新型可降解材料聚乳酸及如何延长其使用寿命

合集下载

完全生物降解材料聚乳酸的改性及应用

完全生物降解材料聚乳酸的改性及应用

完全生物降解材料聚乳酸的改性及应用1、聚乳酸聚乳酸(PLA)是一种具有优良的生物相容性和可生物降解性的合成高分子材料。

PLA这种线型热塑性生物可降解脂肪族聚酯是以玉米、小麦、木薯等一些植物中提取的淀粉为最初原料,经过酶分解得到葡萄糖,再经过乳酸菌发酵后变成乳酸,然后经过化学合成得到高纯度聚乳酸。

聚乳酸制品废弃后在土壤或水中,30天内会在微生物、水、酸和碱的作用下彻底分解成CO2和H2O,随后在太阳光合作用下,又成为淀粉的起始原料,不会对环境产生污染,因而是一种完全自然循环型的可生物降解材料。

1.1聚乳酸的制备目前聚乳酸的生产和制备主要有两条路线:(1)间接法即丙交酯开环聚合法(ROP法);(2)直接聚合法(PC法)。

两类方法皆以乳酸为原料。

丙交酯开环聚合法是先将乳酸缩聚为低聚物,低聚物在高温、高真空等条件下发生分子内酯交换反应,解聚为乳酸的环状二聚体2丙交酯,丙交酯再开环聚合得到聚乳酸,此方法中要求高纯度的丙交酯。

直接法使用高效脱水剂使乳酸或其低聚物分子间脱水,以本体或溶液聚合的方式制备聚乳酸。

1.2聚乳酸的基本性质由于乳酸具有旋光性,因此对应的聚乳酸有三种:PDLA、PLLA、PDLLA(消旋)。

常用易得的是PDLLA和PLLA,分别由乳酸或丙交酯的消旋体、左旋体制得。

聚乳酸(PLA)是一种真正的生物塑料,其无毒、无刺激性,具有良好的生物相容性,可生物分解吸收,强度高,不污染环境,可塑性好,易于加工成型。

由于聚乳酸优良的生物相容性,其降解产物能参与人体代谢,已被美国食品医药局(FDA)批准,可用作医用手术缝合线、注射用胶囊、微球及埋植剂等。

同时聚乳酸存在的缺点是:(1)聚乳酸中有大量的酯键,亲水性差,降低了它与其它物质的生物相容性;(2)聚合所得产物的相对分子量分布过宽,聚乳酸本身为线型聚合物,这都使聚乳酸材料的强度往往不能满足要求,脆性高,热变形温度低(0146MPa负荷下为54℃),抗冲击性差;(3)降解周期难以控制;(4)价格太贵,乳酸价格以及聚合工艺决定了PLA的成本较高。

生物降解型塑料-聚乳酸(PLA)

生物降解型塑料-聚乳酸(PLA)

生物降解型塑料-聚乳酸(PLA)清华大学美术学院 贺书俊 学号2012013080摘要: 近年来世界各国都高度重视源于可再生资源的可降解高分子材料的研究开发,聚乳酸因可生物降解、性能优异、应用广泛而深受青睐。

本文主要介绍了聚乳酸的降解机理、作为可降解塑料的应用现状、改进方法以及未来的发展趋势。

1、 聚乳酸简介单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH 与别的分子的-COOH 脱水缩合,-COOH 与别的分子的-OH 脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸。

聚乳酸也称为聚丙交酯,属于聚酯家族。

聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。

聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。

[1]2、 聚乳酸降解机理聚乳酸是典型的“绿色塑料”,因其良好的生物相容性、完全可降解性及生物可吸收性,是生物降解材料领域中最受重视的材料之一,下面就聚乳酸的降解机理进行介绍。

聚乳酸是一种合成的脂肪族聚酯,其降解可分为简单水解(酸碱催化)降解和酶催化水解降解。

从物理角度看,有均相和非均相降解。

非均相降解指降解反应发生在聚合物表面,而均相降解则是降解发生在聚合物内部。

从化学角度看,主要有三种方式降解:①主链降解生成低聚体和单体;②侧链水解生成可溶性主链高分子;③交链点裂解生成可溶性线性高分子。

本体侵蚀机理认为聚乳酸降解的主要方式为本体侵蚀,根本原因是聚乳酸分子链上酯键的水解。

聚乳酸类聚合物的端羧基(由聚合引入及降解产生)对其水解起催化作用,随着降解的进行,端羧基量增加,降解速率加快,从而产生自催化现象。

[2]因乳酸来源于可再生资源,经过聚合、改性、加工成制品,当制品废弃时,能完全被人体吸收或被环境生物所降解成二氧化碳和水,从而造福人类并无污染地回归自然,聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。

精细化学品化学论文

精细化学品化学论文

华东理工大学20_10_—20_11_学年第_2_学期《精细化学品化学与应用》课程论文 2011.6班级材化083 学号10081867 姓名张慧波开课学院化学院任课教师俞晔成绩__________新型可降解功能高分子材料聚乳酸及其应用华东理工大学材化083 张慧波摘要:本文主要介绍了新型可降解功能高分子材料——聚乳酸的两种合成方法、基本性能、降解机理、以及如何延长其使用寿命,并概述了聚乳酸制品的应用。

关键词:聚乳酸;合成;降解;提高使用寿命;应用。

随着世界人口的急剧增长,人类对全球资源的掠夺性开发,石油等石化资源合成的高分子化合物制品的大量生产、消费、遗弃等所引起的环保问题日趋严重,人们已经意识到环境保护的重要性。

近几十年来,在全球逐渐形成了一股绿色浪潮,许多绿色产品纷纷面世。

为了解决合成树脂和纤维不易被环境分解的问题。

人们开发出各种可生物降解的合成树脂和纤维,聚乳酸(PLA)就是其中一种研究较多和性能较好的可生物降解的高分子材料。

聚乳酸制品废弃后在土壤或水中,会在微生物的作用下分解成二氧化碳和水,随后在太阳光合作用下它们又会成为淀粉的起始原料,不会对环境产生污染,因而是一种完全自然循环型的可生物降解材料。

1 聚乳酸的生产方法聚乳酸的合成是以玉米、小麦、木薯等一些植物中提取的淀粉为最初原料,经过酶分解得到葡萄糖,再通过乳酸菌发酵后变成乳酸,然后经过化学合成得到高纯度聚乳酸。

聚乳酸的合成有两种方法,即乳酸直接聚合法和环丙交酯开环间接聚合法。

1.1直接聚合法由乳酸通过缩合直接制备聚乳酸。

这种方法生产工艺简单,是降低PLA成本的重要途径,但缩聚反应进行到一定程度时体系会出现游离乳酸、水.聚酯和丙交酯的平衡态.通过反应动力学控制,永的有效去除,抑制降解可以获得高相对分子质量的聚乳酸。

一般都采用增加真空度,提高温度,使用催化剂以及延长反应时间等方法,通过直接的聚合产生高分子量的聚乳酸是非常困难的。

郑敦胜等以D,L—乳酸为原料,采用优选催化剂、分步除水、连续通氮气、高真空缩合等工艺,直接缩聚合成了聚乳酸。

可降解聚乳酸材料的研究

可降解聚乳酸材料的研究

可降解聚乳酸材料综述摘要:介绍了聚乳酸材料的结构和性质,并综述了生物可降解材料聚乳酸(PLA)材料的共聚、共混、增塑和复合等改性方法。

简要总结其在生物医学领域、纺织领域和包装领域中的应用,并对聚乳酸材料的研究开发前景做了展望。

关键词:聚乳酸材料PLA 生物可降解合成改性应用展望1 引言塑料是目前应用最广泛的材料,塑料制品给人们生活带来便利,改善生活质量的同时,其大量使用产生的塑料废弃物也与日俱增,给人类赖以生存的自然环境造成了不可忽视的负面影响,普通塑料成了白色污染的罪魁祸首。

目前在世界范围内,白色污染都是非常严重的。

我们现在使用的所谓的可降解产品其实并不能算是真正的可完全降解产品。

如何防止白色污染是我们面临的一大难题。

随着人们对环境问题的日益重视,生物可降解塑料逐步受到青睐。

目前开发的生物可降解塑料主要是聚酯类,包括聚羟基丁酸酯(PHB),聚琥珀酸丁酸酯(PBS),聚己内酯(PCL),聚乳酸(PLA)等,这些聚酯的优势主要体现在其生物可降解性和可再生性;而且,天然的或经过改性的聚酯具有和传统塑料相当甚至更优的机械性能和物理化学性能,能够满足人们社会生活的需求,其中聚乳酸以其优良的物理化学性能和潜在的成本优势尤受人们的关注[1]。

2 聚乳酸简介2.1 聚乳酸的结构聚乳酸(polylactic acid),简写为PLA)是一种热塑性的脂肪族聚酯,其结构单元乳酸(Lactic acid简写为LA)是一种天然的、用途广泛的有机酸。

乳酸的分子具有旋光性,因其分子结构中含有手性碳原子,根据手性碳原子方向的不同,有右旋(D型)和左旋(L型)两种(图1.1):D-乳酸是右旋光性,L-乳酸是左旋光性。

图1.1 乳酸的两种立体异构形式因此聚乳酸共包括以下四种:聚(D-乳酸)(PDLA)、聚(L-乳酸)(PLLA)、聚(内消旋-乳酸)(meso-PLA)和聚(D,L-乳酸)(PDLLA)[2]。

2.2 聚乳酸材料的性质在生物降解材料中,聚乳酸是一种重要的可降解材料,具有优良的可生物降解性和生物相容性。

聚乳酸的性能、合成方法及应用

聚乳酸的性能、合成方法及应用

聚乳酸的性能、合成方法及应用一、本文概述聚乳酸(Polylactic Acid,简称PLA)是一种由可再生植物资源(例如玉米)提取淀粉原料制成的生物降解材料,具有良好的生物相容性和生物降解性。

随着全球环保意识的日益增强和可持续发展理念的深入人心,聚乳酸作为一种环保型高分子材料,其研究和应用受到了广泛的关注。

本文将全面介绍聚乳酸的性能特点、合成方法以及在实际应用中的广泛用途,旨在为读者提供关于聚乳酸的深入理解,推动其在各个领域的应用和发展。

本文首先将对聚乳酸的基本性能进行概述,包括其物理性能、化学性能以及生物相容性和降解性等方面的特点。

接着,将详细介绍聚乳酸的合成方法,包括开环聚合和缩聚法等,并分析不同合成方法的优缺点。

在此基础上,文章还将深入探讨聚乳酸在各个领域的应用情况,如包装材料、医疗领域、汽车制造、农业等。

文章还将对聚乳酸的未来发展趋势进行展望,以期为读者提供全面的聚乳酸知识,并为其在实际应用中的创新和发展提供参考。

二、聚乳酸的性能聚乳酸(PLA)作为一种生物降解塑料,具有一系列独特的性能,使其在众多领域中具有广泛的应用前景。

聚乳酸具有良好的生物相容性和生物降解性。

由于其来源于可再生生物质,聚乳酸在自然界中能够被微生物分解为二氧化碳和水,不会对环境造成污染。

这使得聚乳酸在医疗、包装、农业等领域具有广阔的应用空间。

聚乳酸具有较高的机械性能。

通过调整合成方法和工艺条件,可以得到具有优异拉伸强度、模量和断裂伸长率的聚乳酸材料。

这些特性使得聚乳酸在制造包装材料、纤维、薄膜等方面具有显著优势。

聚乳酸还具有良好的加工性能。

它可以在熔融状态下进行热塑性加工,如挤出、注塑、吹塑等,从而制成各种形状和尺寸的制品。

同时,聚乳酸的表面光泽度高,易于印刷和染色,为其在装饰、包装等领域的应用提供了便利。

另外,聚乳酸还具有较好的阻隔性能。

它可以有效地阻止氧气、水分和其他气体的渗透,从而保护包装物品免受外界环境的影响。

生物降解聚乳酸改性及应用

生物降解聚乳酸改性及应用

生物降解聚乳酸改性及应用摘要:综述近几年来聚生物降解聚乳酸主要的改性方法以及聚乳酸目前的应用领域。

关键词:聚乳酸改性方法应用Abstract: To review the recent years poly biodegradable polylactic acid main modification methods and application field of polylactic acid at present. Keywords: polylactide modification methods of application一、前言聚乳酸(PLA)是乳酸的一种重要的衍生物,其无毒、无刺激性, 强度高,不污染环境,可塑性好有良好的生物相容性和生物可降解性,在生物体内可逐渐降解为CO2和水,对人体无毒、无积累,被认为是21 世纪最有前途的可生物降解的功能材料。

同时聚乳酸存在的缺点是:①聚乳酸中有大量的酯键,亲水性差,降低了它与其它物质的生物相容性; ②聚合所得产物的相对分子量分布过宽,聚乳酸本身为线型聚合物,这都使聚乳酸材料的强度往往不能满足要求,脆性高,热变形温度低(0146MPa 负荷下为54 ℃) ,抗冲击性差; ③降解周期难以控制; ④价格太贵,。

改性能提高材料力学性能,降低成本,改善降解性能的有效途径[1]。

1、聚乳酸化学合成机理合成聚乳酸的单体主要有乳酸和它的环状二聚体丙交酯,根据光学活性不同可分为下列几种:从旋光性角度将丙交酯分成4 种异构体。

即:L,L-丙交酯,D,D-丙交酯,内消旋D,L-丙交酯和外消旋D,L-丙交酯。

内消旋丙交酯聚合得到的聚合物其降解性能和物理性能与外消旋丙交聚合得到的聚合物的性质有所不同。

丙交酯法给聚乳酸高聚体的研发和应用提供了一种潜在的可能性!即可根据最终产品的性能要求裁剪设计高聚物的分子结构。

从而可赋予产品许多特殊的使用性能,如结晶度、熔点和机械强度等差异[2]。

聚乳酸降解材料的应用领域与降解机理和方法

聚乳酸降解材料的应用领域与降解机理和方法

聚乳酸降解材料的应用领域与降解机理和方法一、聚乳酸的应用聚乳酸(PLA)类材料具有很高的附加值,其研究与开发对国民经济的增长和社会的发展具有极其重要的意义。

可完全生物降解聚乳酸现已广泛应用于医药、纺织、农业和包装等领域。

1、在医疗领域的应用用可降解的生物高分子作药物载体长期植入体内后,可以控制药物的释放速度,并实现药物的靶向释放,提高药效。

PLA是骨组织工程中的优选材料之一,在硬骨组织再生、软骨组织再生、人造皮肤、神经修复等方面均可作为细胞生长载体,并取得了令人满意的结果。

聚乳酸类材料用作外科手术缝合线时,由于其具有良好的生物降解性,能在伤口愈合后自动降解并被吸收而无需二次手术。

随着伤口的愈合,缝合线缓慢降解。

2、在其它领域中的应用PLA在富氧及微生物的作用下会自动分解,并最终生成C02和H20而不污染环境。

PLA作为可完全生物降解塑料,越来越受到人们的重视。

可将PLA制成农用薄膜、纸代用品、纸张塑膜、包装薄膜、食品容器、生活垃圾袋、农药化肥缓释材料、化妆品的添加成分等。

随着 PLA等可生物降解塑料材料的应运而生,在原有聚乙烯等传统不可降解塑料制品中加入适量PLA等生物材料制成的塑料制品,既可部分实现生物降解,原有的力学性能又没有明显的改变。

这一技术突破为解决废旧塑料制品污染找到了一条新途径,也为塑料价值链带来了新机遇。

生物塑料和普通塑料共混使用,在日本已经比较普遍,如丰田汽车公司的塑料零部件中,30%使用了可生物降解塑料,70%为传统塑料这样既提高了塑料部件的可降解程度,成本增加又不是很大,市场接受起来也相对容易一些。

二、聚乳酸降解机理和方法已有研究表明,自然界中目前已知的能够降解聚乳酸的微生物十分有限。

通过对不同土壤环境中能够降解聚酯的微生物情况进行评价,结果显示自然界中降解PHB(聚-β-羟基丁酸酯)、PCL和PTMS(聚四亚甲基琥珀酯)的微生物数量是基本相似的,大约都在0.8%~11%,这能与这些聚酯材料的酯键极易被相关脂肪酶水解有关:而降解PLA的微生物数量则不到0.04%。

聚乳酸热稳定剂

聚乳酸热稳定剂

聚乳酸热稳定剂简介聚乳酸是一种生物可降解的高分子材料,具有广泛的应用前景。

然而,聚乳酸在高温条件下容易发生热降解,导致性能下降。

为了克服这一问题,研究人员开发了聚乳酸热稳定剂。

本文将对聚乳酸热稳定剂的概念、分类、作用机制以及应用前景进行详细介绍。

概念聚乳酸热稳定剂是指能够提高聚乳酸在高温条件下热稳定性的化合物。

它们通过吸收或转移热量、抑制自由基反应、阻断链传递等方式来延缓或阻止聚乳酸的热降解过程。

分类根据其作用机理和化学结构,聚乳酸热稳定剂可以分为以下几类:1.红外吸收型:这类稳定剂通过吸收红外辐射来转化为内部能量,并将其散发出去,从而减少了聚乳酸的温升。

常见的红外吸收型稳定剂有碳黑、金属氧化物等。

2.自由基捕捉型:这类稳定剂能够与聚乳酸降解产生的自由基发生反应,从而抑制或延缓聚乳酸的热降解过程。

常见的自由基捕捉型稳定剂有羟基磷酸酯、双酚A等。

3.阻断链传递型:这类稳定剂能够阻断聚乳酸链的传递,从而减少聚乳酸分子中活性端基的生成,延缓热降解过程。

常见的阻断链传递型稳定剂有二苯胺类化合物、硫代羟基化合物等。

作用机制聚乳酸热稳定剂通过不同的作用机制来提高聚乳酸的热稳定性。

1.红外吸收型稳定剂通过吸收红外辐射转化为内部能量,并将其散发出去,从而减少了聚乳酸分子中活性端基的生成和反应速度,延缓了热降解过程。

2.自由基捕捉型稳定剂能够与聚乳酸降解产生的自由基发生反应,从而抑制或延缓聚乳酸的热降解过程。

3.阻断链传递型稳定剂通过与聚乳酸链中的活性端基发生反应,阻断了链的传递过程,减少了聚乳酸分子中活性端基的生成和反应速度,从而延缓了热降解过程。

应用前景聚乳酸热稳定剂在聚乳酸材料的制备和应用中具有重要意义。

它们可以提高聚乳酸材料在高温条件下的热稳定性,延长其使用寿命,并且不会对材料的可降解性能造成明显影响。

因此,聚乳酸热稳定剂在医疗、包装、纤维等领域有着广泛的应用前景。

在医疗领域,使用聚乳酸制备的可降解支架、缝线等器械需要具有良好的耐温性能才能满足临床需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科毕业论文(设计)题目:新型可降解材料聚乳酸及如何延长其使用寿命系院:学生姓名:学号:专业:年级:完成日期:指导教师:摘要:本文主要介绍了新型可降解材料——聚乳酸的两种合成方法、基本性能、降解机理以及如何延长其使用寿命和前景展望。

关键词:聚乳酸;合成;降解;使用寿命Abstract :This paper describes a novel biodegradable materials-two polylactic acid synthesis, basic performance degradation mechanism and how to prolong its life and outlook.Key words : of polylactic acid;synthesis;degradation;life目录引言 (5)1 聚乳酸的生产方法 (6)1.1 直接缩聚法 (6)1.2 间接聚合法 (6)2 聚乳酸的基本性能 (6)3 聚乳酸的降解 (6)3.1 聚乳酸的降解机理 (6)3.2 影响聚乳酸降解的因素 (7)4 提高其使用寿命的主要方法 (7)4.1 加入抗氧化剂 ..................................... .. (7)4.2 硝酸表面处理 (8)4.3 酸性和干燥的环境 (8)4.4 改变 PLA 的分子结构 (8)5.结语 (9)参考文献: (9)引言聚乳酸(PLA)是以玉米为主要原料,经发酵制得乳酸,再经聚合而制成的高分子材料,具有良好的生物相容性和生物可降解性。

PLA可像聚氯乙烯、聚丙烯、聚苯乙烯等热塑性塑料那样加工成各种产品,如薄膜、包装袋、包装盒、食品容器、一次性快餐盒、饮料用瓶、药物缓释包装剂等。

1 聚乳酸的生产方法聚乳酸的合成有两种方法,即乳酸直接聚合法和环丙交酯开聚合法。

1.1 直接缩聚法直接缩聚法是乳酸的直接脱水缩聚,其聚合工艺短,对聚合单体的要求与普通缩聚单体的要求一致,但所得聚乳酸分子量小,且产品性能差,易分解,实用价值小。

1.2 间接聚合法间接聚合法因为是环状二聚体的开环聚合,不同于一般的缩聚,没有小分子水生成,所以不需要进行抽真空排除小分子,聚合设备简单,此法所得聚乳酸分子量高达数万乃至数百万,机械强度高[1]。

近年来,为便于工业化生产,主要集中在开环聚合的高效催化体系,新型结构和组成的共聚物的合成等方面的研究,以制备更高分子量的聚乳酸。

2 聚乳酸的基本性能聚乳酸是其中一种研究较多和性能较好的可生物降解的高分子材料。

乳酸有非常好的透明性,可在牛物体内分解、吸收,同时其力学性能可和通用塑料媲美。

聚乳酸制品废弃后在土壤或水中,会在微生物的作用下分解成二氧化碳和水,随后在太阳光合作用下它们又会成为淀粉的起始原料,对人体无害,具有良好的生物相容性[2]。

聚乳酸现已成为生物降解医用材料领域中最受重视的材料之一。

目前,聚乳酸已被广泛应用于药物控制释放材料、免拆手术缝合线和注射用微胶囊、埋植剂、骨材料、眼科材料等。

此外,聚乳酸还可用于农业、包装材料、日用杂品等领域。

3 聚乳酸的降解乳酸是一种性能优异的生物降解材料,能被酸、碱、生物酶等降解,降解的最终产物CO2和H2O对环境无污染。

早已公认为是最有前途的医用可降解高分子材料。

3.1 聚乳酸的降解机理PLA作为聚酯类材料,其降解分为简单水解降解和酶催化降解。

简单水解降解是酯化反应的逆反应,起始于水的吸收,小分子的水移至样品的表面,扩散进入酯键或亲水基团的周围。

在介质中酸、碱的作用下,酯键发生自由水解断裂,样品的数均分子量缓慢降低,当分子量降低到一定程度,样品开始溶解,生成可溶的降解产物[3]。

3.2 影响聚乳酸降解的因素聚乳酸所处环境对其降解有很大关系,凡是能引起酯键断裂的因素都可以使聚乳酸发生降解,主要的因素有微生物、酶、聚合结构,此外如氧的存在与否、pH值、温度、湿度等也对其有影响。

(1)微生物微生物降解是聚乳酸在自然界中最普遍存在的降解方式,聚乳酸可以被多种微生物降解。

研究结果表明,镰刀酶念珠菌、青霉菌都可以完全吸收D,L-乳酸,部分还可以吸收可溶的聚乳酸低聚物。

聚乳酸的生物降解过程是间接的,是通过主链上不稳定的键水解而成低聚物。

然后在酶的作用下进一步降解为水和二氧化碳,其中也包含大分子在链端开始的酶的同化作用。

PLA 的酯键水解在整个聚合物内发生,但是如果微生物不能到达聚合物内部,则进一步的降解只能在聚合物的表面发生。

(2)酶聚乳酸由于在主链上含有酯键,可以被酯酶加速降解。

研究表明在根霉属菌酯肪酶、猪胰腺酯肪酶、猪肝脏的羧基酯酶这几种酶中,根霉属菌酯肪酶对聚乳酸的降解能力最强。

降解的程度随着时间的延长而增加。

在无定形区域21天后可完全降解,而在结晶区域却降解得很慢,21天后降解30%左右。

这是由于在结晶区域分子结构排列紧密,酶分子很难进入到聚乳酸分子内部,因此降解速度很慢。

(3)聚合结构对于聚乳酸的降解速度,聚乳酸的聚合结构对其影响很大,包括化学结构、物理结构、表面结构等,由于聚酯类高分子含易水解的化学键,有较快的降解速度。

但当其固态结构不同时,不同聚集态的降解速度为:橡胶态>玻璃态>结晶态。

聚乳酸材料一般是在固体状态下应用的,同态的聚乳酸是部分结晶的高分子,结晶区的分子链堆积得非常紧密,对聚乳酸的降解速率有很大的影响。

另外影响聚乳酸降解的因素还有分子量。

4 提高其使用寿命的主要方法影响聚乳酸高分子降解的因素繁多,但主要可分为材料特性和水解条件两大类。

4.1 加入抗氧化剂无论是简单的有机分子,还是高分子或者生物体内进行的氧化,大多是自由基过程,一旦体系中生成自由基,经过自由基链式反应,氧化便可很快地进行下去。

这些物质被氧化后失去了原有的有益属性。

防止有机物氧化的方法很多,但加入抗氧剂则是有效和方便的方法。

所谓抗氧剂是指那些能防止或阻缓有机材料氧化的化合物,它可以捕获活性游离基生成非活性的游离基,从而使连锁反应终止;或者能够分解氧化过程中产生的氢过氧化物生成稳定的非活性产物,从而中断连锁反应[4]。

4.2 硝酸表面处理在复合材料的降解过程中,界面降解是导致材料性能下降的重要因素,通过碳纤维的硝酸处理并以化学键结合的方式可有效改善复合材料的界面结合状况使其综合性能得到显著提高[5]。

经硝酸处理后的PLA高分子材料初期降解很缓慢,其横向剪切强度在前5d内仅降低了1.7%,而后期则降解速度加快。

考虑到3酯键的键能及其亚稳定性可以认为它是处于基体与增强体之间的具有自愈能力的化学键,而且这种化学键一直处于不断形成和断裂的动态平衡状态中。

这样不仅阻止了水等低分子物的破坏作用,而且由于这些低分子物的存在起到了松弛界面局部应力的作用。

因此,经硝酸处理的PLA高分子材料初期的降解速度极为缓慢但当这种自愈能力的动态平衡被破坏后,界面降解就会以较快的速度进行反映到横向剪切强度曲线上,其后期下降加快。

4.3 酸性和干燥的环境马晓妍[6]等的研究发现聚乳酸在去离子水、0.0lmol/L盐酸溶液、PH=7.4磷酸缓冲液、 0.0lmoL/L氢氧化钠溶液四种降解介质中的降解速率如下递减:碱液> 酸液>去离子水>缓冲液。

在碱液中的降解速率最快。

是因为聚乳酸水解生成的羧酸产物与碱中和,促进了水解反应向正反应方向进行。

聚乳酸在磷酸缓冲液中的降解。

虽然生成羧基使溶液酸性增加,但是由于磷酸缓冲液可以保持溶液pH在一个恒定的范围内。

因此降解较慢。

而在去离子水中,由于聚乳酸水解产生的羧基可以催化和加速醣键的水解。

所以聚乳酸在去离子水中的降解比在磷酸缓冲液中快。

钱以宏[7]等专门对聚乳酸在不同湿度下降解性能进行了研究。

结果显示相对湿度为 88%时的降解速度是相对湿度 20%时的降解速度的3倍以上。

环境湿度越大,温度越高,水解就越快,降解时间便越短。

4.4 改变 PLA 的分子结构分子结构是影响聚乳酸类材料特性的重要因素。

端基的种类对 PLA 的降解也有重要的影响。

S.H.Lee 等合成了不同端基(胺基、氯酰基、羧基和羟基)的聚乳酸并对其降解性进行了研究,发现NH—PLA、Cl—PLA比COOH—PLA、OH—PLA2的降解速度较慢,说明NH—PLA和Cl—PLA有一定的抗水解性能。

可能由于Cl2和 NH的极性比OH-的小,导致较低的降解情况。

25 结语在日益重视环保和能源的2l世纪,由于聚乳酸以淀粉等可再生资源为原料,并可完全生物降解为二氧化碳和水,属于绿色环保材料,符合可持续发展战略,因而日益受到重视。

因其具有优良的应用特性,且极易改性以满足各种需要,应用面日益拓宽,涵盖了医用材料、包装材料、日用塑料制品、纺织面料、农用地膜、地毯、家用装饰品等。

随着对聚乳酸研究的不断深入,相信在不久的将来,人们将克服生产规模小、规格品种不全、价格较贵的问题。

同时能够自主地控制聚乳酸的降解速度,提高其使用寿命,使得聚乳酸高分子材料的前景更加光明。

参考文献:[1] 王哲;倪宏哲;刘喜品生物降解高分子——聚乳酸的合成[期刊论文]-长春工业大学学报 (自然科学版) 2005(03)[2] 邢逑欣,林建强,殷永泉,周向军,周海霞绿色环保材料聚乳酸[J].德州学院学报,200622(6):107-109.[3] 刘磊,吴若峰.聚乳酸类材料的水解特征[J].合成材料老化与应用,2006,35(1):44-48[4] 王刚,王鉴,王立娟等,抗氧剂作用机理及研究进展.合成材料老化与应用,2006 年第 35 卷第 2 期:38-42[5] 杜慧玲齐锦刚庞洪涛等;表面处理对碳纤维增强聚乳酸材料界面性能的影响 [j];材料保护,2003,36(2):16[6] 马晓妍,石淑先,夏字正,等.聚乳酸及其共聚物的制备和降解性能[J].北京化工大学学报。

2004,31(1):5l-5[7] 钱以宏.聚乳酸酯及其降解特征[J].纺织导报,2004,(4):38-40.。

相关文档
最新文档