计算机组成原理 实验4
计算机组成原理实验

计算机组成原理实验一、实验目的本实验旨在通过实际操作,加深对计算机组成原理的理解,掌握计算机硬件的基本原理和工作方式。
二、实验设备和材料1. 计算机主机:型号为XXX,配置了XXX处理器、XXX内存、XXX硬盘等。
2. 显示器:型号为XXX,分辨率为XXX。
3. 键盘和鼠标:标准配置。
4. 实验板:包括CPU、内存、存储器、输入输出接口等模块。
5. 逻辑分析仪:用于分析和调试电路信号。
6. 示波器:用于观测电路信号的波形。
三、实验内容1. 实验一:CPU的工作原理a. 将实验板上的CPU模块插入计算机主机的CPU插槽中。
b. 连接逻辑分析仪和示波器,用于观测和分析CPU的工作信号和波形。
c. 打开计算机主机,启动操作系统。
d. 运行一段简单的程序,观察CPU的工作状态和指令执行过程。
e. 通过逻辑分析仪和示波器的数据分析,了解CPU的时钟信号、数据总线、地址总线等工作原理。
2. 实验二:内存的存储和读写a. 将实验板上的内存模块插入计算机主机的内存插槽中。
b. 打开计算机主机,启动操作系统。
c. 编写一个简单的程序,将数据存储到内存中。
d. 通过逻辑分析仪和示波器的数据分析,观察内存的写入和读取过程,了解内存的存储原理和读写速度。
3. 实验三:存储器的工作原理a. 将实验板上的存储器模块插入计算机主机的存储器插槽中。
b. 打开计算机主机,启动操作系统。
c. 编写一个简单的程序,读取存储器中的数据。
d. 通过逻辑分析仪和示波器的数据分析,观察存储器的读取过程,了解存储器的工作原理和数据传输速度。
4. 实验四:输入输出接口的工作原理a. 将实验板上的输入输出接口模块插入计算机主机的扩展插槽中。
b. 打开计算机主机,启动操作系统。
c. 编写一个简单的程序,通过输入输出接口实现数据的输入和输出。
d. 通过逻辑分析仪和示波器的数据分析,观察输入输出接口的工作过程,了解数据的传输和控制原理。
四、实验结果分析1. 实验一:通过观察CPU的工作状态和指令执行过程,可以验证CPU的时钟信号、数据总线、地址总线等工作原理是否正确。
计算机组成原理实验4进位实验实验5移位实验

实验4 进位控制实验一、实验目的1. 理解带进位控制的电路图。
2.验证带进位控制的算术运算发生器的功能。
3.按给定数据,完成实验几种指定的算术运算。
二、实验原理1.在算术逻辑运算实验的基础上,增加了进位控制部分,进位控制部分电路。
它主要由一个74LS74锁存器构成。
2.AR是74LS74琐存器的控制信号,低电平有效,与T4脉冲信号配合,可打开琐存器,把74LS181运算的进位结果存入其内。
(3)CY是高位进位标志信号,连接一个发光二极光,能显示其进位情况。
当进位时此灯“亮”,无进位时指示灯“灭”。
具体电路见图4-1带进位运算器通路图。
图4-1带进位运算器通路图图4-1带进位运算器通路三、实验注意事项(1)本实验使用T4脉冲信号,实验时将“W/R UNIT”的T4接至“STA TE UNIT”中KK2的正脉冲冲插头上,按下微动开关KK2(可产生T4正脉冲),即可获得本实验所需的单脉冲信号。
(2)S3、S2、S1、S0、Cn、M、LDDR1、LDDR2、AUL-B、SW-B、AR均为电平信号,与“SWITCH UNIT”中的二进制开关对应相连接,用于产生模拟信号。
(3)ALU-B、SW-B为低电平有效;LDDR1,LDDR2为高电平有效。
(4)实验仪上进位指示灯CY为“亮”时,表示有进位,“灭”表示无进位。
(5)实验仪上ZI(zero indicator)是判零标志灯,当两片74LS181输出全为“0”时,ZI灯亮,当两片74LS181输出不全为“0”时,ZI灯灭。
(6)每次做进位操作前都必须先对进位标志清零。
清零后,注意观看实验仪上进位指示灯CY是否已灭,若清零后CY不灭,要检查原因。
(7)进位清零操作时,有关控制端的状态是:S3、S2、S1、S0、M、AR、LDDR1、LDDR2 置为00000000,然后按下微动开关KK2即可。
(8)做清零操作时,DR1寄存器的内容不能为11111111。
四、实验内容和步骤1. 实验连线实验连线图见图4-2:图4-2 带进位运算实验接线图接线完成后,检查无误,方可接通电源,要养成一个好习惯,通电前要细心检查电路,以防短路发生,造成实验设备的损坏。
计算机组成原理实验报告

计算机组成原理实验报告实验目的,通过本次实验,深入了解计算机组成原理的相关知识,掌握计算机硬件的基本组成和工作原理。
实验一,逻辑门电路实验。
在本次实验中,我们学习了逻辑门电路的基本原理和实现方法。
逻辑门电路是计算机中最基本的组成部分,通过逻辑门电路可以实现各种逻辑运算,如与门、或门、非门等。
在实验中,我们通过搭建逻辑门电路并进行实际操作,深入理解了逻辑门的工作原理和逻辑运算的实现过程。
实验二,寄存器和计数器实验。
在本次实验中,我们学习了寄存器和计数器的原理和应用。
寄存器是计算机中用于存储数据的重要部件,而计数器则用于实现计数功能。
通过实验操作,我们深入了解了寄存器和计数器的内部结构和工作原理,掌握了它们在计算机中的应用方法。
实验三,存储器实验。
在实验三中,我们学习了存储器的原理和分类,了解了不同类型的存储器在计算机中的作用和应用。
通过实验操作,我们进一步加深了对存储器的认识,掌握了存储器的读写操作和数据传输原理。
实验四,指令系统实验。
在本次实验中,我们学习了计算机的指令系统,了解了指令的格式和执行过程。
通过实验操作,我们掌握了指令的编写和执行方法,加深了对指令系统的理解和应用。
实验五,CPU实验。
在实验五中,我们深入了解了计算机的中央处理器(CPU)的工作原理和结构。
通过实验操作,我们学习了CPU的各个部件的功能和相互之间的协作关系,掌握了CPU的工作过程和运行原理。
实验六,总线实验。
在本次实验中,我们学习了计算机的总线结构和工作原理。
通过实验操作,我们了解了总线的分类和各种总线的功能,掌握了总线的数据传输方式和时序控制方法。
结论:通过本次实验,我们深入了解了计算机组成原理的相关知识,掌握了计算机硬件的基本组成和工作原理。
通过实验操作,我们加深了对逻辑门电路、寄存器、计数器、存储器、指令系统、CPU和总线的理解,为进一步学习和研究计算机组成原理奠定了坚实的基础。
希望通过不断的实践和学习,能够更深入地理解和应用计算机组成原理的知识。
计算机组成原理实验报告4

上海大学计算机学院实验名称:指令系统实验一、实验目的1. 读出系统已有的指令,并理解其含义。
2. 设计并实现一条新指令。
二、实验原理微程序和机器指令,实验箱的机器指令系统,实验箱机器指令系统的布线,实验箱机器指令系统的工作原理,实验箱PC的打入原理,程序存储器模式下的操作。
三、实验内容1. 考察机器指令64的各微指令信号,确定该指令的功能。
(假设R0=77, A=11, 77单元存放56H数据,64指令的下一条指令为E8)2. 修改机器指令E8,使其完成“输出A+W的结果左移一位后的值到OUT”操作。
3*. 修改机器指令F0,使其完成“A+R2的结果右移一位的值到OUT”的操作四、实验步骤实验任务一:考察机器指令64的各微指令信号,确定该指令的功能。
实验步骤:1.初始化系统(Reset),进入μEM,在Adr字段送入64,按NX键,可查看其对应的微指令:64: FF 77 FF65: D7 BF EF66:FF FE 9267:CB FF FF2.分析其二进制代码,分析其控制功能64: 1111 1111 0111 0111 1111 1111从寄存器R?中取出地址打入地址寄存器MAR。
65: 1110 0111 1011 1111 1110 1111把地址寄存器MAR的存储器值EM打入寄存器W。
66:1111 1111 1111 1110 1001 0010把寄存器A和寄存器W中的数据进行或运算后打入寄存器A和标志位C,Z。
67:1100 1011 1111 1111 1111 1111读出下一条指令并立即执行。
四条指令功能:把寄存器A和寄存器R?中地址内存的数据进行或运算,结果保存在寄存器A中,然后执行下一条指令。
实验任务二:1.分解任务:修改机器指令E8,使其完成“输出A+W的结果左移一位后的值到OUT”操作的操作。
第一步完成A+W;并把“左移一位的值送OUT”;第二步完成取指令。
2.编制微指令:由“控制总线功能对应表”,可确定这四步基本操作的微指令码为:① FFDFD8 ②CBFFFF ③FFFFFF ④FFFFFF3.操作:程序存储器EM模式下,将E8指令送入A0单元,则在Adr下打入A0, DB下打入E8。
实验4:双端口存储器实验 ----独立方式

河北环境工程学院
《计算机组成原理》实验报告
作者:
系(部):
专业班级:
学号:
成绩:__________________
评阅教师:__________________
年月日
一、实验目的
1、了解双端口静态存储器IDT7132的工作特性及其使用方法;
2、了解半导体存储器怎样存储和读取数据;
3、了解双端口存储器怎样并行读写;
4、熟悉LK-TEC-9模型计算机存储器部分的数据通路;
二、预习内容
1.掌握双端口存储器的使用方法
2. 掌握TEC-8模型计算机存储器的部分的数据通路
三、实验环境及主要器件
1.TEC-8实验系统 1台
2. 逻辑测试笔 1支
3. 双踪示波器 1台
4. 逻辑测试笔 1支
四、实验内容
1、从存储器地址10H开始,通过左端口连续向双端口RAM中写入3个数:85H,60H,38H。
在写的过程中,在右端口检测写的数据是否正确。
2、从存储器地址10H开始,连续从双端口RAM的左端口和右端口同时读出存储器的内容。
五、实验步骤
六、实验结果分析与讨论。
计算机组成原理实验报告(四个实验 图)

福建农林大学计算机与信息学院计算机类实验报告课程名称:计算机组成原理姓名:周孙彬系:计算机专业:计算机科学与技术年级:2012级学号:3126010050指导教师:张旭玲职称:讲师2014年06 月22日实验项目列表序号实验项目名称成绩指导教师1 算术逻辑运算单元实验张旭玲2 存储器和总线实验张旭玲3 微程序控制单元实验张旭玲4 指令部件模块实验张旭玲福建农林大学计算机与信息学院信息工程类实验报告系:计算机专业:计算机科学与技术年级: 2012级姓名:周孙彬学号: 3126010050 实验课程:实验室号:_______ 实验设备号:实验时间:指导教师签字:成绩:实验一算术逻辑运算单元实验实验目的1、掌握简单运算器的数据传输方式2、掌握74LS181的功能和应用实验要求完成不带进位位算术、逻辑运算实验。
按照实验步骤完成实验项目,了解算术逻辑运算单元的运行过程。
实验说明1、ALU单元实验构成(如图2-1-1)1、运算器由2片74LS181构成8位字长的ALU单元。
2、2片74LS374作为2个数据锁存器(DR1、DR2),8芯插座ALU-IN作为数据输入端,可通过短8芯扁平电缆,把数据输入端连接到数据总线上。
运算器的数据输出由一片74LS244(输出缓冲器)来控制,8芯插座ALU-OUT 作为数据输出端,可通过短8芯扁平电缆把数据输出端连接到数据总线上。
图2-1-1图2-1-22、ALU单元的工作原理(如图2-1-2)数据输入锁存器DR1的EDR1为低电平,并且D1CK有上升沿时,把来自数据总线的数据打入锁存器DR1。
同样使EDR2为低电平、D2CK有上升沿时把数据总线上的数据打入数据锁存器DR2。
算术逻辑运算单元的核心是由2片74LS181组成,它可以进行2个8位二进制数的算术逻辑运算,74LS181的各种工作方式可通过设置其控制信号来实现(S0、S1、S2、S3、M、CN)。
当实验者正确设置了74LS181的各个控制信号,74LS181会运算数据锁存器DR1、DR2内的数据。
计算机组成原理实验报告四

实验报告实验四数据通路组成实验一、实验目的1.将运算器模块于存储器模块联机2.进一步熟悉计算机的数据通路3.将存储器的两个存储单元的内容通过运算器相加并且将结果送回存储单元。
二、实验设备1.TDN-CM+计算机组成原理实验系统一套2.若干导线和排线三、实验电路四、实验数据并完成以下运算:( 01H )+( 02H ) →03H( 01H )⊕(02H )→04H五、实验结果分析与体会这次实验是这学期最后一次实验, 也是最为复杂的一次实验, 因为是将实验一中运算器的算术运算和实验三中的存储器结合到一起, 所以实验内容很多, 实验步骤很复杂。
然而颜老师在我们是眼前首先对实验的各环节作了详细的说明, 对我们可能在会哪些地方出错也做了明确的指导和提示, 特别是在T4和T3连接脉冲的连线上给我们做了很详细的说明。
虽然我们对实验电路图理解的很是模糊, 也基本上看不懂图的含义。
但是由于对以前两次实验的原理及步骤了解的都十分到位, 而且实验前颜老师又做了特别指点, 所以我们对本次实验的步骤大致知道了。
1、在明确步骤后我和刘佳兵开始了实验, 由于是将第一次和第三次的实验图连接到一块, 所以很多控制开关上出现了重复, 不能有效控制信号。
我们根据老师的提示将重复的开关重新定义。
具体实验步骤如下:2、按照实验一和实验三的电路图连接电路, 重新定义了线路WB、CB、LDAR的二进制控制开关(由PC-B控制WB, 由LDPC控制CB, 由LOAD控制LDAR)。
3、验证试验三写入存储器的实现。
4、将数据AAH、55H分别写入到RAM的01H和02H单元中。
(1)将数据01H作为地址置入AR中;(2)重新设置模拟开关位置, 把数据AAH置入RAM的01H;(3)将数据02H作为地址置入AR中;(4)把数据55H置入RAM的02H;5、从RAM的01H和02H单元中读出刚刚写入的数据。
(1)再一次将数据01H作为地址置入AR中;(2)把置入在RAM的01H数据的AAH读出;(3)将数据02H作为地址置入AR中;(4)把置入RAM的02H数据55H读出;6、讲读出的数据分别放入寄存器DR1和DR2中。
计算机组成原理 实验报告

计算机组成原理实验报告计算机组成原理实验报告引言计算机组成原理是计算机科学与技术专业中的一门重要课程,通过实验学习可以更好地理解和掌握计算机的基本原理和结构。
本实验报告将介绍我在学习计算机组成原理课程中进行的实验内容和实验结果。
实验一:二进制与十进制转换在计算机中,数据以二进制形式存储和处理。
通过这个实验,我们学习了如何将二进制数转换为十进制数,以及如何将十进制数转换为二进制数。
通过实际操作,我更深入地了解了二进制与十进制之间的转换原理,并且掌握了转换的方法和技巧。
实验二:逻辑门电路设计逻辑门电路是计算机中的基本组成部分,用于实现不同的逻辑运算。
在这个实验中,我们学习了逻辑门的基本原理和功能,并通过电路设计软件进行了实际的电路设计和模拟。
通过这个实验,我深入理解了逻辑门电路的工作原理,并且掌握了电路设计的基本方法。
实验三:组合逻辑电路设计组合逻辑电路是由多个逻辑门组合而成的电路,用于实现复杂的逻辑功能。
在这个实验中,我们学习了组合逻辑电路的设计原理和方法,并通过实际的电路设计和模拟,实现了多个逻辑门的组合。
通过这个实验,我进一步掌握了逻辑电路设计的技巧,并且了解了组合逻辑电路在计算机中的应用。
实验四:时序逻辑电路设计时序逻辑电路是由组合逻辑电路和触发器组合而成的电路,用于实现存储和控制功能。
在这个实验中,我们学习了时序逻辑电路的设计原理和方法,并通过实际的电路设计和模拟,实现了存储和控制功能。
通过这个实验,我进一步了解了时序逻辑电路的工作原理,并且掌握了时序逻辑电路的设计和调试技巧。
实验五:计算机指令系统设计计算机指令系统是计算机的核心部分,用于控制计算机的操作和运行。
在这个实验中,我们学习了计算机指令系统的设计原理和方法,并通过实际的指令系统设计和模拟,实现了基本的指令功能。
通过这个实验,我深入了解了计算机指令系统的工作原理,并且掌握了指令系统设计的基本技巧。
实验六:计算机硬件系统设计计算机硬件系统是由多个模块组成的,包括中央处理器、存储器、输入输出设备等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四模型机设计1 实验目的(1) 掌握一个简单CPU的组成原理。
(2) 在掌握部件单元电路的基础上,进一步将其构造一台基本模型计算机。
(3) 为其定义五条机器指令,编写相应的微程序,并上机调试掌握整机概念。
2 实验设备PC机一台,TD-CMA实验系统一套。
3 实验原理本实验要实现一个简单的CPU,并且在此CPU的基础上,继续构建一个简单的模型计算机。
CPU由运算器(ALU)、微程序控制器(MC)、通用寄存器(R0),指令寄存器(IR)、程序计数器(PC)和地址寄存器(AR)组成,如图4-1所示。
这个CPU在写入相应的微指令后,就具备了执行机器指令的功能,但是机器指令一般存放在主存当中,CPU必须和主存挂接后,才有实际的意义,所以还需要在该CPU的基础上增加一个主存和基本的输入输出部件,以构成一个简单的模型计算机。
图4-1 基本CPU构成原理图除了程序计数器(PC),其余部件在前面的实验中都已用到,在此不再讨论。
系统的程序计数器(PC)和地址寄存器(AR)集成在一片CPLD芯片中。
CLR连接至CON单元的总清端CLR,按下CLR按钮,将使PC清零,LDPC和T3相与后作为计数器的计数时钟,当LOAD为低时,计数时钟到来后将CPU内总线上的数据打入PC。
T3CLR图4-2 程序计数器(PC)原理图本模型机和前面微程序控制器实验相比,新增加一条跳转指令JMP,共有五条指令:IN(输入)、ADD(二进制加法)、OUT(输出)、JMP(无条件转移),HLT(停机),其指令格式如下(高4位为操作码):助记符机器指令码说明IN0010 0000IN R0ADD0000 0000R0 + R0 R0OUT0011 0000R0 OUTJMP addr1110 0000 ********addr PCHLT0101 0000停机其中JMP为双字节指令,其余均为单字节指令,********为addr对应的二进制地址码。
微程序控制器实验的指令是通过手动给出的,现在要求CPU自动从存储器读取指令并执行。
根据以上要求,设计数据通路图,如图4-3所示。
本实验在前一个实验的基础上增加了三个部件,一是PC(程序计数器),另一个是AR(地址寄存器),还有就是MEM(主存)。
因而在微指令中应增加相应的控制位,其微指令格式如表4-1所示。
图4-3 数据通路图 表4-1 微指令格式A字段B字段C字段141312选择000001LDA 010LDB 011LDR0100保留10111023M232221201918-1514-1211-98-65-0WR RD IOM A 字段B 字段C 字段MA5-MA0S3-S0NOP 111LDIRLDAR LOAD 11109选择000001ALU_B 010R0_B 011保留100保留101110NOP 111保留保留PC_B 876选择000001P<1>010保留011保留100保留101110NOP 111保留保留LDPC M22系统涉及到的微程序流程见图4-4所示,当拟定“取指”微指令时,该微指令的判别测试字段为P<1>测试。
指令译码原理见图3-2-3所示,由于“取指”微指令是所有微程序都使用的公用微指令,因此P<1> 的测试结果出现多路分支。
本机用指令寄存器的高6位(IR7—IR2)作为测试条件,出现5路分支,占用5个固定微地址单元,剩下的其它地方就可以一条微指令占用控存一个微地址单元随意填写,微程序流程图上的单元地址为16进制。
图4-4 简单模型机微程序流程图当全部微程序设计完毕后,应将每条微指令代码化,表4-2即为将图4-4的微程序流程图按微指令格式转化而成的“二进制微代码表”。
表4-2 二进制微代码表设计一段机器程序,要求从IN单元读入一个数据,存于R0,将R0和自身相加,结果存于R0,再将R0的值送OUT单元显示。
根据要求可以得到如下程序,地址和内容均为二进制数。
地址内容助记符说明00000000 00100000 ; START: IN R0 从IN单元读入数据送R000000001 00000000 ; ADD R0,R0 R0和自身相加,结果送R000000010 00110000 ; OUT R0 R0的值送OUT单元显示00000011 11100000 ; JMP START 跳转至00H地址00000100 00000000 ;00000101 01010000 ; HLT 停机4 实验步骤1. 按图4-5连接实验线路。
2. 写入实验程序,并进行校验,分两种方式,手动写入和联机写入。
1) 手动写入和校验(1) 手动写入微程序①将时序与操作台单元的开关KK1置为‘停止’档,KK3置为‘编程’档,KK4置为‘控存’档,KK5置为‘置数’档。
②使用CON单元的SD05——SD00给出微地址,IN单元给出低8位应写入的数据,连续两次按动时序与操作台的开关ST,将IN单元的数据写到该单元的低8位。
③将时序与操作台单元的开关KK5置为‘加1’档。
④ IN单元给出中8位应写入的数据,连续两次按动时序与操作台的开关ST,将IN单元的数据写到该单元的中8位。
IN单元给出高8位应写入的数据,连续两次按动时序与操作台的开关ST,将IN单元的数据写到该单元的高8位。
⑤重复①、②、③、④四步,将表4-2的微代码写入2816芯片中。
图4-5 实验接线图(2) 手动校验微程序①将时序与操作台单元的开关KK1置为‘停止’档,KK3置为‘校验’档,KK4置为‘控存’档,KK5置为‘置数’档。
②使用CON单元的SD05——SD00给出微地址,连续两次按动时序与操作台的开关ST,MC 单元的指数据指示灯 M7——M0显示该单元的低8位。
③将时序与操作台单元的开关KK5置为‘加1’档。
④连续两次按动时序与操作台的开关ST,MC单元的指数据指示灯 M15——M8显示该单元的中8位,MC单元的指数据指示灯 M23——M16显示该单元的高8位。
⑤重复①、②、③、④四步,完成对微代码的校验。
如果校验出微代码写入错误,重新写入、校验,直至确认微指令的输入无误为止。
(1)手动写入机器程序①将时序与操作台单元的开关KK1置为‘停止’档,KK3置为‘编程’档,KK4置为‘主存’档,KK5置为‘置数’档。
②使用CON单元的SD07——SD00给出地址,IN单元给出该单元应写入的数据,连续两次按动时序与操作台的开关ST,将IN单元的数据写到该存储器单元。
③将时序与操作台单元的开关KK5置为‘加1’档。
④ IN单元给出下一地址(地址自动加1)应写入的数据,连续两次按动时序与操作台的开关ST,将IN单元的数据写到该单元中。
然后地址会又自加1,只需在IN单元输入后续地址的数据,连续两次按动时序与操作台的开关ST,即可完成对该单元的写入。
⑤亦可重复①、②两步,将所有机器指令写入主存芯片中。
(2)手动校验机器程序①将时序与操作台单元的开关KK1置为‘停止’档,KK3置为‘校验’档,KK4置为‘主存’档,KK5置为‘置数’档。
②使用CON单元的SD07——SD00给出地址,连续两次按动时序与操作台的开关ST,CPU 内总线的指数据指示灯 D7——D0显示该单元的数据。
③将时序与操作台单元的开关KK5置为‘加1’档。
④连续两次按动时序与操作台的开关ST,地址自动加1,CPU内总线的指数据指示灯 D7——D0显示该单元的数据。
此后每两次按动时序与操作台的开关ST,地址自动加1,CPU内总线的指数据指示灯 D7——D0显示该单元的数据,继续进行该操作,直至完成校验,如发现错误,则返回写入,然后校验,直至确认输入的所有指令准确无误。
⑤亦可重复①、②两步,完成对指令码的校验。
如果校验出指令码写入错误,重新写入、校验,直至确认指令码的输入无误为止。
2) 联机写入和校验联机软件提供了微程序和机器程序下载功能,以代替手动读写微程序和机器程序,但是微程序和机器程序得以指定的格式写入到以TXT为后缀的文件中,微程序和机器程序的格式如下:机器指令格式说明:$P机器指令代码十六进制地址机器指令标志微指令格式说明:微指令代码十六进制地址微指令标志XX XX$M XX XXXXXX本次实验程序如下,程序中分号‘;’为注释符,分号后面的内容在下载时将被忽略掉:; //*************************************** //; // //; // CPU与简单模型机实验指令文件//; // //; // By TangDu CO.,LTD //; // //; //*************************************** //; //****** Start Of Main Memory Data ****** //$P 00 20 ; START: IN R0 从IN单元读入数据送R0$P 01 00 ; ADD R0,R0 R0和自身相加,结果送R0$P 02 30 ; OUT R0 R0的值送OUT单元显示$P 03 E0 ; JMP START 跳转至00H地址$P 04 00 ;$P 05 50 ; HLT 停机; //******* End Of Main Memory Data ******* //; //**** Start Of MicroController Data **** //$M 00 000001 ; NOP$M 01 006D43 ; PC->AR,PC加1$M 03 107070 ; MEM->IR, P<1>$M 04 002405 ; R0->B$M 05 04B201 ; A加B->R0$M 1D 105141 ; MEM->PC$M 30 001404 ; R0->A$M 32 183001 ; IN->R0$M 33 280401 ; R0->OUT$M 35 000035 ; NOP$M 3C 006D5D ; PC->AR,PC加1; //** End Of MicroController Data **//选择联机软件的“【转储】—【装载】”功能,在打开文件对话框中选择上面所保存的文件,软件自动将机器程序和微程序写入指定单元。
选择联机软件的“【转储】—【刷新指令区】”可以读出下位机所有的机器指令和微指令,并在指令区显示,对照文件检查微程序和机器程序是否正确,如果不正确,则说明写入操作失败,应重新写入,可以通过联机软件单独修改某个单元的指令,以修改微指令为例,先用鼠标左键单击指令区的‘微存’TAB按钮,然后再单击需修改单元的数据,此时该单元变为编辑框,输入6位数据并回车,编辑框消失,并以红色显示写入的数据。