聚乳酸的降解机理
生物降解型塑料-聚乳酸(PLA)

生物降解型塑料-聚乳酸(PLA)清华大学美术学院 贺书俊 学号2012013080摘要: 近年来世界各国都高度重视源于可再生资源的可降解高分子材料的研究开发,聚乳酸因可生物降解、性能优异、应用广泛而深受青睐。
本文主要介绍了聚乳酸的降解机理、作为可降解塑料的应用现状、改进方法以及未来的发展趋势。
1、 聚乳酸简介单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH 与别的分子的-COOH 脱水缩合,-COOH 与别的分子的-OH 脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸。
聚乳酸也称为聚丙交酯,属于聚酯家族。
聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。
聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。
[1]2、 聚乳酸降解机理聚乳酸是典型的“绿色塑料”,因其良好的生物相容性、完全可降解性及生物可吸收性,是生物降解材料领域中最受重视的材料之一,下面就聚乳酸的降解机理进行介绍。
聚乳酸是一种合成的脂肪族聚酯,其降解可分为简单水解(酸碱催化)降解和酶催化水解降解。
从物理角度看,有均相和非均相降解。
非均相降解指降解反应发生在聚合物表面,而均相降解则是降解发生在聚合物内部。
从化学角度看,主要有三种方式降解:①主链降解生成低聚体和单体;②侧链水解生成可溶性主链高分子;③交链点裂解生成可溶性线性高分子。
本体侵蚀机理认为聚乳酸降解的主要方式为本体侵蚀,根本原因是聚乳酸分子链上酯键的水解。
聚乳酸类聚合物的端羧基(由聚合引入及降解产生)对其水解起催化作用,随着降解的进行,端羧基量增加,降解速率加快,从而产生自催化现象。
[2]因乳酸来源于可再生资源,经过聚合、改性、加工成制品,当制品废弃时,能完全被人体吸收或被环境生物所降解成二氧化碳和水,从而造福人类并无污染地回归自然,聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。
pla降解条件

PLA(聚乳酸)是一种生物可降解材料,其降解条件取决于许多因素,包括PLA 的化学结构、分子量、形态、环境条件等。
一般来说,PLA 在自然环境中的降解主要通过微生物的作用来实现。
以下是一些可能影响PLA 降解的条件:
1. 温度:温度是影响PLA 降解的重要因素之一。
一般来说,较高的温度会加速PLA 的降解。
2. 湿度:湿度也会影响PLA 的降解。
高湿度会促进微生物的生长和繁殖,从而加速PLA 的降解。
3. pH 值:PLA 的降解速度也受到环境pH 值的影响。
一般来说,中性或微碱性的环境更有利于PLA 的降解。
4. 微生物种类:不同种类的微生物对PLA 的降解能力不同。
一些微生物可以更快地降解PLA,而另一些则可能无法降解PLA。
5. 氧气:氧气可以促进PLA 的降解。
在有氧条件下,PLA 更容易被微生物分解。
需要注意的是,PLA 的降解速度可能因不同的环境条件而有所不同,因此在实际应用中需要根据具体情况进行评估和调整。
最新聚乳酸的降解机理复习进程

在自然环境中首先发生水解,通过主链上不稳定 的酯键水解而成低聚物,然后,微生物进入组织物内, 将其分解成二氧化碳和水。在堆肥的条件下(高温和高 湿度),水解反应可轻易完成,分解的速度也较快。在 不容易产生水解反应的环境下,分解过程是循序渐进的。
降解的主要方式:本体侵蚀。
2 PLA的体内降解
PLA材料浸入水性介质中或植人体内后,首先发生材料 吸水。水性介质渗入聚合物基质,导致聚合物分子链松弛, 酯键开始初步水解,分子量降低,逐渐降解为低聚物。
聚乳酸的端羧基(由聚合引入及降解产生)对其水解 起催化作用, 随着降解的进行, 端羧基量增加, 降解 速率加快, 从而产生自催化现象 。
5 生物体吸收代谢的途径
5.1 直接氧化分解为CO2和H2O 在氧气充足的条件下,骨骼肌、心肌或其它
组织细胞能摄取血液中的乳酸,在乳酸脱氢酶的作 用下,将乳酸转变成丙酮酸,然后进入线粒体被彻 底氧化分解,生成CO2和H2O,通过呼吸道、 大小便、汗液排除体外。
5 生物体吸收代谢的途径
5.2 经糖异生途径生成葡萄糖和糖元 缺氧时,乳酸大量进入血液,血乳酸的浓度升
内部降解快于表面降解, 这归因于具端羧基的降 解产物滞留于样品内,产生自加速效应 。
2 PLA的体内降解
随着降解进行,材料内部会有越来越多的羧基 加速内部材料的降解,进一步增大内外差异。当内 部材料完全转变成可溶性齐聚物并溶解在水性介质 中时,就会形成表面由没有完全降解的高聚物组成 的中空结构。进一步降解才使低聚物水解为小分子, 最后溶解在水性介质中。
4 降解影响因素
(4)立构规整性的影响: 在碱性条件下, 降解速率为PDLA (PLLA)<P
聚乳酸降解单体产物

聚乳酸降解单体产物聚乳酸是一种常见的生物可降解材料,其降解产物对环境友好,因此受到了广泛的关注和应用。
在聚乳酸降解的过程中,会产生一系列单体分子,这些单体产物的性质和行为对于聚乳酸材料的性能和应用具有重要影响。
本文将从深度和广度的角度出发,探讨聚乳酸降解单体产物的研究进展和应用前景。
1. 聚乳酸降解机理:聚乳酸的降解过程可主要分为自由基催化降解和生物降解两种方式。
在自由基催化降解中,聚乳酸分子会逐渐断裂,形成不同长度的聚合物碎片,这些碎片进一步降解成单体分子。
而在生物降解中,微生物酶的作用使得聚乳酸分子逐渐被水解成乳酸单体。
2. 聚乳酸降解单体产物的种类:聚乳酸降解过程中的主要单体产物是乳酸。
乳酸是一种无毒、可溶于水的有机酸,具有良好的生物相容性和生物降解性。
除了乳酸之外,还有一些其他的低分子量产物,如醛、羰基酸等。
3. 聚乳酸降解单体产物的性质:乳酸具有可调控的聚合度、分子结构和立体异构体,这些性质使得降解后的聚乳酸单体具有广泛的应用前景。
乳酸可以用于生物医学领域的药物输送和组织工程等方面,还可以用于食品、包装和农业等领域。
乳酸还可以通过化学反应转化为其他化合物,如聚乳酸醇、聚乳酸-聚乙二醇嵌段共聚物等。
4. 聚乳酸降解单体产物的应用前景:聚乳酸降解单体的可调控性和多样性使得其在各个领域有着广泛的应用前景。
在生物医学领域,聚乳酸降解单体可以应用于药物缓释、组织工程和生物打印等方面;在包装领域,乳酸可以制备生物降解的包装材料,减少对环境的影响;在农业领域,乳酸可以用作土壤改良剂、植物生长调节剂等。
总结回顾:聚乳酸降解单体产物对于聚乳酸材料的性能和应用具有重要影响。
乳酸作为主要的降解单体,具有可调控性和多样性,为聚乳酸材料的应用开辟了广阔的空间。
聚乳酸降解单体的研究可以帮助我们深入了解聚乳酸材料的降解机理和性能,并为其在生物医学、包装、农业等领域的应用提供技术支持。
以聚乳酸降解单体产物为研究对象,不仅可以提高聚乳酸材料的可持续性和环境友好性,还能促进相关产业的发展。
聚乳酸生态循环过程

聚乳酸生态循环过程
聚乳酸生态循环是指将聚乳酸制品投放至自然环境中后,经过一系列的生物降解过程,最终转化为二氧化碳和水的过程。
聚乳酸是一种可生物降解的聚合物,可以被某些微生物利用为能源和营养物质。
聚乳酸制品在被丢弃或废弃后,会进入环境中。
首先,聚乳酸制品会受到自然条件的影响,如温度、湿度和阳光照射等,从而开始分解。
在聚乳酸制品表面的微生物能够产生酶,这些酶能够降解聚乳酸分子链。
这些酶会将聚乳酸分子链拆解成较小的片段,进而被微生物吸收并利用。
微生物会把这些片段转化成较小的化合物,如乳酸、醋酸和丙酮等。
这些产物可以被其他微生物利用,继续进行降解过程。
在发酵条件下,乳酸和其他化合物会被进一步分解成二氧化碳、水和微生物生物质。
这些终产物可以进一步被自然界中的其他生物利用,形成一个生物循环。
最终,聚乳酸制品会与自然界中的其他有机物一起完全分解和降解。
聚乳酸生态循环过程不会产生有害的物质或对环境造成污染,因此被认为是一种环保的材料选择。
它可以代替一次性塑料制品,减少塑料污染对环境造成的负面影响。
聚乳酸降解问题回答

聚乳酸降解
聚乳酸是一种生物可降解的高分子材料,其分子结构中含有大量的羟
基和羧基,使得其在自然环境中易于被微生物降解。
聚乳酸降解是指
聚乳酸在自然环境中被微生物分解成水和二氧化碳等无害物质的过程。
聚乳酸降解的过程主要分为两个阶段:表面降解和体内降解。
表面降
解是指聚乳酸表面被微生物侵蚀,形成微孔和裂缝,并且水分子能够
进入到聚乳酸内部,从而加速了体内降解的速度。
体内降解是指微生
物通过吞噬、产生酶等方式将聚乳酸分子逐渐分解成小分子化合物,
最终转化为水和二氧化碳等无害物质。
与传统塑料相比,聚乳酸具有很多优点。
首先,它是一种可再生资源,可以通过玉米、木薯等植物制备而成;其次,它具有良好的可加工性
和可塑性,在制备各种产品时具有广泛的应用前景;最后,聚乳酸具
有良好的生物降解性,可以有效减少塑料污染对环境造成的影响。
总之,聚乳酸降解是一种环保、可持续发展的高分子材料。
在未来的
发展中,聚乳酸将会成为人们制备生物可降解塑料和其他产品的重要
材料之一。
pla降解条件

PLA降解条件简介聚乳酸(Polylactic Acid,PLA)是一种生物可降解的聚合物,由乳酸分子通过酯化反应聚合而成。
PLA具有良好的生物相容性和可降解性,因此被广泛应用于医药、食品包装、纺织品等领域。
然而,PLA的降解速度受到多种因素的影响,本文将探讨PLA的降解条件及其影响因素。
PLA降解条件PLA的降解条件包括温度、湿度、pH值、微生物等因素。
这些条件对PLA的降解速度产生重要影响。
温度温度是影响PLA降解速度的重要因素之一。
一般而言,较高的温度会加速PLA的降解过程。
在常温下,PLA的降解速度较慢,但当温度升高到一定程度时,PLA的链断裂速率会明显增加。
这是由于高温能够提供足够的能量,使PLA分子链内部的键能够被破坏,从而导致降解的发生。
湿度湿度是另一个影响PLA降解速度的重要因素。
湿度越高,PLA的降解速度越快。
这是因为湿度会导致PLA分子链中的酯键水解,从而加速降解过程。
当湿度较低时,PLA的链断裂速率较慢,降解速度也相对较慢。
pH值pH值是影响PLA降解速度的另一个关键因素。
一般而言,较低的pH值会加速PLA的降解。
这是由于酸性环境能够促使PLA分子链中的酯键水解,从而导致降解的发生。
相反,较高的pH值会减缓PLA的降解速度。
微生物某些微生物也可以影响PLA的降解速度。
一些特定的细菌和真菌具有PLA降解的能力,它们能够分泌特定的酶来水解PLA分子链中的酯键,从而加速降解过程。
这种微生物降解PLA的过程被称为生物降解。
PLA降解过程PLA的降解过程主要包括水解和微生物降解两种方式。
水解水解是PLA降解的主要方式之一。
在水解过程中,PLA分子链中的酯键被水分子水解,形成乳酸单体。
水解过程可以通过湿度、温度和pH值等因素来调控。
当这些条件适宜时,水分子能够进入PLA分子链内部,与酯键反应,从而导致链断裂和降解的发生。
微生物降解微生物降解是另一种重要的PLA降解方式。
一些特定的细菌和真菌能够分泌特定的酶,能够水解PLA分子链中的酯键,从而加速降解过程。
聚乳酸降解材料的应用领域与降解机理和方法

聚乳酸降解材料的应用领域与降解机理和方法一、聚乳酸的应用聚乳酸(PLA)类材料具有很高的附加值,其研究与开发对国民经济的增长和社会的发展具有极其重要的意义。
可完全生物降解聚乳酸现已广泛应用于医药、纺织、农业和包装等领域。
1、在医疗领域的应用用可降解的生物高分子作药物载体长期植入体内后,可以控制药物的释放速度,并实现药物的靶向释放,提高药效。
PLA是骨组织工程中的优选材料之一,在硬骨组织再生、软骨组织再生、人造皮肤、神经修复等方面均可作为细胞生长载体,并取得了令人满意的结果。
聚乳酸类材料用作外科手术缝合线时,由于其具有良好的生物降解性,能在伤口愈合后自动降解并被吸收而无需二次手术。
随着伤口的愈合,缝合线缓慢降解。
2、在其它领域中的应用PLA在富氧及微生物的作用下会自动分解,并最终生成C02和H20而不污染环境。
PLA作为可完全生物降解塑料,越来越受到人们的重视。
可将PLA制成农用薄膜、纸代用品、纸张塑膜、包装薄膜、食品容器、生活垃圾袋、农药化肥缓释材料、化妆品的添加成分等。
随着 PLA等可生物降解塑料材料的应运而生,在原有聚乙烯等传统不可降解塑料制品中加入适量PLA等生物材料制成的塑料制品,既可部分实现生物降解,原有的力学性能又没有明显的改变。
这一技术突破为解决废旧塑料制品污染找到了一条新途径,也为塑料价值链带来了新机遇。
生物塑料和普通塑料共混使用,在日本已经比较普遍,如丰田汽车公司的塑料零部件中,30%使用了可生物降解塑料,70%为传统塑料这样既提高了塑料部件的可降解程度,成本增加又不是很大,市场接受起来也相对容易一些。
二、聚乳酸降解机理和方法已有研究表明,自然界中目前已知的能够降解聚乳酸的微生物十分有限。
通过对不同土壤环境中能够降解聚酯的微生物情况进行评价,结果显示自然界中降解PHB(聚-β-羟基丁酸酯)、PCL和PTMS(聚四亚甲基琥珀酯)的微生物数量是基本相似的,大约都在0.8%~11%,这能与这些聚酯材料的酯键极易被相关脂肪酶水解有关:而降解PLA的微生物数量则不到0.04%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谢谢大家~
2 PLA的体内降解
PLA材料浸入水性介质中或植人体内后,首先发生材料
吸水。水性介质渗入聚合物基质,导致聚合物分子链松弛, 酯键开始初步水解,分子量降低,逐渐降解为低聚物。
聚乳酸的端羧基(由聚合引入及降解产生)对其水解 起催化作用, 随着降解的进行, 端羧基量增加, 降解
速率加快, 从而产生自催化现象 。
1
概述
聚乳酸(PLA)分子结构式如图,其中的酯键
易水解,能在体内或土壤中经微生物的作用降解生 成乳酸,代谢最终产物是水和二氧化碳,所以对人
体不会产生毒副作用,使用非常安全。因此聚乳酸
已经被应用于医学、药学等许多方面,如用作外科
手术缝合线、药物控制释放系统等等。
1
概述
由于乳酸具有旋光性,因此对应的聚乳酸有三
5 生物体吸收代谢的途径
5.1 直接氧化分解为CO2和H2O 在氧气充足的条件下,骨骼肌、心肌或其它 组织细胞能摄取血液中的乳酸,在乳酸脱氢酶的作 用下,将乳酸转变成丙酮酸,然后进入线粒体被彻 底氧化分解,生成CO2和H2O,通过呼吸道、
大小便、汗液排除体外。
5 生物体吸收代谢的途径
5.2 经糖异生途径生成葡萄糖和糖元
5.4 随尿液和汗液直接排出
此过程消除量极少,仅占总消除量的5%左右。
5 生物体吸收代谢的途径
L-乳酸作为一种动物体内自然的代谢产物, 不会在人畜体内留下有害物质。D-型乳酸则不能 在体内代谢,并会因过量产生酸中毒。
总之,人体可通过自身的各种代谢途径加以消
除,以确保内环境的稳定,以利于各项生命活动的
(3)分子量及分子量的分布
分子量与降解速率成反比。分子量越大, 聚合物的结构
越紧密, 内部的酯键越不容易断裂;而且,分子量越大, 经降解所得的链段越长, 不易溶于水中,产生的水和氢正 离子越少,使pH 值下降缓慢,这也是其降解速率比低分子 量聚乳酸的低的原因之一。 对于平均分子量相同的聚合物来说,分子量分布越宽, 降解速率越快。这是因为分子量较小的聚合物先分解后, 环境pH值由中性向酸性转变,从而加快了降解速度。
4 降解影响因素
(2)结晶度 降解过程总是从无定形区到结晶区. 这是由于结晶区分子链段堆积紧密, 水不容易渗
透进去。先渗入无定型区,导致酯键的断裂,当大部
分无定型区已降解时,才由边缘向结晶区的中心开始 降解。在无定型区水解过程中,生成立构规整的低分 子物质,结晶度增大,延缓了进一步水解的进行
4 降解影响因素
3 PLA的体外降解
微生物在自然界中普遍存在,聚乳酸可以被多 种微生物降解。如镰刀酶念珠菌,青霉菌,腐殖菌 等。
不同细菌对不同构形的聚乳酸的降解情况是不
同的。研究结果表明,镰刀酶念珠菌、青霉菌都可
以完全吸收D,L 乳酸,部分还可以吸收可溶的聚乳
酸低聚物。
4 降解影响因素
(1) pH值 酸或碱都能催化PLA水解。 聚乳酸在碱性条件下降解速率>酸性条件下降 解速率>中性条件下降解速率。
最后溶解在水性介质中。
2 PLA的体内降解
整个溶蚀过程是由不溶于水的固体变成水溶性 物质。 宏观上是材料整体结构破坏,体积变小,逐渐 变为碎片,最后完全溶解并被人体吸收或排出体外; 微观上是聚合物大分子链发生化学分解,如分
子量变小、分子链断开和侧链断裂等, 变为水溶性
的小分子而进入体液,被细胞吞噬并被转化和代谢。
种:PDLA、PLLA、PDLLA(消旋) 。 PLLA和PDLA是部分结晶高分子,力学强度较 好,常用作医用缝合线和外科矫形材料。药物控释 制剂常采用PLLA和PDLLA,但更多的是使用PDLLA。
PLLA的降解产物L一乳酸能被人体完全代谢,因而
比D-PLA更具竞争力。
2 PLA体内降解
PLA的水解是个复杂的过程,主要包括4个现象: 吸水、酯键的断裂、可溶性齐聚物的扩散和碎片的 分解。 降解的主要方式:本体侵蚀。
4 降解影响因素
(5)酶 聚乳酸主链上含有酯键,可以被酯酶加速降解。 如根霉属菌酯肪酶、猪胰腺酯肪酶、猪肝脏的 梭基酯酶。
5
生物体吸收代谢的途径
乳酸(C3H6O3)的消除
乳酸大量存在时,会导致人体内环境稳态的丧
失,尤其是固有的酸碱平衡将被打破,轻则代谢紊
乱,重则危及生命,因此,人体内必须消除乳酸。
4 降解影响因素
(4)立构规整性的影响:
在碱性条件下, 降解速率为PDLA (PLLA)<P
(LDL)A<PDLLA PDLLA 由于甲基处于间同立构或无规立构状态, 对水的吸收速度较快, 因此降解较快; 而对PLLA 及PDLA来说水解分为2个阶段:第一阶段,水分子 扩散进入无定型区,然后发生水解;第二阶段是晶 区的水解,相对来说较为缓慢。
生物可降解材料——聚乳酸
降解机理与代谢途径简述
王丽 复旦大学
1
概述
聚乳酸(PLA) 是一种具有优良的生物相容性和
可生物降解性的合成高分子材料。PLA这种线型热 塑性生物可降解脂肪族聚酯是以玉米、小麦、木薯
等一些植物中提取的淀粉为最初原料,经过酶分解
得到葡萄糖,再经过乳酸菌发酵后变成乳酸,然后经
过化体外降解
聚乳酸的分解有两个阶段:经水解反应分解之后
再靠微生物分解。 在自然环境中首先发生水解,通过主链上不稳定 的酯键水解而成低聚物,然后,微生物进入组织物内, 将其分解成二氧化碳和水。在堆肥的条件下(高温和 高湿度),水解反应可轻易完成,分解的速度也较快。 在不容易产生水解反应的环境下,分解过程是循序渐 进的。
内部降解快于表面降解, 这归因于具端羧基的降
解产物滞留于样品内,产生自加速效应 。
2 PLA的体内降解
随着降解进行,材料内部会有越来越多的羧基 加速内部材料的降解,进一步增大内外差异。当内 部材料完全转变成可溶性齐聚物并溶解在水性介质
中时,就会形成表面由没有完全降解的高聚物组成
的中空结构。进一步降解才使低聚物水解为小分子,
缺氧时,乳酸大量进入血液,血乳酸的浓度升
高,激活肝脏和骨骼肌细胞中的糖异生途径,将大 量的乳酸转变成葡萄糖,并且释放入血液,以补充 运动时血糖的消耗; 在糖异生过程中,要吸收大量的H+,因此通过 该过程可维护人体内环境的酸碱平衡,使机体内环 境重新恢复稳态。
5 生物体吸收代谢的途径
5.3 用于脂肪酸、丙氨酸等物质的合成 在肝脏细胞中,乳酸经由丙酮酸、乙酰辅酶A 途径转变为脂肪酸、胆固醇、酮体和乙酸等物质, 亦可经由丙酮酸,通过氨基转换作用生成丙氨酸, 参与蛋白质代谢。