高中数学《导数及其应用》知识点讲解附真题PPT课件
合集下载
《导数及其应用》课件(复习课

存在性:在闭区间[a,b]上连续函 数f(x)在[a,b]上必有最大值与最 小值.
求最大(小)值的方法:函数f(x)在闭区间[a,b]上最值求 法:
1. 求出f(x)在(a,b)内的极值; 2. 将函数f(x)的极值与f(a),f(b)比较,其中较大的一个是最大值,
较小的一个是最小值.
例 6(05 北京 15)已知函数 f x x3 3x2 9x a . (Ⅰ)求 f x 的单调递减区间; (Ⅱ)若 f x 在区间2, 2 上的最大值为 20,求它在该
(II)由(I)知,
f
(x)
3mx2
6(m
1) x
3m
6
= 3m( x
1)
x
1
2 m
当 m 0 时,有1 1 2 ,当 x 变化时, f (x) 与 f (x) 的变化如下表: m
x
,1
2 m
1 2 m
1
2 m
,1
1
1,
f (x)
0
0
f (x)
极小值
极大值
故由上表知,当
m
0 时,
f
解: f/(x)=3x2- 1,
∴k= f/(1)=2
∴所求的切 线方程为:
y-2=2(x -1),
即 y=2x
例1.已经曲线C:y=x3x+2和点(1,2)求在点A处 的切线方程?
变式1:求过点A的切线方程?
解:变1:设切点为P(x0,x03-x0+2), k= f/(x0)= 3 x02-1,
∴切线方程为 y- ( x03-x0+2)=(3 x02-1)(x-x0)
又∵切线过点A(1,2) ∴2-( x03-x0+2)=( 3 x02-1)(1-x0) 化简得(x0-1)2(2 x0+1)=0,
导数及其应用课件PPT

又因为函数在(0,+∞)上只有一个极大值点,所以函数在x=9处取得最大值.
解析答案
12345
4.某公司生产某种产品,固定成本为 20 000 元,每生产一单位产品,成本增
加 100 元,已知总收益 r 与年产量 x 的关系是 r=400x-21x2,0≤x≤400, 80 000, x>400,
则总利润最大时,年产量是( )
即当x为2.343 m,y为2.828 m时,用料最省.
解析答案
题型二 面积、容积的最值问题 例2 如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形 栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽 度为10 cm,两栏之间的中缝空白的宽度为5 cm.怎样确定广告的高与宽的 尺寸(单位:cm),能使矩形广告面积最小?
反思与感悟
解析答案
跟踪训练1 某单位用木料制作如图所示的框架,框架的下部是边长分别为
x,y(单位:m)的矩形,上部是等腰直角三角形,要求框架的总面积为8 m2,
问:x,y分别是多少时用料最省?(精确到0.001 m)
解 依题意,有 xy+12·x·2x=8,∴y=8-x x42=8x-4x(0<x<4 2),
即当x为2.343 m,y为2.828 m时,用料最省.
解析答案
题型二 面积、容积的最值问题 例2 如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形 栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽 度为10 cm,两栏之间的中缝空白的宽度为5 cm.怎样确定广告的高与宽的 尺寸(单位:cm),能使矩形广告面积最小?
S′(x)=6x2-24x+16,
令
S′(x)=0,得
导数及其应用PPT教学课件

• 若设Δx=x2-x1, Δf=f(x2)-f(x1)
这里Δx看作是对于x1的一
个“增量”可用x1+Δx代
替x2
则平均变化率为
Vf 同样Δf=Δfy(=x=2f()x2)-ff(x(1x)1)
Vx
x2 x1
思考?
• 观察函数f(x)的图象
平均变化率 表示什么?
f(x2 ) f (x1)
x x y
r(V ) 3 3V
4
• 当V从0增加到1时,气球半径增加了 r(1) r(0) 0.62(dm)
气球的平均膨胀率为 r(1) r(0) 0.62(dm / L)
1 0
• 当V从1增加到2时,气球半径增加了 r(2) r(1) 0.16(dm
气球的平均膨胀率为
r(2) 2
r(1) 1
=6Δx+(Δx)2
再求 Vf 6 Vx Vx
再求 lim Vy 6 Vx0 Vx
小结:
时,原由的温度(单位:0C)为 f(x)=x2-
7x+15(0≤x≤8).计算第2(h) 和第6(h)时,原由键是求出:Vf Vx 3 Vx
lim 再求出 Vf Vx0 Vx
它说明在第2(h)附近,原油 温度大约以3 0C/H的速度下降; 在第6(h)附近,原油温度大
又如何求 瞬时速度呢?
如何求(比如, t=2时的)瞬时速度?
: 当Δt趋近于0时,平均
通过列表看出平均速度的变化速度趋有势什么变化趋势?
瞬时速度?
• 我们用 lim h(2 t) h(2) 13.1
t0
t
表示 “当t=2, Δt趋近于0时,平均速度趋于确定值 -13.1”.
• 那么,运动员在某一时刻t0的瞬时速度?
导数及其应用 课件

(2)因为V(r)=π5(300r-4r3), 所以V′(r)=π5(300-12r2). 令V′(r)=0,解得r1=5,r2=-5(因r2=-5不在定义域 内,舍去). 当r∈(0,5)时,V′(r)>0, 故V(r)在(0,5)上为增函数; 当r∈(5,5 3)时,V′(r)<0, 故V(r)在(5,5 3)上为减函数. 由此可知,V(r)在r=5处取得最大值,此时h=8. 即当r=5,h=8时,该蓄水池的体积最大.
复习课(一) 导数及其应用(部分)
导数的概念及几何意义的应用 (1)近几年的高考中,导数的几何意义和切线问题是常考 内容,各种题型均有可能出现. (2)利用导数的几何意义求切线方程时关键是搞清所给的 点是不是切点.
(1)已知切点A(x0,f(x0))求斜率k,即求该点处的导数值: k=f′(x0);
[解] (1)因为蓄水池侧面的总成本为100·2πrh=200πrh(元), 底面的总成本为160πr2元,
所以蓄水池的总成本为(200πrh+160πr2)元. 又据题意知200πrh+160πr2=12 000π, 所以h=51r(300-4r2), 从而V(r)=πr2h=π5(300r-4r3). 因为r>0,又由h>0可得r<5 3, 故函数V(r)的定义域为(0,5 3).
(2)由(1)知f(x)=x3-12x+c; f′(x)=3x2-12=3(x-2)(x+2). 令f′(x)=0,得x1=-2,x2=2. 当x∈(-∞,-2)时,f′(x)>0, 故f(x)在(-∞,-2)上为增函数; 当x∈(-2,2)时,f′(x)<0, 故f(x)在(-2,2)上为减函数; 当x∈(2,+∞)时,f′(x)>0, 故f(x)在(2,+∞)上为增函数.
高三数学章节总复习课件——导数及其应用PPT优秀课件

y f(x)
a
bx
22.05.2019
江西省赣州一中刘利剑 整理 heishu800101@
积分上限
x a bf(x )d x I l i0i n m 1f(i) x i
被
被
积
积分下限
积
积
分
函
表
变
数
达
量
式
22.05.2019
江西省赣州一中刘利剑 整理 heishu800101@
数的平方.即:g f((xx))f(x)g(xg)( x)f2(x)g(x)(g(x)0)
22.05.2019
江西省赣州一中刘利剑 整理 heishu800101@
复合函数的导数:
复合函数y=f(g(x))的导数和函数
y=f(u),u=g(x)的导数间关系为:
步骤: 1,求导函数 y f '(x)
2,求分界点 f'(x ) o 求 出 其 解 x 1 , x 2 , x 3注意不一定有解
3,列表分析
x
a
(
a,
x
)
1
x1
(
x
1,
x
)
2
x
2
(
x
2,
x
)
3
x
3
( x 3, b )
b
f '( x )
f (x ) f (a)
f (x1)
f (x2)
f
(
x
)
3
(x)dx.,
a
Oa
bx
bc b
a f ( x ) d x a S f ( x ) d x c f ( x
高考数学:专题一 第五讲 导数及其应用课件

a>1, 4 即- aa+3a-6>0, 3 24a>0.
解得 1<a<6,故 a 的取值范围是(1,6).
题型与方法
方法提炼 利用导数研究函数单调性的一般步骤:
第五讲
(1)确定函数的定义域; (2)求导数 f′(x);
本 讲 栏 目 开 关
(3)①若求单调区间(或证明单调性), 只需在函数 f(x)的定义域 内解(或证明)不等式 f′(x)>0 或 f′(x)<0. ② 若 已 知 f(x) 的 单 调 性 , 则 转 化 为 不 等 式 f′(x)≥0 或 f′(x)≤0 在单调区间上恒成立问题求解.
答案
D
考点与考题
第五讲
1 3.(2012· 课标全国)已知函数 f(x)= , y=f(x)的图 则 lnx+1-x 象大致为
本 讲 栏 目 开 关
(
)
考点与考题
第五讲
解析
1 当 x=1 时,y= <0,排除 A; ln 2-1
当 x=0 时,y 不存在,排除 D;
本 讲 栏 目 开 关
当 x 从负方向无限趋近 0 时,y 趋向于-∞,排除 C,
∴当 f′(x)≥0 时,
即 ex(1+x)≥0,即 x≥-1,
∴x≥-1 时函数 y=f(x)为增函数.
同理可求,x<-1 时函数 f(x)为减函数. ∴x=-1 时,函数 f(x)取得极小值.
考点与考题
第五讲
5.(2011· 课标全国)在下列区间中,函数 f(x)=ex+4x-3 的零 点所在的区间为 1 A.(- ,0) 4 1 1 C.( , ) 4 2 ( C ) 1 B.(0, ) 4 1 3 D.( , ) 2 4
解得 1<a<6,故 a 的取值范围是(1,6).
题型与方法
方法提炼 利用导数研究函数单调性的一般步骤:
第五讲
(1)确定函数的定义域; (2)求导数 f′(x);
本 讲 栏 目 开 关
(3)①若求单调区间(或证明单调性), 只需在函数 f(x)的定义域 内解(或证明)不等式 f′(x)>0 或 f′(x)<0. ② 若 已 知 f(x) 的 单 调 性 , 则 转 化 为 不 等 式 f′(x)≥0 或 f′(x)≤0 在单调区间上恒成立问题求解.
答案
D
考点与考题
第五讲
1 3.(2012· 课标全国)已知函数 f(x)= , y=f(x)的图 则 lnx+1-x 象大致为
本 讲 栏 目 开 关
(
)
考点与考题
第五讲
解析
1 当 x=1 时,y= <0,排除 A; ln 2-1
当 x=0 时,y 不存在,排除 D;
本 讲 栏 目 开 关
当 x 从负方向无限趋近 0 时,y 趋向于-∞,排除 C,
∴当 f′(x)≥0 时,
即 ex(1+x)≥0,即 x≥-1,
∴x≥-1 时函数 y=f(x)为增函数.
同理可求,x<-1 时函数 f(x)为减函数. ∴x=-1 时,函数 f(x)取得极小值.
考点与考题
第五讲
5.(2011· 课标全国)在下列区间中,函数 f(x)=ex+4x-3 的零 点所在的区间为 1 A.(- ,0) 4 1 1 C.( , ) 4 2 ( C ) 1 B.(0, ) 4 1 3 D.( , ) 2 4
高考数学导数的应用专题复习精品PPT课件

第3讲 │ 导数的应用
第3讲 │ 主干知识整合
主干知识整合
第3讲 │ 主干知识整合
第3讲 │ 主干知识整合
第3讲 │ 主干知识整合
第3讲 │ │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 规律技巧提炼
规律技巧提炼
第3讲 │ 规律技巧提炼
第3讲 │ 规律技巧提炼
第3讲 │ 江苏真题剖析
江苏真题剖析
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End 演讲人:XXXXXX 时 间:XX年XX月XX日
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 主干知识整合
主干知识整合
第3讲 │ 主干知识整合
第3讲 │ 主干知识整合
第3讲 │ 主干知识整合
第3讲 │ │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
第3讲 │ 规律技巧提炼
规律技巧提炼
第3讲 │ 规律技巧提炼
第3讲 │ 规律技巧提炼
第3讲 │ 江苏真题剖析
江苏真题剖析
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End 演讲人:XXXXXX 时 间:XX年XX月XX日
第3讲 │ 要点热点探究
第3讲 │ 要点热点探究
导数及其应用讲导数在不等式中的应用课件pptx

介绍函数极值点的定义和 求解方法,为利用导数求 解极值点提供基础。
方法总结
总结利用导数求解函数极 值点的常用方法,如求导 、判断导数为零的点等。
案例分析
通过典型案例演示如何利 用导数求解极值点。
04
导数的实际应用举例
利用导数求解利润最大化问题
利润函数
首先明确利润函数,即销售收入减去成本和税金 ,通常表示为x的函数。
举例
以y=x^4为例,求该函数的凹凸性和 拐点。该函数的导数为y'=4x^3,在 区间(-oo,0)上,y'<0;在区间(0,)上 ,y'>0。因此,函数在区间(-oo,0)上 单调递减,在区间(0,)上单调递增, 故函数在x=0处存在极值点,且该极 值点不是函数的极值点,故函数在 x=0处有拐点
利用导数求解函数的单调性和区间
利用导数求不等式的解
利用导数可以求出一些不等式的解。例如,利 用导数可以求出一些函数的极值点和转折点等 。
利用导数解决一些实际问题
利用导数可以解决一些实际问题,例如,利用 导数可以求出一些最优化的方案,以及利用导 数解决一些经济和金融问题等。
02
导数的定义和性质
导数的定义
函数f在点x0处可导
指当自变量x在点x0处有增量△x时,相应的函数值f(x0+△x)和f(x0)之差 △y=f(x0+△x)-f(x0)可表示为△y=A△x+o(△x),其中A是与△x无关的常数
利用导数求解函数的极值和最值
总结词
导数的值为0的点可能是函数的极值点或最值点。
详细描述
利用导数求解函数的极值和最值
06
总结与回顾
本章主要内容总结
了解了导数的定义和计算方法 学习了不等式的性质和证明方法
方法总结
总结利用导数求解函数极 值点的常用方法,如求导 、判断导数为零的点等。
案例分析
通过典型案例演示如何利 用导数求解极值点。
04
导数的实际应用举例
利用导数求解利润最大化问题
利润函数
首先明确利润函数,即销售收入减去成本和税金 ,通常表示为x的函数。
举例
以y=x^4为例,求该函数的凹凸性和 拐点。该函数的导数为y'=4x^3,在 区间(-oo,0)上,y'<0;在区间(0,)上 ,y'>0。因此,函数在区间(-oo,0)上 单调递减,在区间(0,)上单调递增, 故函数在x=0处存在极值点,且该极 值点不是函数的极值点,故函数在 x=0处有拐点
利用导数求解函数的单调性和区间
利用导数求不等式的解
利用导数可以求出一些不等式的解。例如,利 用导数可以求出一些函数的极值点和转折点等 。
利用导数解决一些实际问题
利用导数可以解决一些实际问题,例如,利用 导数可以求出一些最优化的方案,以及利用导 数解决一些经济和金融问题等。
02
导数的定义和性质
导数的定义
函数f在点x0处可导
指当自变量x在点x0处有增量△x时,相应的函数值f(x0+△x)和f(x0)之差 △y=f(x0+△x)-f(x0)可表示为△y=A△x+o(△x),其中A是与△x无关的常数
利用导数求解函数的极值和最值
总结词
导数的值为0的点可能是函数的极值点或最值点。
详细描述
利用导数求解函数的极值和最值
06
总结与回顾
本章主要内容总结
了解了导数的定义和计算方法 学习了不等式的性质和证明方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- ln
k
k
1 k 1 k
b, -1
b
⇒
b k
1-ln 2.
2,
答案 1-ln 2
例5 设函数f(x)=x3+ax2,若曲线y=f(x)在点P(x0,f(x0))处的切线方程为x+y=0, 则点P的坐标为 ( )
A.(0,0) B.(1,-1) C.(-1,1) D.(1,-1)或(-1,1)
=ln(x+1)的切线,则b=
.
解题导引 与例3的不同之处是:有两条曲线,且两切点未知,因此转化为求
两条曲线上两个点处的切线方程问题.第一步,先设出两个切点;第二步,用k
表示出两个切点的坐标;第三步,建立方程组,求解.
解析 直线y=kx+b与曲线y=ln x+2,y=ln(x+1)均相切,设切点分别为A(x1,y1),
2
分别令x=1,x=0,得
f f
'(1) f '(0) f
'(1)-f '(0) 1, '(1)e-1-f '(0) 0,
解得
f f
'(0) '(1)
1, 2e,
因此f(x)=2e·ex-1-x+
1 2
x2=2ex-x+
1 2
x2.
方法总结 与含参数问题相结合,类似于抽象函数问题,用赋值法求解.
B(x2,y2),
由y=ln x+2得y'= 1 ,由y=ln(x+1)得y'= 1 ,
x
x 1
∴k=
1 x1
=
1 x2
1
,∴x1=
1 k
,x2=
1 k
-1,
∴y1=-ln
k+2,y2=-ln
k.即A
1 k
,-
ln
k
2
,B
1 k
-1,-
ln
k
.
∵A、B在直线y=kx+b上,
∴
2-ln k k
例2
设函数f(x)=xm+ax的导函数f
'(x)=2x+1,则数列
f
1 (n)
(n∈N*)的前n项
和是 ( )
A. n
n 1
B. n 2
n 1
C. n
n-1
D. n 1
n
解题导引
要求
f
1 (n)
的前n项和,应先求出f(n),由f
'(x)=mxm-1+a,
f
'(x)=2x+
1,可得
m 2, a 1,
∴数列
f
1 (n)
的前n项和为1-
1 2
+
1 2
-
1 3
+…+
1 n
-
n
1
1
=1-
n
1 1
=
n
n
1
,故
选A.
答案 A
考法二 与曲线的切线相关的问题
例3 (2019广东深圳二模,5)已知函数f(x)=ax2+(1-a)x+ 2 是奇函数,则曲线y
x
=f(x)在x=1处的切线的倾斜角为 ( )
例1 已知函数f(x)满足f(x)=f '(1)ex-1-f '(0)x+ 1 x2,求f(x)的解析式.
2
解题导引 要求f(x)的解析式,需要求哪些量?解抽象函数问题常用哪些方
法?f '(1), f '(0)是常数,先对f(x)求导,再赋值,利用方程思想求出f '(0)及f '(1). 解析 ∵f(x)=f '(1)ex-1-f '(0)x+ 1 x2,∴f '(x)=f '(1)ex-1-f '(0)+x.
f(x)=ln x
导函数 f '(x)=0 f '(x)=③ nxn-1 f '(x)=cos x f '(x)=④ -sin x f '(x)=⑤ axln a f '(x)=ex f '(x)= 1
x ln a 1
f '(x)=⑥ x
2.导数的运算法则
运算
法则
加减 积 商
[f(x)±g(x)]'=f '(x)±g'(x) [f(x)·g(x)]'=⑦ f '(x)g(x)+f(x)g'(x)
A. π B. 3π C. π D. 2π
4
4
3
3
解题导引 由f(x)是奇函数,先求出a的值,再求导函数f '(x),当x=1时,导函数 值f '(1)是曲线y=f(x)在x=1处切线的斜率,进而求出倾斜角.
解析 由函数f(x)=ax2+(1-a)x+ 2 是奇函数,得f(-x)=-f(x),可得a=0,则f(x)=x+
高考数学
第四章 导数及其应用
§4.1 导数的概念及运算
考点清单
考点一 导数的概念及几何意义
1.导数的概念:称函数f(x)在x=x0处的瞬时变化率
lim
Δx 0
Δy Δx
=
lim
Δx 0
f
(x0
Δx)-f Δx
(x0
)
为函数f(x)在x=x0处的导数,记作f
'(x0)或y'|xx0
,即f
'(x0)=
lim
Δx 0
f (x0 Δx)-f (x0 ) .
Δx
2.导数的几何意义:函数y=f(x)在点x0处的导数f '(x0)就是曲线y=f(x)在点P(x0,y0)
处的切线的斜率,即k=① f '(x0) .相应地,切线方程为② y-f(x0)=f '(x0)(x-x0) .
3.导数的物理意义:函数s=s(t)在点t0处的导数s'(t0)是物体的运动方程s=s(t)
在t0时刻的瞬时速度v,即v=s'(t0);v=v(t)在点t0处的导数v'(t0)是物体的运动方
程v=v(t)在t0时刻的瞬时加速度a,即a=v'(t0).
考点二 导数的运算
1.基本初等函数的导数公式
原函数 f(x)=C(C为常数) f(x)=xn(n∈Q*) f(x)=sin x f(x)=cos x f(x)=ax(a>0,且a≠1) f(x)=ex f(x)=logax(a>0,且a≠1)
进而得f(x)=x2+x,因此
f
1 (n)
=
1 n2
n
=
1 n(n 1)
=
1 n
-
1 ,裂项相消
n 1
法求和.
解析 ∵f(x)=xm+ax,∴f '(x)=mxm-1+a,又f '(x)=2x+1,∴ma 12, , ∴f(x)=x2+x,∴
1 = 1 =1- 1 ,
f (n) n2 n n n 1
f(x)
f '(x)g(x)-f(x)g'(x)
g(x)
'=⑧
[g(x)]2
(g(x)≠0)
3.复合函数的导数 复合函数y=f[g(x)]的导数和函数y=f(u),u=g(x)的导数间的关系为y'x=y'u·u'x, 即y对x的导数等于y对u的导数与u对x的导数的乘积.
知能拓展
考法一 与导数运算有关的问题
x
2 ,则 f '(x)=1- 2 ,故曲线y=f(x)在x=1处的切线斜率k=1-2=-1,可得所求切线
x
x2
的倾斜角为 3π ,故选B.
4
答案 B
方法总结 求曲线的切线斜率的方法步骤:求导数——求斜率——根据范 围得斜率.
例4 (2016课标Ⅱ,16,5分)若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y