种方案付费一样.5.友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.解:(1)由题意得,当x=8时,选择方案一的购买费用为90%a×8=7.2a元.选择方案二的购买费用为5a+(8-5)a×80%=7.4a元.∵7.2a<7.4a,∴当x =8时,应选择方案一,该公司购买费用最少,最少费用是7.2a 元.(2)∵该公司采用方案二购买更合算,∴x >5.∴选择方案一,购买的费用为90%ax =0.9ax 元.选择方案二,购买的费用为5a +(x -5)a ×80%=5a +0.8ax -4a =a +0.8ax.根据题意,得0.9ax >a +0.8ax.解得x >10.∴x 的取值范围是x >10.6.某企业为了提高污水处理的能力,决定购买10台污水处理设备,现有A ,B 两种型号的设备,其中每台的价格、月处理污水量如下表:经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业可能的购买方案;(2)若企业每月产生的污水量为2 040吨,为了节约资金,应选择哪种购买方案?请说明理由.解:(1)设购买x 台A 型污水处理设备,则购买(10-x)台B 型污水处理设备,由题意,得 12x +10(10-x)≤105.解得x ≤52. 故有3种购买方案:方案一:购买0台A 型污水处理设备,10台B 型污水处理设备;方案二:购买1台A 型污水处理设备,9台B 型污水处理设备;方案三:购买2台A 型污水处理设备,8台B 型污水处理设备.(2)应选择购买1台A 型污水处理设备,9台B 型污水处理设备.理由:设购买a 台A 型污水处理设备,由题意,得240a +200(10-a)≥2 040.解得 a ≥1.当a =1时,需资金12×1+10×9=102 (万元);当a=2时,需资金12×2+10×8=104 (万元).∵102<104,∴购买1台A型污水处理设备,9台B型污水处理设备.。
2023~2024学年 9.2 课时1 一元一次不等式(20页)

解:两边同时除以-7,得
x≥ -7.
在数轴上表示如图:
-7
0
3.当x或y满足什么条件下,下列关系成立?
1
(1)2(x+1)大于或等于1; x≥– 2
1
(2)4x与7的和不小于6; x≥– 4
(3)y与1的差不大于2y与3的差; y≥2
(4)3y与7的和的四分之一小于 –2.
(1) 3-x < 2x+6;
解:移项、合并同类项,得
-x-2x < 6-3,即-3x<3,
两边同时除以-3,得
x > -1.
在数轴上表示如图:
-1
0
(2) 2-2x > 4;
解:移项、合并同类项,得
2x < 2-4,即 2x<-2,
两边同时除以2,得
x< -1.
在数轴上表示如图:
-1
0
1
(3) x 1.
移项,得:2x–6x≥–15+12 – 2.
合并同类项,得: –4 x≥–5.
5
4
系数化为1,得:x≤ .
0
课堂练习
1. 下列不等式中,是一元一次不等式的有( B )
①3x﹣7>0;②2x+y>3;③2x2﹣x>2x2﹣1;
3
④ +1<7.
x
A.1个
B.2个
C.3个
D.4个
2. 解下列不等式,并把解集在数轴上表示出来.
<
;
7
3
解:(2)
这个解集在数轴上表示如下图:
去分母,得:3(x-1)<7(2x+5).
去括号,得:3x-3<14x+35.
人教版七年级数学下册 第九章 不等式与不等式组 一元一次不等式 第2课时 实际问题与一元一次不等式

5.(2021·焦作期末)一种苹果的进价是每千克1.9元,销售中估计有5%的苹果 正常损耗,商家把售价至少定为__2__元,才能避免亏本.
解:因为1.5×10=15<25,所以小明家这个月的用水量超过10立方米.设小明 家这个月的用水量至少为x立方米,根据题意有15+2(x-10)≥25,解得x≥15,答: 他家这个月的用水量至少是15立方米
11.(2021·河北)已知训练场球筐中有A,B两种品牌的乒乓球共101个,设A品 牌乒乓球有x个.
(1)淇淇说:“筐里B品牌球是A品牌球的两倍.”嘉嘉根据她的说法列出了方 程:101-x=2x.请用嘉嘉所列方程分析淇淇的说法是否正确;
(2)据工作人员透露:B品牌球比A品牌球至少多28个,试通过列不等式的方法 说明A品牌球最多有几个.
解:(1)嘉嘉所列方程为 101-x=2x,解得 x=3323 ,又∵x 为整数,∴x=3323 不合题意,∴淇淇的说法不正确 (2)设A品牌乒乓球有x个,则B品牌乒乓球有(101-x)个,依题意,得101-x- x≥28,解得x≤36.5,又∵x为整数,∴x可取的最大值为36.答:A品牌球最多有36 个
8.红旗中学组织本校师生参加红色研学实践活动,现租用11辆甲、乙两种型 号的大客车(每种型号至少一辆)送549名学生和11名教师参加此次实践活动.
甲、乙两种型号的大客车的载客量如表所示:
则最多可以租用多少辆甲种型号大客车?有几种租车方案?
解:设租用x辆甲种型号大客车,则租用(11-x)辆乙种型号大客车,依题意得: 40x+55(11-x)≥549+11,解得x≤3,∴x可以取的最大值为3.∵x为正整数,∴x= 1或2或3,∴有3种租车方案.答:最多可以租用3辆甲种型号大客车.有3种租车 方案,方案1:租用1辆甲种型号大客车,10辆乙种型号大客车;方案2:租用2辆 甲种型号大客车,9辆乙种型号大客车;方案3:租用3辆甲种型号大客车,8辆乙 种型号大客车
9.2一元一次不等式(2)

实际问题
数学问题
问题中的关键语句
1.根据题意恰当地设置未知数
2.用代数式表示各过程量
(一元一次不等式) 3. 根据不等关系列出不等式
数学问题的解决
解不等式的基本方法
两名老师带领若干学生去旅游(游费统一支 付),他们联系了两家报价都是100元/人的 旅行社,甲旅行社的优惠条件是:两名老师全额 付款,其余的七五折(按报价的75%);乙旅 行社的优惠条件是:所有的人八折(按报价的 80%)收费,选择哪个旅行社更实惠?
活动1
问题 小明家的电脑要上网,现有两种收费方式: 第一种:2元/小时 第二种:不超过30小时,1.5元/小时;超过 30小时,2.5元/小时
如果我每月上网70小时,我应该选择哪种收费方式? 如果我每月上网60小时,我应该选择哪种收费方式? 如果我每月上网50小时,我应该选择哪种收费方式?
活动2
移项
合并
系数化为1
两边同除以未知 数的系数
当系数为负数时,不等 号的方向要改变
解下列不等式,并在数轴上表 示解集:
(1) 5(x+3)>4x-1
(2) 2(x+5)≤3(x-5)
(1) 5(x+3)>4x-1 去括号,得:5x+15>4x-1 解: 移项,得: 5x-4x>-1-15 合并,得: x>-16
甲店
凡在本超市累计 购买100元商品后, 再购买的商品按原 价的90%收费
乙店
选择哪家超市购物能获得更大的优惠?
凡在本超市累计 甲店: 购买100元商品后, 再购买的商品按原 价的90%收费
乙店: 凡在本超市累计
购买50元商品后, 再购买的商品按原 价的95%收费
分析:
9.2.2 一元一次不等式的应用 分层作业(解析版)

人教版初中数学七年级下册9.2.2 一元一次不等式的应用同步练习夯实基础篇一、单选题:1.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小澜得分要超过90分,他至少要答对的题数为( )A.12道B.13道C.14道D.15道2.某种出租车的收费标准是:起步价5元(行驶距离不超过3km,只需付5元车费);超过3km以后,每增加1km,加收1.2元(不足1km按1km计).小明乘这种出租车从甲地到乙地共支付车费11元.设从甲地到乙地的车程为x km,则x的最大值是( )A.11B.8C.7D.5【答案】B【分析】根据题意和题目中的数据,可以列出相应的不等式,然后求解即可.【详解】解:由题意可得,5+(x-3)×1.2≤11,解得x≤8,∴x 的最大值是8,故选:B .【点睛】本题考查一元一次不等式的应用,解答本题的关键是明确题意,列出相应的不等式.3.某品牌洗地机的进价为2000元,商店以2400元的价格出售.元旦期间,商店为让利于顾客,计划以利润率不低于10%的价格降价出售,则该洗地机最多可降价多少元?若设洗地机可降价x 元,则可列不等式为( )A .2400200010%2000x --³B .2400200010%2000x --£C .2400200010%2400x --³D .2400200010%2400x --£4.某种笔记本原售价是每本7元,凡一次购买3本或以上可享受优惠价格,第1种:3本按原价,其余按七折优惠;第2种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第1种比第2种更优惠,则至少购买笔记本是( )A .7本B .8本C .9本D .10本【答案】D【分析】设购买x 本笔记本,根据题意得出第1种所需费用:()37370.7x ´+-´´,第2种所需费用:0.87x ´,利用第1种比第2种更优惠,列出不等式求解即可.【详解】解:设购买x 本笔记本,由题意可知,要使第1种比第2种更优惠,则:()37370.70.87x x ´+-´´<´,解得:9x >,∴最少购买10本.故选D .【点睛】本题主要考查的是一元一次不等式的实际应用,正确理解题意,列出一元一次不等式是解题的关键.5.云南保山吾悦广场,位于保山市隆阳区永昌路与拱北路交汇处,这个广场属于全国连锁的百货广场,这里入驻了很多品牌商品,这些商品种类多样,包含了人们衣食往行,方便了大家的生活.某种商品进价为800元,标价1200元,由于疫情的影响,商店准备打折促销,但要保证利润率不低于20%,则至多可以打( )A .6折B .7折C .8折D .9折6.某图书馆阅览室出售会员卡,每张会员卡60元,只限本人使用,凭会员卡购入场券每张1元,不凭会员卡购入场券每张3元,在什么情况下,购会员卡比不购会员卡更合算( )A .购票少于30次B .购票多于30次C .购票少于20次D .购票多于20次【答案】B【分析】设购票x 次,用含x 的代数式表示出两种情况下的费用,列出不等式,即可求解.【详解】解:设购票x 次,则凭会员卡购入场券需()60x +元,不凭会员卡购入场券需3x 元,603x x +<,解得30x >,即购票多于30次时,购会员卡比不购会员卡更合算.故选B .【点睛】本题考查一元一次不等式的实际应用,解题的关键是根据题意列出不等式.7.斑马线前“车让人”,反映了城市的文明程度,但行人一般都会在红灯亮起前通过马路,某人行横道全长24米,小明以1.2m/s 的速度过该人行横道,行至13处时,9秒倒计时灯亮了,小明要在红灯亮起前通过马路,他的速度至少要提高到原来的()A.1.1倍B.1.4倍C.1.5倍D.1.6倍二、填空题:8.今年植树节时,某同学栽种了一棵树,此树的树围(树干的周长)为10cm,已知以后此树树围平均每年增长3cm,若生长x年后此树树围超过90cm,则x满足的不等式为___________.【答案】10390+>x【分析】直接利用生长年数310´+大于90,进而得出答案.【详解】解:根据题意可得:10390+>.x故答案为:10390+>.x【点睛】本题主要考查了由实际问题抽象出一元一次不等式,解题的关键是正确表示树围增加的长度.9.如图1,一个容量为600cm3的杯子中装有300cm3的水,将四颗相同的玻璃球放入这个杯子中,结果水没有满,如图2,设每颗玻璃球的体积为x cm3,根据题意可列不等式为______.x+<【答案】4300600【分析】设每颗玻璃球的体积为x cm3,根据不等关系式:4颗玻璃球的体积+水的体积小于杯子的容积,列出不等式即可.【详解】解:设每颗玻璃球的体积为x cm 3,根据题意得:4300600x +<.故答案为:4300600x +<.【点睛】本题主要考查了列不等式,根据题意找出题目中的不等关系,是解题的关键.10.三个连续奇数的和不大于27,则有________组这样的正奇数.【答案】4【分析】设三个数中最小的数为x ,则另外两个数分别为(2)x +,(4)x +,根据三个数的和不大于27,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,再结合x 为正奇数,即可得出这样的正奇数一共有4组.【详解】解:设三个数中最小的数为x ,则另外两个数分别为(2)x +,(4)x +,依题意得:2427x x x ++++…,解得:7x …,又x Q 为正奇数,x \可以取1,3,5,7,\这样的正奇数一共有4组.故答案为:4.【点睛】本题考查了一元一次不等式的应用,解题的关键是根据各数量之间的关系,正确列出一元一次不等式.11.某业主贷款22000元购进一台机器,生产某种产品.已知产品的成本每个5元,售价是每个8元,应付的税款和其他费用是售价的10%.若每月能生产、销售2000个产品,问至少 _____个月后能赚回这台机器的贷款.【答案】5【分析】设x 个月后能赚回这台机器的贷款,利用总利润=每个的利润×每月的产量×时间,结合总利润不少于这台机器的贷款,即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设x 个月后能赚回这台机器的贷款,依题意得:(8-5-8×10%)×2000x ≥22000,解得:x ≥5,∴至少5个月后能赚回这台机器的贷款.故答案为:5.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.12.某种出租车的收费标准是起步价8元(即距离不超过3km,都付8元车费),超过3km以后,每增加1km,加收1.2元(不足1km按1km计),若某人乘这种出租车从甲地到乙地经过的路程是x km,共付车费14元,那么x的最大值是________.【答案】8【分析】由车费=起步价+1.2×超出3km路程结合共付车费14元,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论.【详解】解:依题意,得:8+1.2(x-3)≤14,解得:x≤8.∴x的最大值是8,故答案为8.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.13.北京2022冬(残)奥会吉祥物“冰墩墩”和“雪容融”受到人们的普遍喜爱,某电商以200元/件的价格购进一批“冰墩墩”和“雪容融”玩具套装礼品,标价320元/件出售,“双十一”搞打折促销,为了保证利润率不低于20%,则每件套装礼品最多可打______折.14.一张试卷共20道题,做对一题得5分,做错或不做一题扣3分,小辛做了全部试题,若要成绩及格(注:60分及以上成绩为及格),那么小辛至少要做对______道题.【答案】15【分析】设小辛做对x 道题,根据共有20道选择题,对于每道题答对了得5分,做错或不做扣3分,小辛若想考试成绩及格,可列不等式求解.【详解】解:设小辛要做对x 道题,依题意有()532060x x --³,解得:15x ³.故小辛至少要做对15道题.故答案为:15.【点睛】本题考查一元一次不等式的应用,设出做对的,剩下的就是不做或做错的,根据考试成绩及格(60分及以上)这个不等量关系可列出不等式求解.三、解答题:15.某俱乐部举行篮球联赛,组委会制定的赛制规则是:每个队都要比赛12场,每场比赛只分胜、负,胜1场积2分,负1场积1分,按积分高低确定出线名额.目前雄鹰队的战绩是4胜2负,蓝狮队的战绩是4胜5负.根据组委会赛制规则可预测,这两个队完成所有比赛后,积分高的队伍可以出线,问雄鹰队在剩下的比赛中至少需胜多少场可确保出线?【答案】雄鹰队在剩下的比赛中至少需胜4场可确保出线.【分析】设雄鹰队在剩下的比赛中至少需胜x 场可确保出线,则输掉的比赛有()6x -场,由题意可建立不等式()2610>19x x +-+,再解不等式取其最小整数解即可.【详解】解:由目前雄鹰队的战绩是4胜2负,蓝狮队的战绩是4胜5负.若蓝狮队剩下的3场比赛都获得了胜利,则7胜5负,得27+51=19´´(分),雄鹰队的战绩是4胜2负,已获得422110´+´=(分),设雄鹰队在剩下的比赛中至少需胜x 场可确保出线,则输掉的比赛有()6x -场,则()2610>19x x +-+,解得:>3x ,∵x 为正整数,∴x 的最小值为:4,答:雄鹰队在剩下的比赛中至少需胜4场可确保出线.【点睛】本题考查的是一元一次不等式的应用,不等式的整数解的应用,理解题意,确定不等关系是解本题的关键.16.美美服装厂接到订单,需要在六月份生产某种款式的连衣裙2000条,已知每名工人每天能生产10条,服装厂安排5名工人加工10天后,又从兄弟厂借调若干工人一起参与加工,这才在规定期限内超额完成任务,问至少需借调多少名工人?【答案】至少需借调3名工人【分析】根据题意,设借调x 名工人,可得:5×10×10+(30-10)×10(x +5)≥2000,结合一元一次不等式的性质计算,即可得到答案.【详解】设借调x 名工人,根据题意得:()()5101030101052000x ´´+-´+³,解得: 2.5x ³,x Q 为整数,x \最小取3,∴至少需借调3名工人.【点睛】本题考查一元一次不等式的应用,解题的关键是读懂题意,列出一元一次不等式.17.某工厂为了扩大生产,决定购买6台机器用于生产零件,现有甲、乙两种机器可供选择,经调查,购买3台甲型机器和2台乙型机器共需要31万元,购买一台甲型机器比购买一台乙型机器多2万元,(1)求甲、乙两型机器每台各多少万元?(2)如果该工厂买机器的预算资金不相过34万元,那么你认为该工厂至多购买甲型机器多少台?【答案】(1)甲机器每台7万元,乙机器每台5万元(2)该工厂至多购买甲型机器2台【分析】(1)设甲机器每台x 万元,乙机器每台y 万元,根据题意,列出二元一次方程组,解方程组即可求解;(2)设该工厂购买甲型机器m 台,则购买乙型机器()6m -台,根据题意,列出一元一次不等式,解不等式即可求解.【详解】(1)解:设甲机器每台x 万元,乙机器每台y 万元,根据题意得:32312x y x y +=ìí-=î,解得:75x y =ìí=î,答:甲机器每台7万元,乙机器每台5万元.(2)解:设该工厂购买甲型机器m 台,则购买乙型机器()6m -台,根据题意得:()75634m m +-£,解得:2m £,答:该工厂至多购买甲型机器2台.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,根据题意列出方程组与不等式是解题的关键.能力提升篇一、单选题:1.小茗要从石室联中到春熙路IFS 国际金融中心,两地相距1.7千米,已知他步行的平均速度为90米/分钟,跑步的平均速度为210米/分钟,若他要在不超过12分钟的时间内到达,那么他至少需要跑步多少分钟?设他要跑步的时间为x 分钟,则列出的不等式为( )A .()2109012 1.7x x +-³B .()2109012 1.7x x +-£C .()21090121700x x +-³D .()21090121700x x +-£【答案】C【分析】根据跑步的路程加上步行的路程大于等于两地距离列不等式即可.【详解】解:根据题意列不等式为:()21090121700x x +-³,故选:C .【点睛】本题考查了由实际问题抽象出一元一次不等式,找出题目中的数量关系是解此题的关键.2.用长为 40 m 的铁丝围成如图所示的图形,一边靠墙,墙的长度 30AC =m ,要使靠墙的一边长不小于 25 m ,那么与墙垂直的一边长 x (m )的取值范围为( )A .05x ££B .103x ³C .1003x ££D .1053x ££3.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为()A.10B.9C.8D.7【答案】B【分析】根据15名工人前期的工作量+12名工人后期的工作量<2160,列出不等式进行解答即可.【详解】设原计划m天完成,开工x天后3人外出培训,则有15am=2160,得到am=144,由题意得15ax+12(a+2)(m-x)<2160,即:ax+4am+8m-8x<720,∵am=144,∴将其代入得:ax+576+8m-8x<720,即:ax+8m-8x<144,∴ax+8m-8x<am,∴8(m-x)<a(m-x),∵m>x,∴m-x>0,∴a>8,∴a至少为9,故选B.【点睛】本题考查了一元一次不等式的应用,有一定的难度,解题的关键在于灵活掌握设而不求的解题技巧.二、填空题:4.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过300元后,超出的部分按90%收费;在乙商场累计购物超过200元后,超出的部分按95%收费.设顾客预计累计购物x 元(300x >).若顾客到甲商场购物花费少,则x 的取值范围是______.【答案】400x >【分析】分别用含x 的代数式表示出两个商场购物的花费,然后结合顾客到甲商场的花费少列出不等式求解即可【详解】解:由题意得:()()30090%30020095%200x x +×-<+×-,∴3000.92702000.95190x x +-<+-,∴400x >,故答案为:400x >.【点睛】本题主要考查了一元一次不等式的应用,正确理解题意列出不等式求解是解题的关键.5.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多降___________元.【答案】36【分析】设降x 元,列出不等式解不等式求出x 的范围,从而得到x 的最大值即可.【详解】解:设降x 元,根据题意得12080805%x-³´﹣,解得36x £.所以最多可降36元.故答案为:36.【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.6.一艘轮船从某江上游的A 地匀速驶到下游的B 地用了10小时,从B 地匀速返回A 地用了不到12小时,这段江水流速为3km/h ,设轮船在静水里的往返速度为hm/h v ,且此速度一直保持不变,请列出符合题意的一元一次不等式_______.【答案】10(v +3)≤12(v -3)【分析】根据顺水航行10小时的路程≤12小时逆水航行的路程即可列出不等式.【详解】解:∵这段江水流速为3km/h ,设轮船在静水里的往返速度为hm/h v ,且此速度一直保持不变,∴船在顺水中的速度为(v +3)km/h ,船在逆水中的速度为(v -3)km/h ,∵轮船从某江上游的A 地匀速驶到下游的B 地用了10小时,从B 地匀速返回A 地用了不到12小时,∴可列方程10(v +3)≤12(v -3),故答案为:10(v +3)≤12(v -3).【点睛】本题考查了一元一次不等式,能根据题目中的条件找到不等关系是列不等式的关键.三、解答题:7.某网店在“618购物节”前准备从厂家选购相同数量的A 、B 两种商品,已知B 种商品每件进价比A 种商品每件进价少20元,购进A 种商品需要1200元,购进B 种商品需要1000元.(1)求A 、B 两种商品每件的进价分别是多少元;(2)若A 种商品的售价为每件145元,B 种商品的售价为每件120元,该网店准备购进A 、B 两种商品共40件,且这两种商品的全部售出后总利润不少于920元,则B 种商品最多可购进多少件?【答案】(1)甲、乙两种商品每件的进价分别是120元、100元;(2)乙种商品最多可购进16件.【分析】(1)根据购进B 种商品比购进A 种商品一共少多少元,可以得出B 种商品多少件,总钱数除件数,即可得到结果;(2)设该网店购进乙种商品m 件,则购进甲种商品(40)m -件,根据题意列出不等式,求出解集即可得到结果.【详解】(1)解:根据题意,购进B 种商品比购进A 种商品一共少12001000200-=元,B 种商品每件进价比A 种商品每件进价少20元,所以2002010¸=(件),B 商品的进价:100010100¸=(元);A 商品的进价:10020120+=(元);答:甲、乙两种商品每件的进价分别是120元、100元;(2)解:设该网店购进乙种商品m 件,则购进甲种商品(40)m -件,列不等式:(145120)(40)(120100)920m m --+-³,解得:16m £,答:乙种商品最多可购进16件.【点睛】本题考查了一元一次不等式的应用,掌握一元一次不等式的应用是关键.8.甲、乙两家商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案,在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超过50元的部分按95%收费.某顾客购买x 元的该商品.(1)当050x <£时,请直接回答该顾客在甲、乙两家商场购物花费的关系;(2)当50100x <£时,到哪家商场购物花费少?少花多少钱?(用含x 的代数式表示)(3)当100x >时,到哪家商场购物花费少?【答案】(1)当累计购物不超过50元时,在甲乙两商场的花费一样(2)到乙商场购买,少花()0.05 2.5x -元(3)累计消费大于100元少于150元时,在乙商店花费少;当累计消费大于150元时,在甲商店花费少;当累计消费等于150元时,在甲乙商场花费一样【分析】设累计购物x 元,分别表示出在甲乙两商场的花费,列不等式,分情况讨论,求出最合适的消费方案.【详解】(1)当累计购物不超过50元时,在甲乙两商场的花费一样;(2)当累计消费超过50元而不超过100元时,在乙商场享受优惠,在甲商场不享受优惠,因此应该到乙商场购买;少花()()500.95500.05 2.5[]x x x -+-=-元钱.(3)当累计消费超过100元时,设累计消费x 元(0)10x >,甲商场消费为:()1001000.9x +-´元,在乙商场消费为:()50500.95x +-´元,当()()1001000.950500.95x x +-´>+-´,解得:150x <,当()()1001000.950500.95x x +-´<+-´,解得:150x >,当()()1001000.950500.95x x +-´=+-´,解得:150x =,综上所述,当累计消费大于100元少于150元时,在乙商店花费少;当累计消费大于150元时,在甲商店花费少;当累计消费等于150元时,在甲乙商场花费一样.【点睛】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,将现实生活中的事件与数学思想联系起来,列出不等式关系式即可求解.注意此题分类讨论的数学思想.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 一元一次不等式的应用
要点感知 列不等式解应用题的一般步骤:(1)审题:弄清题意及题目中的__________;(2)设未知数,可__________设也可__________设;(3)列出__________;(4)解不等式,并验证解的__________;(5)写出__________.
预习练习1-1 如图,a ,b 两种物体的质量的大小关系是__________.
1-2 在开山工程爆破时,已知导火索燃烧速度为0.5 cm/s,人跑开的速度是4 m/s,为使放炮的人在爆破时能安全跑到100 m 以外的安全区,导火索的长度x(cm)应满足的不等式是( )
A.4×0.5x ≥100
B.4×0.5x ≤100
C.4×0.5x <100
D.4×0.5
x >100
知识点1 一元一次不等式的简单应用
1.一次环保知识竞赛中,一共有25道题,答对一题得5分,答错(或不答)一题扣2分.小明在这次竞赛中的得分超过了100分,则他至少要答对的题数是( )
A.21道
B.22道
C.23道
D.24道
2.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,用剩余的钱来买笔,那么他最多可以买( )
A.3支笔
B.4支笔
C.5支笔
D.6支笔
3.某品牌自行车进价为每辆800元,标价为每辆1 2021.店庆期间,商场为了答谢顾客,进行打折促销活动,但是要保证利润率不低于5%,则最多可打__________折.
4.一只纸箱质量为1 kg,放入一些苹果(每个苹果质量为0.25 kg)后,纸箱和苹果的总质量不超过10 kg ,这只纸箱最多只能装多少个苹果?
知识点2 利用一元一次不等式设计方案
5.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.
(1)若小敏不购买会员卡,所购买商品的价格为12021,实际应支付多少元?
(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?
6.为响应市政府“创建国家森林城市”的号召,某小区计划购进A 、B 两种树苗共17棵,已知A 种树苗每棵80元,
B种树苗每棵60元.
(1)若购进A、B两种树苗刚好用去1 22021问购进A、B两种树苗各多少棵?
(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.
7.某射箭运动员在一次比赛中前6次射击共击中52环,如果他要打破89环(10次射击,每次射击最高中10环)的记录,则他第7次射击不能少于( )
A.6环
B.7环
C.8环
D.9环
8.有3人携带会议材料乘坐电梯,这3人的体重共210 kg.毎捆材料重2021g.电梯最大负荷为1 050 kg,则该电梯在此3人乘坐的情况下最多能搭载__________捆材料.
9.(2021·南京)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm,长与宽的比为3∶2,则该行李箱的长的最大值为__________cm.
10.某校组织开展了“吸烟有害健康”的知识竞赛,共有2021.答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对几道题?
11.(2021·潍坊)为增强市民的节能意识,我市试行阶梯电价.从2021年开始,按照每户每年的用电量分三个档次计费,具体规定见图.小明统计了自家2021年前5个月的实际用电量为1 300度,请帮助小明分析下面问题.
(1)若小明家计划2021年全年的用电量不超过2 52021则6至12月份小明家平均每月用电量最多为多少度?(保留整数)
(2)若小明家2021年6至12月份平均每月用电量等于前5个月的平均每月用电量,则小明家2021年应交总电费多少元?
挑战自我
12.某体育用品商场采购员要到厂家批发购进篮球和排球共100个,付款总额不得超过11 815元.已知厂家两种球的批
(1)
(2)若该商场把这100个球全部以零售价售出,为使商场获得的利润不低于2 580元,则采购员至少要购篮球多少个?该商场最多可盈利多少元?
参考答案
课前预习
要点感知数量关系直接间接不等式正确性答案
预习练习1-1a>b
1-2 D
当堂训练
1.B
2.C
3.七
4.设这只纸箱内装了x个苹果.根据题意,得
0.25x+1≤10.解得x≤36.
答:这只纸箱最多只能装36个苹果.
5.(1)12021.95=114(元),
所以实际应支付114元.
(2)设购买商品的价格为x元,由题意得
0.8x+168<0.95x,解得x>1 12021所以当购买商品的价格超过1 12021,采用方案一更合算.
6.(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得
80x+60(17-x)=1 22021得x=10,
∴17-x=7.
答:购进A种树苗10棵,B种树苗7棵.
(2)设购进A种树苗y棵,则购进B种树苗(17-y)棵,根据题意得
17-y<y,解得y>81 2 .
购进A、B两种树苗所需费用为80y+60(17-y)=20211 02021则费用最省需y取最小整数9,此时17-y=8,这时所需费用为2021+1 02021 2021元).
答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需费用为1 2021.
课后作业
7.C 8.42 9.78
10.设要答对x道题.依题意,得
10x+(-5)×(2021)>100.解得x>131 3 .
由x应为非负整数,得x≥14.
答:他至少要答对14道题.
11.(1)设平均每月用电量为x度.依题意,得
7x+1 300≤2 52021得x≤1742 7 .
由x为整数,得x≤174.
答:小明家平均每月用电量最多为174度.
(2)1 300÷5×12=3 12021),
3 12021 5202100(度),
2 52021.55+600×0.6=1 746(元).
答:小明家2021年应交总电费1 746元.
12.(1)设采购员最多可购进篮球x个,则排球是(100-x)个,依题意,得
130x+100(100-x)≤11 815.解得x≤60.5.
∵x是整数,∴x最大取60.
答:该采购员最多可购进篮球60个.
(2)设篮球x个,则排球是(100-x)个,则
(160-130)x+(1202100)(100-x)≥2 580.解得x≥58.
又由第(1)问得x≤60.5,
所以正整数x的取值为58,59,60.
即采购员至少要购篮球58个.
∵篮球的利润大于排球的利润,因此这100个球中,当篮球最多时,商场可盈利最多,
故篮球60个,排球40个,此时商场可盈利(160-130)×60+(1202100)×40=1 800+800=2 600(元),即该商场最多可盈利2 600元.。