七年级下册平面直角坐标系典型例题 2
七年级数学平面直角坐标系典型例题及答题技巧

七年级数学平面直角坐标系典型例题及答题技巧单选题1、点A(−3,−5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,−8)B.(1,−2)C.(−6,−1)D.(0,−1)答案:C解析:利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.解:点A的坐标为(−3,−5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:−3−3=−6,纵坐标为:−5+4=−1,即(−6,−1).故选:C.小提示:本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.2、若y轴负半轴上的点P到x轴的距离为2,则点P的坐标为()A.(0,2)B.(2,0)C.(﹣2,0)D.(0,﹣2)答案:D解析:点P在y轴上则该点横坐标为0,据此解答即可.∵y轴负半轴上的点P到x轴的距离为2,∴点P的坐标为(0,﹣2).本题考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.3、在平面直角坐标系中,将点(2,l)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)答案:B解析:在平面直角坐标系中,将点(2,l)向右平移时,横坐标增加,纵坐标不变.将点(2,l)向右平移3个单位长度,则所得的点的坐标是(5,1).故选B.小提示:本题运用了点平移的坐标变化规律,关键是把握好规律.4、下面四个点位于第四象限的是()A.(−1,2)B.(−2,−2)C.(2,5)D.(6,−2)答案:D解析:根据直角坐标系中,不同象限内点的坐标特点,依次对四个选项进行判断即可求解.A.(−1,2),因为-1<0,2>0,所以(−1,2)在第二象限,故A不符合题意B.(−2,−2),因为-2<0,所以(−2,−2)在第三象限,故B不符合题意C.(2,5),因为2>0,5>0,所以(2,5)在第一象限,故C不符合题意D.(6,−2),因为6>0,-2<0,所以(6,−2)在第四象限,故D符合题意本题考查了直角坐标系中不同象限内点的坐标特点,第四象限内的点,横坐标大于零,纵坐标小于零.5、以下能够准确表示宣城市政府地理位置的是()A.离上海市282千米B.在上海市南偏西80°C.在上海市南偏西282千米D.东经30.8°,北纬118°答案:D解析:根据点的坐标的定义,确定一个位置需要两个数据解答即可.解:能够准确表示宣城市政府地理位置的是:东经30.8°,北纬118°.故选:D.小提示:本题考查了坐标确定位置,是基础题,理解坐标的定义是解题的关键.6、在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)答案:A解析:点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A.7、某班级第3组第4排的位置可以用数对(3,4)表示,则数对(1,2)表示的位置是( )A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排答案:C解析:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.故某班级第3组第4排位置可以用数对(3,4)表示,则数对(1,2)表示的位置是第1组第2排,故选C.8、观察下面一列有序数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,按这些规律,第50个有序数对是()A.(3,8)B.(4,7)C.(5,6)D.(6,5)答案:C解析:不难发现横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,根据此规律即可知第50个有序数对.观察发现,横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,∵1+2+3+4+5+6+7+8+9=45,∴第46、47、48、49、50个有序数对依次是(1,10)、(2,9)、(3,8)、(4,7)、(5,6).所以C选项是正确的.小提示:本题主要考查了点的坐标探索规律题,找出有序数对的横、纵坐标变化规律是解决问题的关键.填空题9、如图是中国象棋棋盘的一部分,如果我们把“馬”所在的位置记作(2,1),“卒”所在的位置就是(3,4),那么“相”所在的位置是____________.答案:(5, 3) .解析:马在第2列第1行,表示为(2,1),“卒”所在的位置就是(3,4),可知数对中前面的数表示的是列,后面的数表示的是行.据此进行解答.故答案为(5, 3)由已知可得:数对中前面的数表示的是列,后面的数表示的是行.所以,“相”所在的位置是(5, 3).小提示:本题主要考查了学生用数对表示位置的知识.10、点A的坐标是(2,﹣3),将点A向上平移4个单位长度得到点A',则点A'的坐标为_____.答案:(2,1).解析:将点A的纵坐标加4,横坐标不变,即可得出点A′的坐标.解:将点A(2,﹣3)向上平移4个单位得到点A′,则点A′的坐标是(2,﹣3+4),即(2,1).故答案为(2,1).小提示:本题考查坐标与图形变化-平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.11、与点(2,−7)关于y轴对称的点的坐标为_______,关于y=−1对称的点的坐标为_______.答案:(−2,−7)(2,5)解析:关于y轴对称的点的坐标特征是:纵坐标不变,横坐标变为原数的相反数;关于y=−1对称的点的坐标特征是:横坐标不变,纵坐标关于y=−1对称,据此解题.解:点(2,−7)关于y轴对称的点的坐标为(−2,−7),关于y=−1对称的点的坐标为(2,5),所以答案是:(−2,−7);(2,5).小提示:本题考查直角坐标系、关于y轴对称的点的坐标等知识,是基础考点,掌握相关知识是解题关键.12、对于两个非零实数x,y,定义一种新的运算:x∗y=ax +by.若1∗(−1)=2,则(−2)∗2的值是__.答案:-1解析:根据新定义的运算法则即可求出答案.∵1*(-1)=2,∴a1+b−1=2,即a-b=2∴原式=a−2+b2=−12(a-b)=-1故答案为-1.小提示:本题考查代数式运算,解题的关键是熟练运用整体的思想.13、请写出一个在第三象限内的点的坐标:__________(只写一个).答案:(−1,−1)解析:根据第三象限内的点的横坐标和纵坐标都是负数直接写出即可.解:因为第三象限内的点的横坐标和纵坐标都是负数,故坐标可以是(−1,−1)(答案不唯一).小提示:本题考查了平面直角坐标系内点的坐标的特征,解题关键是熟知在不同象限的点的坐标的符号特征.解答题14、已知点P(2a−2,a+5),解答下列各题.(1)点P在x轴上,求出点P的坐标.(2)点Q的坐标为(4,5),直线PQ//y轴;求出点P的坐标.(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2020+2020的值.答案:(1)P(−12,0);(2)P(4,8);(3)2021解析:(1)根据x轴上点的坐标特征:纵坐标为0,列出方程即可求出结论;(2)根据与y轴平行的直线上两点坐标关系:横坐标相等、纵坐标不相等即可求出结论;(3)根据题意可得:点P的横纵坐标互为相反数,从而求出a的值,即可求出结论.解:(1)若点P在x轴上,∴a+5=0解得:a=-5∴P(−12,0);(2)∵点Q的坐标为(4,5),直线PQ//y轴∴2a−2=4解得:a=3∴P(4,8);(3)∵点P在第二象限,且它到x轴、y轴的距离相等∴2a−2+a+5=0解得:a=-1∴a2020+2020=(−1)2020+2020=2021小提示:此题考查的是根据题意,求点的坐标,掌握x轴上点的坐标特征、与y轴平行的直线上两点坐标关系和点到x 轴、y轴的距离与坐标关系是解题关键.15、适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点.(1)看图案像什么?(2)作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?答案:(1)“鱼”;(2)向左平移2个单位.解析:(1)描点根据顺序连线即可.(2)根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.解:(1)像“鱼”.(2)纵坐标不变,横坐标减2,即向左平移两个单位,根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.小提示:本题考查直角坐标系中描点,平移作图,细心画图即可.。
人教版七年级下册数学第七章 平面直角坐标系含答案(各地真题)

人教版七年级下册数学第七章平面直角坐标系含答案一、单选题(共15题,共计45分)1、如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.C.D.42、在平面直角坐标系xoy中,已知A(4,2),B(2,-2),以原点O为位似中心,按位似比1:2把△OAB缩小,则点A的对应点A′的坐标为()A.(3,1)B.(-2,-1)C.(3,1)或(-3,-1)D.(2,1)或(-2,-1)3、如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(﹣1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B的对应点B′的坐标是()A.(1,0)B.(,)C.(1,)D.(﹣1,)4、在平面直角坐标系中,点先向左平移个单位,再向下平移个单位,得到的()A. B. C. D.5、将△ABC的各点的横坐标都加上3,纵坐标不变,所得图形与原图形相比()A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位6、点P是图①中三角形上一点,坐标为(a,b),图①经过变化形成图②,则点P在图②中的对应点P′的坐标为()A.(a,b)B.(a﹣1,b)C.(a﹣2,b)D.(a,b)7、在平面直角坐标系中,已知点A(﹣6,9)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,3)B.(﹣18,27)C.(﹣18,27)或(18,﹣27) D.(﹣2,3)或(2,﹣3)8、在平面直角坐标系中,点P(-2,3-π)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限9、在平面直角坐标系中,点P的横坐标是-3,且点P到x轴距离为5,则点P 的坐标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-3)10、将点B(5,-1)向上平移2个单位得到点A(a+b, a-b),则()A.a=2, b=3B.a=3, b=2C.a=-3, b=-2D.a=-2, b=-311、矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)12、某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A.(﹣2a,﹣2b)B.(﹣a,﹣2b)C.(﹣2b,﹣2a)D.(﹣2a,﹣b)13、点M(3,-4)关于x轴的对称点的坐标是()A.(3, 4)B.(-3,-4)C.(-3, 4)D.(-4,3)14、在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限15、如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是A.炎陵位于株洲市区南偏东约35°的方向上B.醴陵位于攸县的北偏东约16°的方向上C.株洲县位于茶陵的南偏东约40°的方向上D.株洲市区位于攸县的北偏西约21°的方向上二、填空题(共10题,共计30分)16、如图,把一块三角板放在直角坐标系第一象限内,其中30°角的顶点A落在y轴上,直角顶点C落在x轴的(,0)处,∠ACO=60°,点D为AB边上中点,将△ABC沿x轴向右平移,当点A落在直线y=x﹣3上时,线段CD扫过的面积为________.17、我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形的边在轴上,的中点是坐标原点,固定点,,把正方形沿箭头方向推,使点落在轴正半轴上点处,则点的对应点的坐标为________.18、已知点A(m,n)在第四象限,那么点B(m,﹣n)在第________象限.19、如图,象棋盘上,若“将”位于点(1,-1),“车”位于点(-3,-1),则“马”位于点________.20、点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=________.21、点P(3,﹣2)到y轴的距离为________个单位.22、已知线段MN平行于x轴,且MN的长度为5,若M的坐标为(2,-2),那么点N的坐标是________;23、如界点在平面直角坐标系的第二象限,则m的取值范围是________.24、如图,学校在小明家________偏________度的方向上,距离约是________米.25、同学们玩过五子棋吗?它的比赛规则是只要同色5子先成一条直线就算胜如图是两人玩的一盘棋,若白的位置是(1,﹣5),黑的位置是(2,﹣4),现轮到黑棋走,你认为黑棋放在________位置就获得胜利了.三、解答题(共6题,共计25分)26、如图所示的马所处的位置为(2,3).⑴你能表示图中象的位置吗?⑵写出马的下一步可以到达的位置.(马走日字)27、如图是边长为4的正方形,请你建立适当的直角坐标系,并写出点A,B,C,D的坐标.28、某市有A、B、C、D四个大型超市,分别位于一条东西走向的平安大路两侧,如图,若C(﹣2,8)、D(0,0),请建立适当的直角坐标系,并写出A、B两个超市相应的坐标.29、王林同学利用暑假参观了幸福村果树种植基地(如图),他出发沿(1,3),(﹣3,3),(﹣4,0),(﹣4,﹣3),(2,﹣2),(5,﹣3),(5,0),(5,4)的路线进行了参观,请你按他参观的顺序写出他路上经过的地方,并用线段依次连接他经过的地点.30、古城黄州以其名胜古迹吸引了不少游客.从地图上看,较有名的六外景点在黄州城内的分布是∶东坡赤壁在市政府以西2km再往南3km处,黄冈中学在市政府以东1 km处,宝塔公园在市政府以东3km处,鄂黄长江桥在市政府以东7 km再往北8 km处,遗爱湖在市政府以东4km再往北4km处,博物馆在市政府以北2 km再往西1 km处。
七年级数学下册第七章平面直角坐标系经典大题例题

(名师选题)七年级数学下册第七章平面直角坐标系经典大题例题单选题1、如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为(1,3).若小丽的座位为(3,2),以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是()A.(1,3)B.(3,4)C.(4,2)D.(2,4)答案:C分析:根据小丽的座位坐标为(3,2),根据四个选项中的座位坐标,判断四个选项中与其相邻的座位,即可得出答案.解:∵只有(4,2)与(3,2)是相邻的,∴与小丽相邻且能比较方便地讨论交流的同学的座位是(4,2),故C正确.故选:C.小提示:本题主要考查了坐标确定位置,关键是根据有序数对表示点的位置,根据点的坐标确定位置.2、点P(a,b)在第二象限,若点P到x轴的距离是5,到y轴的距离是2,则点P的坐标为()A.(-2,5)B.(-5,2)C.(2,-5)D.(5,-2)答案:A分析:根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.解:∵点P(a,b)在第二象限内,点P到x轴的距离是5,到y轴的距离是2,∴点P的横坐标为a=−2,纵坐标为b=5,∴点P的坐标为(−2,5).故选:A.小提示:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.3、在平面直角坐标系xoy中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,,点A2的伴随点为A3,,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(2,4),点A2020的坐标为( )A.(-3,3)B.(-2,-2)C.(3,-1)D.(2,4)答案:C分析:根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2020除以4,根据商和余数的情况确定点A2020的坐标即可.∵A1(2,4),∴A2(-3,3),A3(-2,-2),A4(3,-1),A5(2,4),A6(-3,3),…,依此类推,每4个点为一个循环组依次循环,∵2020÷4=505,∴点A2020的坐标与A4的坐标相同,为(3,-1),故选:C.小提示:本题考查点的坐标规律,读懂题目信息,理解“伴随点”的定义,并求出每4个点为一个循环组依次循环是解题的关键.4、如果第二列第一行用有序数对(2,1)表示,那么数对(3,6)和(3,4)表示的位置是()A.同一行B.同一列C.同行同列D.不同行不同列答案:B分析:数对中第一个数字表示列数,第二个数字表示行数,据此可作出判断.解:第二列第一行用数对(2,1)表示,则数对(3,6)表示第三列,第六行,数对(3,4)表示表示第三列,第四行.所以数对(3,6)和(3,4)表示的位置是同一列不同行.故选:B.小提示:本题主要考查了坐标确定位置,一般用数对表示点位置的方法是第一个数字表示列,第二个数字表示行,也有例外,具体题要根据已知条件确定.5、在平面直角坐标系xOy中,对于点P(x,y)我们把点P(−y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(2,4),点A2022的坐标为()A.(−3,3)B.(−2,−2)C.(3,−1)D.(2,4)答案:A分析:据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2022除以4,根据商和余数的情况确定点A2022的坐标即可.观察发现:A1(2,4)、A2(−3,3)、A3(−2,−2)、A4(3,−1)、A5(2,4)、A6(−3,3)⋅⋅⋅依此类推,可以发现每4个点为一个循环组依次循环,∵2022÷4=505余2,∴点A2022的坐标与A2的坐标相同为(−3,3),故选:A.小提示:本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.6、如图,在平面直角坐标系xOy中,将四边形ABCD先向上平移,再向左平移得到四边形A1B1C1D1,已知A1(−3,5),B1(−4,3),A(3,3),则点B坐标为()A.(1,2)B.(2,1)C.(1,4)D.(4,1)答案:B解析:由题意得到点A的坐标变化规律,然后根据点A的变化规律反推可以由B1得到B的坐标.解:∵-3-3=-6,5-3=2,∴点A变到A1的过程中,横坐标加-6,纵坐标加2,∴由B1反推到B的过程,必须是横坐标加6,纵坐标加-2,∴-4+6=2,3-2=1,∴B点坐标为(2,1),故选B.小提示:本题考查平移的坐标变化,得到图形的平移规律是解题关键.7、家长会前,四个孩子分别向家长描述自己在班里的座位,在没有其他参考信息的情况下,家长能根据描述准确找到自己孩子座位的是()A.小强说他坐在第一排B.小明说他坐在第三列C.小刚说他的座位靠窗D.小青说她坐在第二排第五列答案:D分析:直接利用坐标确定位置需要两个量,进而分析得出答案解∶A、小强说他坐在第一排,无法确定座位位置,故此选项不符合题意;B、小明说他坐在第三列,无法确定座位位置,故此选项不符合题意;C、小刚说他的座位靠窗,无法确定座位位置,故此选项不符合题意;D、小青说她坐在第二排第五列,能准确确定座位位置,故此选项符合题意.故选:D小提示:本题主要考查了利用坐标确定位置.掌握具体位置的确定需两个量是解题关键.8、如图,在平面直角坐标系中,线段AB的两个端点是A(1,3),B(2,1),若点A的对应点A′的坐标为(﹣2,0),则点B的对应点B′的坐标为()A.(﹣3,2)B.(﹣1,﹣3)C.(﹣1,﹣2)D.(0,﹣2)答案:C分析:利用平移变换中对应点的平移方向和平移距离完全相同知:点A到点A′的坐标变化与点B到点B′的坐标变化完全相同得出结果.解:∵从点A(1,3)到点A′(-2,0),横坐标减3,纵坐标减3,点B的对应点B′的坐标为(2-3,1-3),即为(-1,-2).故选:C.小提示:本题考查点的平移变换,掌握对应点的坐标变换完全相同是解决问题的关键.9、如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),那么棋子“炮”的坐标为()A.(3,0)B.(3,1)C.(3,2)D.(2,2)答案:C分析:根据“车”的位置,向右平移2个单位,再向下平移3个单位得到坐标原点,建立平面直角坐标系,再根据“炮”的位置解答.解:由棋子“车”的坐标为(﹣2,3)、棋子“马”的坐标为(1,3),建立如图平面直角坐标系,原点为底边正中间的点,以底边为x轴,向右为正方向,以左右正中间的线为y 轴,向上为正方向;根据建立的坐标系可知,棋子“炮”的坐标为(3,2).故选:C.小提示:本题考查坐标确定位置,是基础考点,掌握相关知识是解题关键.10、如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0),第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2022分钟时,这个粒子所在位置的坐标是()A.(44,5)B.(44,2)C.(45,5)D.(45,2)答案:B分析:找出粒子运动规律和坐标之间的关系即可解题.解:由题知(0,0)表示粒子运动了0分钟,(1,1)表示粒子运动了2=1×2(分钟),将向左运动,(2,2)表示粒子运动了6=2×3(分钟),将向下运动,(3,3)表示粒子运动了12=3×4(分钟),将向左运动,…,于是会出现:(44,44)点粒子运动了44×45=1980(分钟),此时粒子将会向下运动,∴在第2022分钟时,粒子又向下移动了2022-1980=42个单位长度,∴粒子的位置为(44,2),故选:B.小提示:本题考查的是动点坐标问题,解题的关键是找出粒子的运动规律.填空题11、如图,A和B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则ab的值为________.答案:1分析:由图可得到点B的纵坐标是如何变化的,让A的纵坐标也做相应变化即可得到b的值;看点A的横坐标是如何变化的,让B的横坐标也做相应变化即可得到a的值,相加即可得到所求.解:由题意可知:a=0+(3−2)=1;b=0+(2−1)=1;∴ab=1,所以答案是:1.小提示:本题主要考查了坐标与图形变化—平移,熟知在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.12、在平面直角坐标系中,点A(−5,3)到y轴的距离为_______.答案:5分析:根据点到y轴的距离是横坐标的绝对值,可得答案.解:点A(-5,3)到y轴的距离是:|-5|=5.所以答案是:5.小提示:本题考查了点的坐标,正确掌握点的坐标特点是解决的关键.13、在平面直角坐标系中,第二象限内有一点M,点M到x轴的距离为5,到y轴的距离为4,则点M的坐标是______.答案:(-4,5)分析:根据点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,得到点M的横纵坐标可能的值,进而根据所在象限可得点M的具体坐标.解:设点M的坐标是(x,y).∵点M到x轴的距离为5,到y轴的距离为4,∴|y|=5,|x|=4.又∵点M在第二象限内,∴x=−4,y=5,∴点M的坐标为(−4,5),故答案是:(−4,5).小提示:本题考查了点的坐标,用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值;第二象限(−,+).14、将点P(m+2,2m+4)向右平移1个单位长度到点Q,且点Q恰好在y轴上,那么点Q的坐标是________.答案:(0,−2)分析:先根据平移方式表示出点Q的坐标,再根据y轴上点的特征解题即可.由题意,得点Q的坐标为(m+3,2m+4),∵点Q恰好在y轴上则m+3=0,解得m=−3,故2m+4=−2,点Q的坐标为(0,−2).所以答案是:(0,−2).小提示:本题主要考查点的平移及在y轴上点的特征,掌握点的平移规律及在y轴上点的特征是解题的关键.15、如图,在平面直角坐标系中,直线l交x轴于点A,交y轴于点A1,∠A1AO=45°,A2,A3,...在直线l上,点B1,B2,B3...在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,已知点A坐标是(-2,0),则点B n的横坐标为______.答案:2n+1−2##−2+2n+1分析:先求B1,B2,B3的坐标,探究规律后,根据规律即可解出答案.由题意得:OA=OA1=2∴OB1=OA1=2,B1B2=B1A2=4,B2A3=B2B3=8∴B1(2,0),B2(6,0),B3(14,0)∵2=22−2,6=23−2,14=24−2∴B n的横坐标为2n+1−2所以答案是:2n+1−2.小提示:本题考查了点的坐标和等腰直角三角形的性质等知识,利用知识点得出每个点的坐标,寻找出规律是解决问题的关键.解答题16、已知:如图△ABC的位置如图所示,(每个方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上).点A,B,C的坐标分别为(−1,−1),(5,−1),(1,4).(1)请在图中建立平面直角直角坐标系,平移△ABC使A,B,C的对应点分别为A′,B′,C′且点A的对应点A′坐标为(1,0),分别写出B′,C′两点的坐标并画出平移后的图形;(2)点P(m,n)是(1)中平面直角坐标系内的一点,点P随着△ABC一起平移,点P的对应点P′(n+2,4).求点P的坐标并求平移过程中线段PC扫过的面积.答案:(1)点B′,C′的坐标分别是(7,0),(3,5),见解析(2)点P的坐标为(3,3),P′(5,4),4分析:(1)根据A,B,C的坐标确定平面直角坐标系即可,判断出B′,C′的坐标,画出图形即可;(2)利用平移变换的性质求出m,n的值,画出图形可得结论.(1)解:∵点A(−1,−1)的对应点A′坐标为(1,0),∴点的坐标平移规律是:横坐标加2,纵坐标加1,∵B,C的坐标分别为(5,−1),(1,4)∴点B′,C′的坐标分别是(7,0),(3,5),平面直角坐标系如图所示:(2)解:∵点P(m,n)平移后落在P′(n+2,4),∴m+2=n+2,n+1=4,解得,m=n=3,∴点P的坐标为(3,3),P′(5,4),∵平移过程中线段PC扫过的图形是一个平行四边形,×2×1=4.它的面积=4×2−4×12即平移过程中线段PC扫过的面积为4.小提示:本题考查作图——平移变换,平行四边形的面积等知识,解题的关键是掌握平移变换的性质,学会用割补法求平行四边形面积.17、阅读材料:两点间的距离公式:如果平面直角坐标系内有两点A(x1,y1)、B(x2,y2),那么A、B两点的距离AB=√(x1−x2)2+(y1−y2)2,则AB2=(x1−x2)2+(y1−y2)2.例如:若点A(4,1),B(3,2),则AB=√(4−3)2+(1−2)2=√2,若点A(a,1),B(3,2),且AB=√2,则(√2)2=(a−3)2+(1−2)2.根据实数章节所学的开方运算即可求出满足条件的a的值.根据上面材料完成下列各题:(1)若点A(−2,3),B(1,2),则A、B两点间的距离是.(2)若点A(−2,3),点B在x轴上,且A、B两点间的距离是5,求B点坐标.答案:(1)√10(2)B(−6,0)或B(2,0)分析:(1)根据题目所给两点间的距离公式求解即可.(2)设B(m,n).根据点B的位置和题目所给点的两点间距离公式列出方程,再根据开方运算求解即可.(1)解:∵A(−2,3),B(1,2),∴AB=√(−2−1)2+(3−2)2=√10.所以答案是:√10.(2)解:设B(m,n).∵点B在x轴上,∴n=0.∴B(m,0).∵A(−2,3),且A、B两点间的距离是5,∴52=(−2−m)2+(3−0)2.整理得(−2−m)2=16.∵±√16=±4,∴−2−m=4或−2−m=−4.∴m=−6或m=2.∴B(−6,0)或B(2,0).小提示:本题考查平面直角坐标系中点的坐标,利用平方根解方程,实数的混合运算,正确理解题意是解题关键.18、对于平面直角坐标系中的图形M上的任意点P(x,y),给出如下定义:将点P(x,y)平移到P′(x+e,y−e)称为将点P进行“e型平移”,点P称为将点P进行“e型平移”的对应点;将图形M上的所有点进行“e型平移”称为将图形M进行“e型平移”例如,将点P(x,y)平移到P′(x+1,y−1)称为将点P进行“1型平移”.(1)已知点A(−1,2),B(2,3).将线段AB进行“1型平移”后得到对应线段A′B′.①画出线段A′B′,并直接写出A′,B′的坐标;②四边形ABB′A′的面积为________(平方单位);(2)若点A(2−a,a+1),B(a+1,a+2),将线段AB进行“2型平移”后得到对应线段A′B′,当四边形ABB′A′的面积为8平方单位,试确定a的值.答案:(1)①图见解析,A′(0,1),B′(3,2);②4(2)2分析:(1)①根据新定义将点A,B先向右平移1个单位再向下平移1个单位,得到A′,B′,连接A′B′,根据平移写出点的坐标即可,②根据四边形AA′B′B的面积=S△ABA′+S△AB′B,即可求解.(2)根据点坐标,构造大长方形CDEF,根据长方形的面积减去4个三角形的面积,根据坐标与图形求得C(2−a,a+2),D(a+3,a+2),E(a+3,a−1),F(2−a,a−1),进而根据新定义求得S△AA′F=S△B′BD=12×2×2=2,根据坐标系求得S△ABC=S△A′B′E=12×1×(2a−1)=a−12,根据四边形ABB′A′的面积为CF×CD−(S△AA′F+S△B′BD)−(S△ABC+S△A′B′E),四边形ABB′A′的面积为8平方单位建立方程,即可求解.(1)如图所示,A′(0,1),B′(3,2),②四边形AA′B′B的面积=S△ABA′+S△AB′B=12×4×1+12×4×1=4,(2)∵点A(2−a,a+1),B(a+1,a+2),将线段AB进行“2型平移”后得到对应线段A′B′,∴A′(2−a+2,a+1−2),B′(a+1+2,a+2−2),A′(4−a,a−1),B′(a+3,a),标注字母如图,则C(2−a,a+2),D(a+3,a+2),E(a+3,a−1),F(2−a,a−1),根据定义可知AF=A′F=2,BD=B′D=2,∴S△AA′F=S△B′BD=12×2×2=2,∵A(2−a,a+1),B(a+1,a+2),∴AC=a+2−(a+1)=1,BC=a+1−(2−a)=2a−1,∴S△ABC=S△A′B′E=12×1×(2a−1)=a−12,∴FC=AC+AF=1+2=3,CD=CB+BD=2a−1+2=2a+1,∴四边形ABB′A′的面积为CF×CD−(S△AA′F+S△B′BD)−(S△ABC+S△A′B′E)=3×(2a+1)−(2+2)−(a−12+a−12)=6a+3−4−2a+1 =4a,∵四边形ABB′A′的面积为8平方单位,∴4a=8,解得a=2.小提示:本题考查了新定义,平移的性质,坐标与图形,理解新定义是解题的关键.。
七年级数学平面直角坐标系综合测试题2

2011~2012学年度七年级第二学期数学单元测试卷(二)(第二章平面直角坐标系)班级:___________ 座号:_________ 姓名:__________ 分数:____________一、选择题:(每小题3分,总共30分)1、下列说法正确的是()A、平面内,两条互相垂直的直线构成数轴。
B、坐标原点不属于任何象限。
C、X轴上的点必是纵坐标为0,横坐标不为0。
D、坐标为(3, 4)与(4,3)表示同一个点。
2、下列说法正确的是()A、点p(0,5)在X轴上B、点M(-a,a)在第二象限C、点A(-3,4)与点B(3,-4)在X轴的同一侧D、坐标平面内的点与有序数对是一一对应3、在平面直角坐标系中,点(-1,m2+1)一定在()A、第一象限B、第二象限C、第三象限D、第四象限4、小虫在小方格上沿着小方格的边爬行,它的起始位置是A(2,2)先爬到B (2,4),再爬到C(5,4),最后爬到D(5,6),则小虫共爬了()A、7个单位长度B、5个单位长度C、4个单位长度D、3个单位长度5、若点A(-X,-Y)在第二象限,则点B(X,Y)在()A、第一象限B、第二象限C、第三象限D、第四象限6、点P(m+3,m+1)在x轴上,则点p坐标为()A(0,-4) B(4,0) C(0,-2) D(2,0)7、下列说法正确地有()(1)点(1,-a)一定在第四象限(2)坐标上的点不属于任一象限(3)横坐标为0的点在Y轴上纵坐标为0的点在X轴上。
(4)直角坐标系中,在Y轴上且到原点的距离为5的点的坐标是(0,5)。
A 1个B 2个C 3个D 4个8、点p(a,b),ab>0,a+b<0,则点p在()A、第一象限B、第二象限C、第三象限D、第四象限9、点M在第四象限,它到X轴、Y轴的距离分别为8和5,则点M的坐标为()A(8,5) B(5,-8) C(-5,8) D(-8,5)10、过点A(-3,2)和点B(-3,5)作直线则直线AB()A 平行于Y轴B 平行于X轴C 与Y轴相交D 与y轴垂直二、填空题(每小题5分,总共30分)11、如果将一张“5排3号”的电影票记为(5,3),李珊珊同学买了一张标号为(15,2)的电影票,那么她应该坐在排号。
七年级下册数学培优训练 平面直角坐标系综合问题(压轴题)

培优训练三:平面直角坐标系(压轴题)一、坐标与面积:【例1】如图,在平面直角坐标中,A(0,1),B(2,0),C(2,1.5).(1)求△ABC的面积;(2)如果在第二象限内有一点P(a,0.5),试用a的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在这样的点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.【例2】在平面直角坐标系中,已知A(-3,0),B(-2,-2),将线段AB平移至线段CD.图2(1)如图1,直接写出图中相等的线段,平行的线段;(2)如图2,若线段AB移动到CD,C、D两点恰好都在坐标轴上,求C、D的坐标;(3)若点C在y轴的正半轴上,点D在第一象限内,且S△ACD=5,求C、D的坐标;(4)在y轴上是否存在一点P,使线段AB平移至线段PQ时,由A、B、P、Q构成的四边形是平行四边形面积为10,若存在,求出P、Q的坐标,若不存在,说明理由;【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0).(1)求△ABC 的面积;(2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C '''; (3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使2ACPABCS S=;(4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使2BCQABCS S=.【例4】如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足2(2)0a ++=,过C 作CB ⊥x 轴于B .(1)求三角形ABC 的面积;(2)若过B 作BD ∥AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.【例5】如图,在平面直角坐标系中,四边形ABCD 各顶点的坐标分别是A (0,0),B (7,0),C (9,5),D (2,7)(1)在坐标系中,画出此四边形; (2)求此四边形的面积;(3)在坐标轴上,你能否找一个点P ,使S △PBC =50, 若能,求出P 点坐标,若不能,说明理由.【例6】如图,A 点坐标为(-2, 0), B 点坐标为(0, -3). (1)作图,将△ABO 沿x 轴正方向平移4个单位, 得到△DEF , 延长ED 交y 轴于C 点, 过O 点作OG ⊥CE , 垂足为G ;(2) 在(1)的条件下, 求证: ∠COG =∠EDF ; (3)求运动过程中线段AB 扫过的图形的面积.【例7】在平面直角坐标系中,点B (0,4),C (-5,4),点A 是x 轴负半轴上一点,S 四边形AOBC=24.(1)线段BC 的长为 ,点A 的坐标为 ;(2)如图1,EA 平分∠CAO ,DA 平分∠CAH ,CF ⊥AE 点F ,试给出∠ECF 与∠DAH 之间满足的数量关系式,并说明理由;(3)若点P 是在直线CB 与直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON 平分AOP ∠,BN 交ON于N ,请依题意画出图形,给出BPO ∠与BNO ∠之间满足的数量关系式,并说明理由.A(-2,0)B(0,-3)y x【例8】在平面直角坐标系中,OA =4,OC =8,四边形ABCO 是平行四边形.(1)求点B 的坐标及的面积ABCO S 四边形;(2)若点P 从点C 以2单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQB 与△BPC 的面积分别记为AQB S ∆,BPC S ∆,是否存在某个时间,使AQB S ∆=3OQBPS 四边形,若存在,求出t 的值,若不存在,试说明理由;(3)在(2)的条件下,四边形QBPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.【例9】如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D 连结AC ,BD . (1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABDC ;(2)在y 轴上是否存在一点P ,连结P A ,PB ,使S △P AB =S △试说明理由;(3)若点Q 自O 点以0.5个单位/s 的速度在线段AB 上移动,运动到B 点就停止,设移动的时间为t 秒,(1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?(4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△ACO 面积的二分之一?【例10】在直角坐标系中,△ABC 的顶点A (—2,0),B (2,4),C (5(1)求△ABC 的面积(2)点D 为y 负半轴上一动点,连BD 交x 轴于E ,是否存在点D 使得ADE BCE S S ∆∆=?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x 轴上一点,若△ABG 的面积等于四边形ABDC 的面积,则点G 的坐标为 (用含n 的式子表示)【例1】如图,已知A(0,a),B (0,b ),C (m ,b )且(a -4)+|b +3|=0,S △ABC =14. (1)求C 点坐标(2)作DE ⊥DC ,交y 轴于E 点,EF 为∠AED 的平分线,且∠DFE =900.求证:FD 平分∠ADO ;(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM ,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,∠MPQ∠ECA 的大小是否发生变化,若不变,求出其值.【例2】如图,在平面直角坐标系中,已知点A (-5,0),B (5.0),D (2,7), (1)求C 点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。
七年级数学平面直角坐标系动点问题(二)

七年级数学平面直角坐标系动点问题(二)七年级数学平面直角坐标系动点问题1. 直线上的动点问题•问题:已知直线上两点A(x1, y1)和B(x2, y2),求动点P在直线上的坐标。
•解释:通过已知的点A和B,可以确定一条直线。
求动点P在直线上的坐标,则需要满足直线上的点坐标满足某个特定的关系式。
2. 两条直线的交点问题•问题:已知直线L1和L2的方程,求两条直线的交点坐标。
•解释:根据直线L1和L2的方程,可以得到两个方程组,通过求解这个方程组,找到两条直线的交点坐标。
3. 线段上的动点问题•问题:已知线段AB的端点坐标,求动点P在线段AB上的坐标。
•解释:线段AB可以看作是两点A和B之间的所有点的集合。
求动点P在线段AB上的坐标,则需要满足P的坐标满足某个特定的关系式,并且P在线段之内。
4. 圆上的动点问题•问题:已知圆的圆心坐标和半径,求动点P在圆上的坐标。
•解释:圆可以看作是圆心到圆上所有点的距离都相等的集合。
求动点P在圆上的坐标,则需要满足P到圆心的距离等于圆的半径。
5. 平移和旋转的动点问题•问题:已知初始点的坐标和平移/旋转的规则,求平移/旋转后的动点坐标。
•解释:通过平移和旋转的规则,可以确定新点与初始点之间的位置关系。
根据这个关系,可以求得平移/旋转后的新点坐标。
6. 垂直/平行线段问题•问题:已知两个线段的坐标,判断其是否垂直或平行。
•解释:垂直线段的斜率之积为-1,平行线段的斜率相等。
通过求解两个线段的斜率,可以判断其是否垂直或平行。
7. 镜面对称点问题•问题:已知点关于某条直线的镜面对称点的坐标,求原点的坐标。
•解释:镜面对称点与原点关于某条直线对称。
通过已知的镜面对称点坐标,可以求得原点的坐标。
8. 解析几何计算问题•问题:已知一些点和计算公式,求解一些几何性质或计算结果。
•解释:解析几何通过坐标系和方程表达几何问题,通过已知条件和计算公式,可以求解一些几何性质或计算结果。
人教版七年级数学下册 7-1-2平面直角坐标系(同步练习)

第7章平面直角坐标系7.1平面直角坐标系-7.1.2平面直角坐标系班级:姓名:知识点1平面直角坐标系1.在直角坐标系中描出下列各点:A(-2,0),B(2,5),C(-52,-3).2.如图,写出平面直角坐标系中点A,B,C,D,E,F 的坐标.3.如图,在平面直角坐标系中:(1)描出下列各点:A(4,5),B(-2,3),C(-4,-1),D(5,-2);(2)写出平面直角坐标系中E,F,G,H,M,N点的坐标.知识点2平面直角坐标系中各象限内点的坐标特征4.在平面直角坐标系中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,下面的点在第一象限的是()A.(1,2)B.(-2,3)C.(0,0)D.(-3,-2)6.如图,小手盖住的点的坐标可能为()A.(5,2)B.(-6,3)C.(-4,-6)D.(3,-4)7.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)8.如果x y<0,那么Q(x,y)在()A.第四象限B.第二象限C.第一或三象限D.第二或四象限9.若点P(m,n)在第三象限,则点Q(-m,-n)在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,正方形ABCD 中点A和点C 的坐标分别为(-2,3)和(3,-2),则点B 和点D 的坐标分别为()A.(2,2)和(3,-3)B.(-2,-2)和(3,3)C.(-2,-2)和(-3,-3)D.(2,2)和(-3,-3)11.点P(-3,4)在第象限,到x 轴的距离是,到y 轴的距离是.知识点3坐标轴上点的坐标特征12.点B(-3,0)在()A.x 轴的正半轴上B.x 轴的负半轴上C.y 轴的正半轴上D.y轴的负半轴上13.若点P(x,y)的坐标满足xy=0,则点P的位置是()A.在x轴上B.在y轴上C.是坐标原点D.在x轴上或在y轴上14.若点P(a-2,2a+3)在y轴上,则a=,此时点P的坐标是;如果点P在x轴上,那么a=.综合点1非负数与点的坐标15.已知(a-2)2+|b+3|=0,则P(-a,-b)的坐标为()A.(2,3)B.(2,-3)C.(-2,3)D.(-2,-3)综合点2分类讨论16.到x轴距离为2,到y轴距离为3的点有几个?拓展点1坐标与面积计算17.在直角坐标系中,四边形ABCD的各个顶点的坐标分别是A(0,0),B(2,5),C(9,8),D(12,0),要确定这个四边形的面积,你是怎样做的?‘拓展点2规律性问题18.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A.(4,0)B.(5,0)C.(0,5)D.(5,5)19.如图,在平面直角坐标系中,从点P1(-1,0),P2(-1,-1),P3(1,-1),P4(1,1),P5(-2,1),P6(-2,-2),…依次扩展下去,则P2017的坐标为()A.(504,-504)B.(-504,504)C.(-504,503)D.(-505,504)第7章平面直角坐标系7.1平面直角坐标系-7.1.2平面直角坐标系答案与点拨1.如图所示.2.A(5,2),B(0,4),C(-3,3),D(-5,0),E(-3,-4),F(4,-3).3.(1)如图所示,先在x 轴上找出表示4的点,再在y 轴上找出表示5的点,过这两个点分别作x 轴和y 轴的垂线,两垂线的交点就是点A.用同样的方法可描出其他各点.(2)过象限内的点M 分别向x 轴,y 轴作垂线,垂足在x 轴的坐标是4,在y 轴的坐标是1,故M 点的坐标为(4,1),同样,可得E(2,0),F(0,-4),G(-2,2),H(1,-2),N(-3,-2).4.B(点拨:∵-2<0,3>0,∴(-2,3)在第二象限,故选B.)5.A(点拨:因为第一象限点的特征是:横坐标是正数,纵坐标也是正数,而各选项中符合横坐标为正,纵坐标也为正的只有A 中(1,2).故选A.)6.D(点拨:小手盖住的点在第四象限.)7.C(点拨:先依据题意可以判断该点在第二象限.)8.D(点拨:由xy<0可得,x,y 异号,故选D.)9.A(点拨:点P 在第三象限,故m,n 均小于0,而-m,-n 则都大于0,故选A.)10.B(点拨:B 点与A 点的横坐标相同,B 点与C 点的纵坐标相同,故B 点坐标为(-2,-2),同理可得D 点坐标为(3,3).)11.二43(点拨:点P(-3,4)在第二象限内,点P 到x 轴的距离是|4|=4,到y 轴的距离是|-3|=3.)12.B(点拨:x 轴上的所有点的纵坐标为0.)13.D(点拨:由xy=0可以得到,x=0或y=0,即该点横坐标或纵坐标为0,故选D.)14.2(0,7)-32(点拨:由点P(a-2,2a+3)在y 轴上得a-2=0,解得a=2,∴2a+3=7,此时点P 的坐标是(0,7);由点P(a-2,2a+3)在x 轴上得2a+3=0,解得a=-32.)15.C(点拨:由非负数的性质,可知a-2=0,b+3=0,故a=2,b=-3,则-a=-2,-b=3.)16.4个,它们分别是(3,2),(3,-2),(-3,2),(-3,-2).(点拨:在各象限内均有可能.)17.S四边形ABCD =12×8-2×3-12×2×5-12×3×7-12×3×8=62.5.四边形的面积等于长方形的面积减去一个小长方形和三个三角形的面积.18.B(点拨:跳蚤运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒、2秒、3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依次类推,到(5,0)用35秒.故第35秒时跳蚤所在位置的坐标是(5,0).故选B.)19.D(点拨:由规律可得,2017÷4=504…1,∴点P2017在第二象限,∵点P5(-2,1),点P9(-3,2),点P13(-4,3),∴点P2017(-505,504).)。
平面直角坐标系典型例题含答案

平面直角坐标系一、知识点复习1.有序数对:有顺序的两个数a 与b 组成的数对,记作),(b a 。
注意a 与b 的先后顺序对位置的影响。
2.平面直角坐标系(1)定义:在同一平面内画两条相互垂直并且原点重合的数轴,组成平面直角坐标系。
这个平面叫做坐标平面。
(2)平面直角坐标系中点的坐标:通常若平面直角坐标系中有一点A ,过点A 作横轴的垂线,垂足在横轴上的坐标为a ,过点A 作纵轴的垂线,垂足在纵轴上的坐标为b ,有序实数对),(b a 叫做点A 的坐标,其中a 叫横坐标,b 叫做纵坐标。
3.各象限内的点与坐标轴上的点的坐标特征:4. 特殊位置点的特殊坐标5.对称点的坐标特征:6.点到坐标轴的距离:点)P到X轴距离为y,到y轴的距离为x。
x,(y7.点的平移坐标变化规律:简单记为“左减右加,上加下减”二、典型例题讲解考点1:点的坐标与象限的关系1.在平面直角坐标系中,点P (-2,3)在第( )象限.A .一B .二C .三D .四2.若点)2,(-a a P 在第四象限,则a 的取值范围是( )A. 02<<-aB.20<<aC.2>aD.0<a3.在平面直角坐标系中,点P (-2,12+x )所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限考点2:点在坐标轴上的特点1.点)1,3(++m m P 在x 轴上,则P 点坐标为( )A .)2,0(- B.)0,2( C.)0,4( D.)4,0(-2.已知点)12,(-m m P 在y 轴上,则P 点的坐标是 。
3.若点P (x ,y )的坐标满足xy=0(x ≠y ),则点P 必在( )A .原点上B .x 轴上C .y 轴上D .x 轴上或y 轴上(除原点) 考点3:对称点的坐标1.平面直角坐标系中,与点)3,2(-关于原点中心对称的点是( )A.)2,3(-B.)2,3(-C.)3,2(-D.(2,3)2.已知点A 的坐标为(-2,3),点B 与点A 关于x 轴对称,点C 与点B 关于y 轴对称,则点C 关于x 轴对称的点的坐标为( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3)3.若坐标平面上点P (a ,1)与点Q (-4,b )关于x 轴对称,则( )A .a=4,b=-1B .a=-4,b=1C .a=-4,b=-1D .a=4,b=1考点4:点的平移1.已知点A (-2,4),将点A 往上平移2个单位长度,再往左平移3个单位长度得到点A ′,则点A ′的坐标是( )A .(-5,6)B .(1,2)C .(1,6)D .(-5,2)2.已知A (2,3),其关于x 轴的对称点是B ,B 关于y 轴对称点是C ,那么相当于将A 经过( )的平移到了C .A .向左平移4个单位,再向上平移6个单位B .向左平移4个单位,再向下平移6个单位C .向右平移4个单位,再向上平移6个单位D.向下平移6个单位,再向右平移4个单位3.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5考点6:平行于x轴或y轴的直线的特点1.如图,AD∥BC∥x轴,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同2.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.2 B.-4 C.-1 D.33.已知点M(-2,3),线段MN=3,且MN∥y轴,则点N的坐标是()A.(-2,0) B.(1,3)C.(1,3)或(-5,3) D.(-2,0)或(-2,6)考点7:角平分线的理解1.已知点A(3a+5,a-3)在二、四象限的角平分线上,则a= .考点8:特定条件下点的坐标1.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)考点9:面积的求法(割补法)1.(1)在平面直角坐标系中,描出下列3个点:A(-1,0),B(3,-1),C(4,3);( 2)顺次连接A,B,C,组成△ABC,求△ABC的面积.参考答案:(1)略(2)8.52.如图,在四边形ABCD中,A、B、C、D的四个点的坐标分别为(0,2)(1,0)(6,2)(2,4),求四边形ABCD的面积.3.在图中A(2,-4)、B(4,-3)、C(5,0),求四边形ABCO的面积.考点10:根据坐标或面积的特点求未知点的坐标1.已知A (a ,0)和B 点(0,10)两点,且AB 与坐标轴围成的三角形的面积等于20,则a 的值为( )A .2B .4C .0或4D .4或-42.如图,已知:)4,5(-A 、)2,2(--B 、)2,0(C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册平面直角坐标系典型例题
例1. 如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么
1大道1街2街3街4街5街6街
分析:图中确定点用前一个数表示大街,后一个数表示大道.
解:其他的路径可以是:
(3,5)→(4,5)→(4,4)→(5,4)→(5,3);
(3,5)→(4,5)→(4,4)→(4,3)→(5,3);
(3,5)→(3,4)→(4,4)→(5,4)→(5,3);
(3,5)→(3,4)→(4,4)→(4,3)→(5,3);
(3,5)→(3,4)→(3,3)→(4,3)→(5,3);
规律:明确数对的表示含义和格式,寻找规律确定路线.以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置.例2 .如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:
(1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?
(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?
(3)要确定每艘敌舰的位置,各需要几个数据?
北
敌方战舰A
分析:以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置.
例3. 写出如图1中A,B,C,D各点的坐标.
分析:平面直角坐标系中点的的坐标是由横坐标和纵坐标组成的一个有序数对,横坐标要写在前面.横坐标的确定方法是过点作横轴的垂线,垂足在横轴上所对应的数就是该点的横坐标;再过点作纵轴的垂线,垂足在纵轴上所对应的数就是该点的纵坐标.
因为A在横轴上对应的数是2,在纵轴上对应的数3,所以点A的坐标是(2,3),其它三点的坐标类似可以确定,分别是B(3,2),C(-2,1),D(-1,-2).
例4.一群小孩子在操场上手拉手地围成一圈,组成了一个优美的图案.小明站在旁边发现他们当中八个人恰好站在拐角处的A、B……、H点,而且建立某个坐标系后可测得这八个点的坐标分别是A(0,4),B(-1,1),C(-4,0),D(-1,-1),E(0,-4),F(1,-1),G(4,0),H(1,1).你知道这群孩子围成的图案是什么吗?请把它画出来.
分析:要知道由A、B……、H点围成的图案,只须在坐标系中描出这些点的位置,然后用折线把它们连结出来就可以知道其图形是如图2的图案.
例5. 指出下列各点所在的象限或坐标轴:
A(-2,3),B(1,-2),C(-1,-2),D(3,2),E(-3,0),F(0,1).分析:在第一、二、三、四象限内,点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-);在x轴正半轴上、负半轴,在y轴正半轴、负半轴上的点的坐标符号分别是(+,0)、(-,0)、(0,+)、(0,-),反之也成立.
因为点A的符号是(-,+),故点A在第二象限;因为点B的符号是(+,-),故点B在第四象限;因为点C的符号是(-,-),故点C在第三象限;因为点D的符号是(+,+),故点D在第一象限;因为点E的纵坐标为0,所以点E在x轴上;因为点F的横坐标为0,所以点F在纵轴上.
规律:在第一、二、三、四象限内,点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-);在x轴正半轴上、负半轴,在y轴正半轴、负半轴上的点的坐标符号分别是(+,0)、(-,0)、(0,+)、(0,-),反之也成立.
例6. 如图3所示的象棋盘上,若“帅”位于点(1,-2)上,“相”位于点(3,-2)上,则“炮”位于点()
(A)(-1,1).(B)(-1,2).(C)(-2,1).(D)(-2,2).
分析:要确定“炮”的位置,关键在于建立合适的直角坐标系,而所谓合适的坐标系就是指坐标原点、坐标轴的选择与建立要满足“帅” 和“相”所处位置的坐标,比如说原点显然不可能是“帅”的位置.从“帅”的坐标(1,-2)可知“帅”在第四象限,距离横轴2个单位,距离纵轴1个单位,这样,我们便可以建立起如图的坐标系,再根据如图的坐标系及“相”的坐标可知图中单位长度是每个小正方形的边长为一个单位长,因此可以顺利地确定出“炮”的位置是(-2,1),故选C。