高中数学知识点脉络图

合集下载

高中数学知识框架思维导图(整理版)

高中数学知识框架思维导图(整理版)

基本初等函数 指数函数、对数函数、幂函数、三角函数 分段函数 复合函数 抽象函数 函数与方程 函数的应用 分段探究,整体考察 复合函数的单调性:同增异减 赋值法、典型的函数模型 零点
求根法、二分法、图象法、二次及三次方程根的分布
建立函数模型
平移变换:������ = ������(������) → ������ = ������(������ ± ������),������ = ������(������) → ������ = ������(������) ± ������,������, ������ > 0 函数图象 及其变换 对称变换:������ = ������(������) → ������ = −������(������),������ = ������(������) → ������ = ������(−������),������ = ������(������) → ������ = −������(−������) 翻折变换:������ = ������(������) → ������ = |������(������)|,������ = ������(������) → ������ = ������(|������|) 伸缩变换:������ = ������(������) → ������ = ������������(������),������ = ������(������) → ������ = ������(������������)
������
第二部分
角的概念
三角函数与平面向量
弧长公式������ = ������������、扇形面积公式������ = ������������
2 1 π 2

高中数学知识框架思维导图

高中数学知识框架思维导图

i.
①(1 ± i)2 = ±2i;
②1+i = i;1−i = −i;
1−i
1+i
③������ + ������i = i(������ − ������i),
如3+4i = i(4−3i) = i;
4−3i 4−� = ������ + ������i、复平面内点 Z(������, ������)、向量���⃗⃗���⃗⃗���⃗��� = (������, ������)的一一对应关系; 复数模的几何意义:|������| = |������ + ������i| = √������2 + ������2 = |���⃗⃗���⃗⃗���⃗���|
2.对数的运算性质(������>0,且������ ≠1,������>0,������>0):①log������(������ ∙ ������) = log������������ + log������������;
简易逻辑
命题
关系
原命题:若 p 则 q
互否
否命题:若p 则q
互逆
互为逆否 等价关系
互逆
逆命题:若 q 则 p
互否
逆命题:若q 则p
充分条件、必要条件、充要条件 若������ ⇒ ������,则������是������的充分条件,������是������的必要条件
复合命题 量词
或:p q 且:p q 非: p 全称量词 存在量词
2
映射
函数
函数图象 及其变换
第二部分 函数、导数及微积分
������: ������ → ������:一对一,或多对一

高中数学知识点脉络图

高中数学知识点脉络图

掌 握
三 不等式
理 解
1.不等式的性质及其证明 ; 2.| |a|-|b|| ≤|a+b|≤|a|+|b|;
掌 握
1.两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理; 2.分析法、综合法、比较法证明简单的不等式;
3.二次不等式,简单的绝对值不等式和简单的分式不等式的解法。
六 数列
十概率、排列、组合、二项式定理
• 。
了 解
1.互斥事件的意义,互斥事件的概率加法公式计算一些事件的概率; 2.相互独立事件的意义,相互独立事件的乘法公式计算一些事件的概率; 3.可能性事件的概率的意义,排列组合的基本公式计算一些等可能性事件 的概率; 1.组合的意义,组合数计算公式和组合数的性质,解决一些简单的应用问题; 2.几何概型的定义与计算;
理 解
1 .分数指数的概念,有理指数幂的运算性质; 2 .对数与指数的概念; 3. 运用函数的性质、指数函数、对数函数的性质解决某些简单的实际问题 ;
1.对数的运算性质;掌握对数函数的概念、图象和性质; 2.函数性质在解题中的应用; 3.判断一些简单函数的单调性的方法。掌握指数函数的概念、图象和性质 。
高中数学知识点脉络图
高中数学
必修
代数
函数 不等式 三角 函数 平面向量 数列
集合
几何
直线. 平面. 简单几何体
直线与圆
圆锥曲线 概率 .排列组合与二项式定理 选修 导数与极限 统计 复数. 推理与证明 .算法
一.集合、简易逻辑
理 解
1.集合、子集、补集、交集、并集的概念;
2.逻辑联结词"或"、"且"、"非"的含义;

高中数学知识点框图

高中数学知识点框图
直线在平面外 直线在平面内 平行 相交
相交 平行
平行 相交
只有一个公共点 没有公共点 没有公共点
有公共点
平行关系的 相互转化
线线 平行
线面 平行
面面 平行
空间直角坐标系
垂直关系的 相互转化
线线 垂直
线面 垂直
面面 垂直
空间的角 空间的距离
异面直线所成的角 直线与平面所成的角 二面角
点到面的距离 直线与平面的距离 平行平面之间的距离
第九章 直线与圆的方程
本章知识结构图
倾斜角和斜率
k

tan

y2 x2

y1 x1
,

0,
2



2
,

,当
=
2
时,k不存在
直线的方程
位置关系
重合 平行
A1B2-A2B1=0
截距
相交
A1B2-A2B1≠0
注意:截距可正、可负,也可为 0.
点斜式:y-y0=k(x-x0) 斜截式:y=kx+b
②图象也可以用五点作图法;③用整体代换求单调区间(注意的符号);
④最小正周期
T= |
2 ;⑤对称轴 |
x=(2k+1)-2,对称中心为(k-,b)(k∈Z).
2

解三角形
正弦定理 余弦定理
面积
实际应用
解的个数的讨论 三角形形状的判定
S△=1ah=1absinC= p(p-a)(p-b)(p-c)(其中 p=a+b+c)
逐差累加法 逐商累积法 构造等比数列{an+ q }
p-1
④pan+1an=an-an+1
构造等差数列

高中数学必修全思维导图

高中数学必修全思维导图

调性不同,则 y f [g(x)] 是减函数。
4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。 5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作 函数图象。 六、函数奇偶性的常用结论:
1、如果一个奇函数在 x 0 处有定义,则 f (0) 0 ,如果一个函数 y f (x) 既是
高一数学必修 1 知识网络
集合

( 1)元素与集合的关系:属于()和不属于()
集合与元素
( 2)集合中元素的特性:确定性、互异性、无序性 ( 3)集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集 ( 4)集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法

C.
4、空集是任何集合的(真)子集。
集合


真子集:若A

B且A

B(即至少存在x0

B但x0

A),则A是B的真子集。
集合与集合
运算集并交合集集Ca相r定定性性d等(义义质质A:::::ABAAAA)BBBC且AAaArdAAxx,(,A//BxAxA) CAAa或且rAdxx(AB,B,)BB-AACarBdB(ABBBA)A,,AABBAA,, AABB
定义
按照某个对应关系f , y都有唯一确定的值和它对应。那么y就是x的函数。记作y f ( x ).
近代定义:函数是从一个数集到另一个数集的映射。
定义域 函数及其表示 函数的三要素 值域 对应法则
解析法
函数的表示方法 列表法
函数
几类不同的增长函数模型 函数模型及其应用 用已知函数模型解决问题 建立实际问题的函数模型

高中数学全套思维导图(高清版)

高中数学全套思维导图(高清版)

23/59
请关注微信公众号“名师伴你学”获取更多精品资源
24/59
请关注微信公众号“名师伴你学”获取更多精品资源
25/59
请关注微信公众号“名师伴你学”获取更多精品资源
26/59
请关注微信公众号“名师伴你学”获取更多精品资源
27/59
请关注微信公众号“名师伴你学”获取更多精品资源
28/59
56/59
请关注微信公众号“名师伴你学”获取更多精品资源
57/59
请关注微信公众号“名师伴你学”获取更多精品资源
58/59
请关注微信公众号“名师伴你学”获取更多精品资源
59/59
请关注微信公众号“名师伴你学”获取更多精品资源
29/59
请关注微信公众号“名师伴你学”获取更多精品资源
30/59
请关注微信公众号“名师伴你学”获取更多精品资源
31/59
请关注微信公众号“名师伴你学”获取更多精品资源
32/59
请关注微信公众号“名师伴你学”获取更多精品资源
33/59
请关注微信公众号“名师伴你学”获取更多精品资源
6/59
请关注微信公众号“名师伴你学”获取更多精品资源
7/59
请关注微信公众号“名师伴你学”获取更多精品资源
8/59
请关注微信公众号“名师伴你学”获取更多精品资源
9/59
请关注微信公众号“名师伴你学”获取更多精品资源
10/59
请关注微信公众号“名师伴你学”获取更多精品资源
11/59
请关注微信公众号“名师伴你学”获取更多精品资源
请关注微信公众号“名师伴你学”获取更多精品资源
18/59
请关注微信公众号“名师伴你学”获取更多精品资源

高中数学知识框架思维导图(整理版)

高中数学知识框架思维导图(整理版)
2 : 2 + 2 + 2 = 0.
点斜式:y-y0=k(x-x0)
注意:截距可正、
可负,也可为 0.
2 −1
注意各种形式的转化和运用范围.
x y
截距式: + =1
a b
两直线的交点
距离
一般式:Ax+By+C=0
两点间的距离公式|1 2 | = √(1 − 2 )2 + (1 − 2 )2 .
2.
3.
分组求和法
2
=
1

−1)(2+1 −1)
2 −1
+1
1 1
1
= (
2 (+2)2
(−1) ∙4
4 2
(2−1)(2+1)
1ቤተ መጻሕፍቲ ባይዱ
2+1 −1
− (+2)2 )
= (−1) (
1
2−1
+
错位相加法: = ( + )−1 → = ( + ) −
复合函数
函数与方程
2
二次函数、基本不等式、双勾函数、三角函
数有界性、数形结合、单调性、导数.
基本初等函数
分段函数
, )
零点
求根法、二分法、图象法、二次及三次方程根的分布
建立函数模型
平移变换: = () → = ( ± ), = () → = () ± ,, > 0
与 的关系
1 ,
= 1,
= {
− −1 , ≥ 2.
构造等差数列
an+1 p an
= · +1 转为③
qn q qn-1
⑤an + 1=pan+qn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• • 1.数列通项公式的意义

了 解
2.递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项;
理 解
1.数列的概念;
2.等差‘等比数列的概念;
1.等差数列的通项公式与前 n 项和公式,并能解决简单的实际问题;
掌 握
2.等比数列的通项公式与前 n 项和公式,并能解决简单的实际问题。
七 直线与圆的方程
了 解
2.推理的含义及推理在数学中的作用 ;
理 解
1.复数代数形式的运算法则,复数代数形式的加、减、乘、除运算;
2.三段论进行简单的推理 。
十概率、排列、组合、二项式定理
• 。
了 解
1.互斥事件的意义,互斥事件的概率加法公式计算一些事件的概率; 2.相互独立事件的意义,相互独立事件的乘法公式计算一些事件的概率; 3.可能性事件的概率的意义,排列组合的基本公式计算一些等可能性事件 的概率;
1.组合的意义,组合数计算公式和组合数的性质,解决一些简单的应用问题;
• •
了 解
1.简单的线性规划问题,线性规划的意义,并会简单应用;
2.参数方程的概念,理解圆的参数方程 ;
理 解
1.直线的倾斜角和斜率的概念;
2.二元一次不等式表示平面区域 ,求出目标函数的取值范围 ;
1.过两点的直线的斜率公式 ;
掌 握
2.直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出 直线的方程; 3.两条直线平行与垂直的条件, 两条直线所成的角和点到直线的距离公式; 4.直线与圆的综合应用 ;
2.球的概念,球的性质,球的表面积和体积公式 ;
理 解
1.会用斜二测的画法画水平放置的平面图形的直观图,用三视图进行运算;
2.两个平面垂直的判定定理和性质定理;
3.两条直线所成的角和两条直线的关系;
1.直线和平面平行的判定定理和性质定理 ;
掌 握
2.直线和平面垂直的判定定理和性质定理; 3.两条直线平行与垂直的判定定理和性质定理。
了 解
理 解
2.极大值、极小值、最大值、最小值的概念; 3.函数在一点处的导数的定义和导数的几何意义;
1.多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值;
掌 握
2.函数 的导数公式,多项式函数的导数; 3.两个函数和、差、积、商的求导法则。
十三 复数、推理与证明

1. 复数的代数表示与几何意义 ;
三 不等式
理 解
1.不等式的性质及其证明 ; 2.| |a|-|b|| ≤|a+b|≤|a|+|b|;
掌 握
1.两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理; 2.分析法、综合法、比较法证明简单的不等式;
3.二次不等式,简单的绝对值不等式和简单的分式不等式的解法。
六 数列
3.四种命题及其相互关系;
了 解
1.空集和全集的意义;
2.属于、包含、相等关系的意义;
掌 握
1.有关的术语和符号,并会用它们正确表示一些简单的集合; 2.充要条件的意义;
二 函数
了 解
1 .映射的概念,在此基础上加深函数概念; 2. 函数的单调性的意义; 3. 反函数的概念及互为反函数的函数图象间的关系;
高中数学知识点脉络图
高中数学
必修
代数
集合 函数 不等式 三角 函数 平面向量 数列
几何
直线. 平面. 简单几何体 直线与圆
选修
圆锥曲线 概率 .排列组合与二项式定理 导数与极限 统计 复数. 推理与证明 .算法
一.集合、简易逻辑
理 解
1.集合、子集、补集、交集、并集的概念;
2.逻辑联结词"或"、"且"、"非"的含义;
理 解
2.几何概型的定义与计算;
掌 握
1.二项式定理和二项展开式; 2.互斥事件的定义、古典概型的定Байду номын сангаас与计算 ;
十一 统计

1.随机抽样、分层抽样的意义,它们对简单实际问题进行抽样;
了 解
2.离散型随机变量的意义;
3.离散型随机变量的期望值、方差的意义; 1.随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本;
理 解
2.根据离散型随机变量的分布列求出期望值、方差;
1.事件在 n 次独立重复试验中恰好发生 k 次的概率 ;
掌 握
2.用样本估计总体期望值和方差,如何从数据中提取信息并作出统计推断。
十二 导数与极限


1. 连续的意义,闭区间上连续函数有最大值和最小值的性质; 2.导数概念的某些实际背景; 3.数列和函数的变化趋势了解数列极限和函数极限的概念; 1.导数是平均变化率的极限,导数的几何意义 ;
八 圆锥曲线方程

了 解

1. 双曲线的定义、标准方程、渐近线,几何性质; 2.圆锥曲线的第二定义;
1.数形结合的思想 ;
理 解
2.抛物线的定义、标准方程和抛物线的简单几何性质;
掌 握
1.椭圆的定义、标准方程和椭圆的简单几何性质 ;
2.直线与椭圆的应用。
九 直线、平面、简单几何体

了 解
1.棱柱 、 棱锥、 棱台、 球的概念,棱柱的性质,会画直棱柱的直观图 ;
理 解
1 .分数指数的概念,有理指数幂的运算性质; 2 .对数与指数的概念; 3. 运用函数的性质、指数函数、对数函数的性质解决某些简单的实际问 题;
掌 握
1.对数的运算性质;掌握对数函数的概念、图象和性质; 2.函数性质在解题中的应用; 3.判断一些简单函数的单调性的方法。掌握指数函数的概念、图象和性质 。
相关文档
最新文档