(完整版)平面直角坐标系典型例题含答案
平面直角坐标系中三角形面积的求法(例题及对应练习)

例析平面直角坐标系中面积的求法我们常常会遇到在平面直角坐标系中求三角形面积的问题.解题时我们要注意其中的解题方法和解题技巧.现举例说明如下.一、有一边在坐标轴上例1 如图1,平面直角坐标系中,△ABC的顶点坐标分别为(-3,0),(0,3),(0,-1),你能求出三角形ABC的面积吗?分析:根据三个顶点的坐标特征可以看出,△ABC的边BC在y轴上,由图形可得BC=4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值3,然后根据三角形的面积公式求解.解:因为B(0,3),C(0,-1),所以BC=3-(-1)=4.因为A(-3,0),所以A点到y轴的距离,即BC边上的高为3,二、有一边与坐标轴平行例2 如图2,三角形ABC三个顶点的坐标分别为A(4,1),B(4,5),C(-1,2),求三角形ABC的面积.分析:由A(4,1),B(4,5)两点的横坐标相同,可知边AB与y 轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A,B两点的横坐标相同,所以边AB∥y轴,所以AB=5-1=4. 作AB边上的高CD,则D点的横坐标为4,所以CD=4-(-1)=5,所以=.三、三边均不与坐标轴平行例3 如图2,平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x 轴的直线交于点D、E,则四边形ADEC为梯形.因为A(-3,-1),B(1,3),C(2,-3),所以AD=4,CE=6,DB=4,BE=1,DE=5.所以=(AD+CE)×DE-AD×DB-CE×BE=×(4+6)×5-×4×4-×6×1=14.平面直角坐标系中的面积问题(提高篇)“割补法”的应用一、已知点的坐标,求图形的面积。
第1课时平面直角坐标系七年级数学下册考点知识清单+例题讲解+课后练习(人教版)(原卷版)

第1课时—平面直角坐标系(答案卷)知识点一:有序数对:1.有序数对的概念:由两个数a与b组成的数对。
记做。
2.有序数对的应用:利用有序数对可以表示物体的位置。
表示方法有:定位法;定位法;定位法;定位法。
【类型一:有序数对的理解】1.张明同学的座位位于第2列第5排,李丽同学的座位位于第4排第3列,若张明的座位用有序数对表示为(2,5),则李丽的座位用的有序数对表示为()A.(4、3)B.3,4C.(3,4)D.(4,3)2.如图是小唯关于诗歌《望洞庭》的书法展示,若“湖”的位置用有序数对(2,3)表示,那么“螺”的位置可以表示为()A.(5,8)B.(5,9)C.(8,5)D.(9,5)3.如图,在围棋棋盘上有3枚棋子,如果黑棋❶的位置用有序数对(0,﹣1)表示,黑棋❷的位置用有序数对(﹣3,0)表示,则白棋③的位置可用有序数对表示为()A.(2,1)B.(﹣1,2)C.(﹣2,1)D.(1,﹣2)【类型二:用有序数对表示位置】4.以下能够准确表示渠县地理位置的是()A.离达州市主城区73千米B.在四川省C.在重庆市北方D.东经106.9°,北纬30.8°5.下列不能确定点的位置的是()A.东经122°,北纬43.6°B.礼堂6排22号C.地下车库负二层D.港口南偏东60°方向上距港口10海里6.下列数据不能确定物体位置的是()A.某小区3单元406室B.南偏东30°C.淮海路125号D.东经121°、北纬35°7.嘉嘉乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的小艇A,B,C的位置如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇B相对于游船的位置可表示为(﹣60°,2),小艇C相对于游船的位置可表示为(0°,﹣1)(向东偏为正,向西偏为负),下列关于小艇A相对于游船的位置表示正确的是()A.小艇A(30°,3)B.小艇A(﹣30°,3)C.小艇A(30°,﹣3)D.小艇A(60°,3)8.如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2,90°),用方位角和距离可描述为:在点O正北方向,距离O点2个单位长度.下面是嘉嘉和琪琪用两种方式表示目标B,则判断正确的是()嘉嘉:目标B的位置为(3,210°);琪琪:目标B在点O的南偏西30°方向,距离O点3个单位长度.A.只有嘉嘉正确B.只有淇淇正确C.两人均正确D.两人均不正确知识点二:平面直角坐标系:1.平面直角坐标系的概念:如图:平面内,两条相互,且的数轴组成平面直角坐标系。
平面直角坐标系中三角形面积的求法(例题及对应练习)

.;.例析平面直角坐标系中面积的求法我们常常会遇到在平面直角坐标系中求三角形面积的问题.解题时我们要注意其中的解题方法和解题技巧.现举例说明如下.一、有一边在坐标轴上例1 如图1,平面直角坐标系中,△ABC的顶点坐标分别为(-3,0),(0,3),(0,-1),你能求出三角形ABC的面积吗?分析:根据三个顶点的坐标特征可以看出,△ABC的边BC在y轴上,由图形可得BC=4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值3,然后根据三角形的面积公式求解.解:因为B(0,3),C(0,-1),所以BC=3-(-1)=4.因为A(-3,0),所以A点到y轴的距离,即BC边上的高为3,二、有一边与坐标轴平行例2 如图2,三角形ABC三个顶点的坐标分别为A(4,1),B(4,5),C(-1,2),求三角形ABC的面积.分析:由A(4,1),B(4,5)两点的横坐标相同,可知边AB与y 轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A,B两点的横坐标相同,所以边AB∥y轴,所以AB=5-1=4. 作AB边上的高CD,则D点的横坐标为4,所以CD=4-(-1)=5,所以=.三、三边均不与坐标轴平行例3 如图2,平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x 轴的直线交于点D、E,则四边形ADEC为梯形.因为A(-3,-1),B(1,3),C(2,-3),所以AD=4,CE=6,DB=4,BE=1,DE=5.所以=(AD+CE)×DE-AD×DB-CE×BE=×(4+6)×5-×4×4-×6×1=14.平面直角坐标系中的面积问题(提高篇)“割补法”的应用一、已知点的坐标,求图形的面积。
平面直角坐标系中三角形面积的求法(例题及对应练习)

例析平面直角坐标系中面积的求法我们常常会遇到在平面直角坐标系中求三角形面积的问题.解题时我们要注意其中的解题方法和解题技巧.现举例说明如下.一、有一边在坐标轴上例1 如图1,平面直角坐标系中,△ABC的顶点坐标分别为(-3,0),(0,3),(0,-1),你能求出三角形ABC的面积吗?分析:根据三个顶点的坐标特征可以看出,△ABC的边BC在y轴上,由图形可得BC=4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值3,然后根据三角形的面积公式求解.解:因为B(0,3),C(0,-1),所以BC=3-(-1)=4.因为A(-3,0),所以A点到y轴的距离,即BC边上的高为3,二、有一边与坐标轴平行例2 如图2,三角形ABC三个顶点的坐标分别为A(4,1),B(4,5),C(-1,2),求三角形ABC的面积.分析:由A(4,1),B(4,5)两点的横坐标相同,可知边AB与y 轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A,B两点的横坐标相同,所以边AB∥y轴,所以AB=5-1=4. 作AB边上的高CD,则D点的横坐标为4,所以CD=4-(-1)=5,所以=.三、三边均不与坐标轴平行例3 如图2,平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x 轴的直线交于点D、E,则四边形ADEC为梯形.因为A(-3,-1),B(1,3),C(2,-3),所以AD=4,CE=6,DB=4,BE=1,DE=5.所以=(AD+CE)×DE-AD×DB-CE×BE=×(4+6)×5-×4×4-×6×1=14.平面直角坐标系中的面积问题(提高篇)“割补法”的应用一、已知点的坐标,求图形的面积。
(完整版)八年级数学《平面直角坐标系》经典例题

考点1:考点的坐标与象限的关系知识解析:各个象限的点的坐标符号特征如下:(特别值得注意的是,坐标轴上的点不属于任何象限.)1、在面直角坐标中,点M (-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 2、在平面直角坐标系中,点P (-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 3、若点P (a ,a -2)在第四象限,则a 的取值范围是( ).A .-2<a <0B .0<a <2C .a >2D .a <0 4、点P (m ,1)在第二象限内,则点Q (-m ,0)在( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上 5、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 6、在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 . 7、对任意实数x ,点2(2)P x x x -,一定不在..( ) A .第一象限B .第二象限C .第三象限D .第四象限8、如果a -b <0,且ab <0,那么点(a ,b)在( )A 、第一象限B 、第二象限C 、第三象限,D 、第四象限.考点2:点在坐标轴上的特点x 轴上的点纵坐标为0, y 轴上的点横坐标为0.坐标原点(0,0)1、点P (m+3,m+1)在x 轴上,则P 点坐标为( )A .(0,-2)B .(2,0)C .(4,0)D .(0,-4) 2、已知点P (m ,2m -1)在y 轴上,则P 点的坐标是 。
考点3:考对称点的坐标知识解析:1、关于x 轴对称: A (a ,b )关于x 轴对称的点的坐标为(a ,-b )。
2、关于y 轴对称: A (a ,b )关于y 轴对称的点的坐标为(-a , b )。
3、关于原点对称: A(a,b)关于原点对称的点的坐标为(-a,-b)。
八年级数学《平面直角坐标系》经典例题

八年级数学《平面直角坐标系》经典例题7、如图,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至11A B ,则a b+的值为( )A .2B .3C .4D .58、在平面直角坐标系中,已知点A (-4,0)、B (0,2),现将线段AB 向右平移,使A 与坐标原点O 重合,则B 平移后的坐标是 .9、以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是( ) A (3,3) B (5,3) C (3,5) D (5,5)10、在平面直角坐标系中,□ABCD 的顶点A 、B 、C 的坐标分别是(0,0)、(3,0)、(4,2)则顶点D 的坐标为( )A .(7,2) B. (5,4) C.(1,2) D. (2,1) 11、如图所示,在平面直角坐标系中,ABCD 的顶点A ,B ,D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是( )A .(3,7)B .(5,3)C .(7,3)D .(8,2)考点5:点到直线的距离点P (x,y )到x 轴,y 轴的距离分别为|y|和|x|,1、点M (-6,5)到x 轴的距离是_____,到y 轴的距离是______.2、已知点P (x ,y )在第四象限,且│x │=3,│y │=5,则点P 的坐标是( ) A .(-3,5) B .(5,-3) C .(3,-5) D .(-5,3)3、已知点P (m ,n )到x 轴的距离为3,到y 轴的距离等于5,则点P 的坐标是 。
4、已知点P 的坐标(2-a ,3a +6),且点P 到两坐标轴的距离相等,则点P 的坐标是 .考点6:平行于X 轴、Y 轴的直线的特点平行于x 轴的直线上点的纵坐标相同;平行于y 轴的直线上点的横坐标相同1、已知点A(1,2),AC ∥X 轴, AC=5,则点C 的坐标是 _____________.2、已知点A(1,2),AC ∥y 轴, AC=5,则点C 的坐标是_____________.)bx3、如果点A (),3a -,点B ()2,b 且AB//x 轴,则_______4、如果点A ()2,m ,点B (),6n -且AB//y 轴,则_______5、已知:A(1,2),B(x,y),AB ∥x 轴,且B 到y 轴距离为2,则点B 的坐标是 .6、已知长方形ABCD 中,AB=5,BC=8,并且AB ∥x 轴,若点A 的坐标为(-2,4),则点C 的坐标为__________________________.考点7:角平分线的理解第一、三象限角平分线的点横纵坐标相同(y=x ); 第二、四象限角平分线的点横纵坐标互为相反数(x+y=0)1、若点M 在第一、三象限的角平分线上,且点M 到x 轴的距离为2,则点M 的坐标是( ) A .(2,2) B .(-2,-2) C .(2,2)或(-2,-2) D .(2,-2)或(-2,2)2、在平面直角坐标系内,已知点(1-2a ,a-2)在第三象限的角平分线上,则a = ,点的坐标为 。
(完整版):平面直角坐标系经典例题解析

【平面直角坐标系重点考点例析】考点一:平面直角坐标系中点的特征例1在平面直角坐标系中,点P(m, m-2)在第一象限内,则m的取值范围是_________________ 思路分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围.解:由第一象限点的坐标的特点可得: 解得:m > 2.故答案为:m> 2.点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正.例1如果m是任意实数,则点P (m-4, m+1) 一定不在( )A. 第一象限B.第二象限C.第三象限D.第四象限思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解:T( m+1 - ( m-4) =m+1-m+4=5•••点P的纵坐标一定大于横坐标,•••第四象限的点的横坐标是正数,纵坐标是负数,•第四象限的点的横坐标一定大于纵坐标,•••点P一定不在第四象限.故选D.点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+, +);第二象限(-,+);第三象限(-,-);第四象限(+,-). 例2如图,矩形BCDE 的各边分别平行于x轴或y轴,物体甲和物体乙分别由点 A (2, 0) 同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是( )A . (2, 0)B . ( - 1 , 1) C. ( - 2, 1) D. (- 1,- 1)分析:禾U用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12X1,物体甲行的路程为12冷=4,物体乙行的路程为12烂=8,在BC边相遇;31②第二次相遇物体甲与物体乙行的路程和为 12X2,物体甲行的路程为12X2』=8,物体乙行 [3的路程为12X 2X =16,在DE 边相遇; ③第三次相遇物体甲与物体乙行的 路程和为12X 3,物体甲行的路程为 12X 3X1=12,物体乙3行的路程为12X 3X =24,在A 点相遇;3此时甲乙回到原出发点,则每相遇三次,两点回到出发点, •/ 2012- 3=670…2 ,故两个物体运动后的第 2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为故选:D .点评: 此题主要考查了行程问题中的相遇问题及按比例分配的运用, 通过计算发现规律就可以解决问题.例2如图,动点P 从(0, 3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时 反射角等于入射角,当点 P 第2013次碰到矩形的边时,点 P 的坐标为( )A. ( 1,4)B. (5, 0)C. (6, 4)D. (8, 3)思路分析:根据反射角与入射角的定义作出图形,可知每 6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.~解 如图,经过6次反弹后动点回到出发点( 0, 3),V 划 4/KJ 11321:;; !12S45678•/ 2013- 6=335…3,•••当点P 第2013次碰到矩形的边时为第 336个循环组的第3次反弹, 点P 的坐标为(8, 3). 故选D.点评:本题是对点的坐标的规律变化的考查了, 作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.对应训练 2.如图,在平面直角坐标系中, A (1, 1) , B (- 1, 1), C (- 1,- 2), D (1 , - 2).把 一条长为2012个单12 X 2 =16,在DE 边相遇; 此时相遇点的坐标为:(-1,-1),物体乙行的路程为位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A - B - C - D - A -…的规律紧绕在四边形 ABCD 的边上,则细线另一端所在位置的点 的坐标是()••• AB=1 -( - 1) =2 , BC=1 -( - 2) =3, CD=1 -( - 1) =2 , DA=1 -( - 2) =3 , •••绕四边形 ABCD 一周的细线长度为 2+3+2+3=10, 2012 - 10=201 …2 •细线另一端在绕四边形第 202圈的第2个单位长度的位置, 即点B 的位置,点的坐标为(-1, 1). 故选B .点评: 本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形 ABCD 一周的长度,从而确定2012个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题 的关键.例2如图,在平面直角坐标系 xOy 中,点P (-3, 5)关于y 轴的对称点的坐标为()A . (-3, -5)B . (3, 5)C . ( 3. -5)D . ( 5, -3)答:B考点二:函数的概念及函数自变量的取值范围例3在函数y中,自变量x 的取值范围是 ____________ .x思路分析:本题主要考查自变量的取值范围, 函数关系中主要有二次根式和分式两部分. 根据二次根式的意义,被开方数 X+1A0,根据分式有意义的条件, x 工0就可以求出自变量 x 的取值范围.解:根据题意得:x+1>0且x 工0 解得:X 二1且X M0 例3函数y= _3中自变量x 的取值范围是()x 1A. x > -3B. x >3C. x 》0 且 x MlD. x > -3 且 x ^l思路分析:根据被开方数大于等于 0,分母不等于0列式计算即可得解. 解:根据题意得,x+3>0且X-1M 0, 解得x > -3且x M 1. 故选D.点评:本题考查了函数自变量的范围,一般从三个方面考虑: (1 )当函数表达式是整式时,自变量可取全体实数;分析: 根据点的坐标求出四边形 ABCD 的周长,然后求出另一端是绕第几圈后的第几个 A . (1,- 1) B • ( - 1, 1) 单位长度,从而确定答案.解答:解:••• A (1 , 1), B (- 1, 1), C (- 1 , - 2), D (1,- 2),(2 )当函数表达式是分式时,考虑分式的分母不能为 (3)当函数表达式是二次根式时,被开方数非负. 对应训练 3.函数y ,2 中自变量x的取值范围是( )7x2A . x > -2B . x > 2C . x 乂2D . x >23. A考点三:函数图象的运用例4 一天晚饭后,小明陪妈妈从家里出去散步,如图描述了他们散步过程中离家的距离 S (米)与散步时间t (分)之间的函数关系,下面的描述符合他们散步情景的是( )A .从家出发,到了一家书店,看了一会儿书就回家了B .从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了 C .从家出发,一直散步(没有停留),然后回家了D .从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段, 后开始返回与x 轴平行后的函数图象表现为随时间的增多路程又在增加,由此即可作出判断. 解:A 、从家出发,到了一家书店,看了一会儿书就回家了,图象为梯形,错误;B 、从家出发,至厅一家书店,看了一会儿书,继续向前走了一段,然后回家了,描述不准 确,错误;C 、 从家出发,一直散步(没有停留) ,然后回家了,图形为上升和下降的两条折线,错误;D 、 从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段, 18分钟后开始返回从家出发,符合图象的特点,正确. 故选D .点评:考查了函数的图象,读懂图象是解决本题的关键.首先应理解函数图象的横轴和纵轴 表示的量,再根据函数图象用排除法判断.例5如图,Y ABCD 的边长为8,面积为32,四个全等的小平行四边形对称中心分别在 Y ABCD 的顶点上,它们的各边与 Y ABCD 的各边分别平行,且与 Y ABCD 相似.若小平 行四边形的一边长为 X ,且0V x <8阴影部分的面积的和为 y ,则y 与x 之间的函数关系的 大致图象是( )思路分析:根据平行四边形的中心对称性可知四块阴影部分的面正好等于一个小平行四边形0;18分钟味着有停留,而路程没有增加,意的面积,再根据相似多边形面积的比等于相似比的平方列式求出y与x之间的函数关系式, 然后根据二次函数图象解答.解:•••四个全等的小平行四边形对称中心分别在Y ABCD的顶点上,•••阴影部分的面积等于一个小平行四边形的面积,•••小平行四边形与Y ABCD相似,..._y_32x 2(8),整理得 1 2 y -x ,2又O v x<8纵观各选项,只有D选项图象符合y与x之间的函数关系的大致图象.故选D .点评:本题考查了动点问题的函数图象,根据平行四边形的对称性与相似多边形的面积的比等于相似比的平方求出y与x的函数关系是解题的关键.例8已知一个矩形纸片OACB,将该纸片放置在平"面直角坐标洗中,点 A (11, 0),点B (0, 6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B'和折痕OP.设BP=t.(I)如图①,当/ BOP=30时,求点P的坐标;(H)如图②,经过点P再次折叠纸片,使点C落在直线PB'上,得点C'和折痕PQ,若AQ=m , 试用含有t的式子表示m;(川)在(H)的条件下,当点C'恰好落在边OA上时,求点P的坐标(直接写出结果即可). 考点:翻折变换(折叠问题);坐标与图形性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.分析:(I)根据题意得,/ OBP=9O , OB=6,在Rt A OBP 中,由/ BOP=3O , BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(□)由厶OB P、△ QC P分别是由厶OBP、△ QCP折叠得到的,可知△ OB OBP ,△ QC QCP,易证得△ OBP s^ PCQ,然后由相似三角形的对应边成比例,即可求得答案;(川)首先过点P作PE丄OA于E,易证得△ PC C QA由勾股定理可求得C'Q的长,1 11然后利用相似三角形的对应边成比例与m= t2- t+6,即可求得t的值.6 6点评:此题考查了折叠的性质、矩形的性质以及相似三角形的判定与性质等知识. 此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.对应训练4. 甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s (米)与时间t (分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是()A .甲队率先到达终点B.甲队比乙队多走了200米路程C.乙队比甲队少用0.2分钟D •比赛中两队从出发到 2.2秒时间段,乙队的速度比甲队的速度快4•解:A 、由函数图象可知,甲走完全程需要 4分钟,乙走完全程需要 3.8分钟,乙队率先到达终点,本选项错误;B 、 由函数图象可知,甲、乙两队都走了1000米,路程相同,本选项错误;C 、 因为4-3.8=02分钟,所以,乙队比甲队少用 0.2分钟,本选项正确;D 、 根据0〜2.2分钟的时间段图象可知,甲队的速度比乙队的速度快,本选项错误; 故选C • 5. 如图,点A 、B 、C 、D 为O O 的四等分点,动点 P 从圆心O 出发,沿OC-CD-DO 的路线做匀速运动,设运动的时间为 t 秒,/ APB 的度数为y 度,则下列图象中表示 yCD上运动时,/ APB 不变,当P 在DO 上运动时,/ APB 逐渐增大,即可得出答案.解答: 解:当动点P 在OC 上运动时,/ APB 逐渐减小; 当P 在C D 上运动时,/ APB 不变; 当P 在DO 上运动时,/ APB 逐渐增大.故选C •点评:本题主要考查了动点问题的函数图象,用到的知识点是圆周角、圆内的角及 函数图象认识的问题.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所 需要的条件,结合实际意义画出正确的图象.(度)与t (秒)之间函数关系最恰当的是(考点:动点问题的函数图象•分析:根据动点 P 在OC 上运动时,/ APB 逐渐减小,当 P考点四:动点问题的函数图象例5如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE-ED-DC 运动到点C 时停止, 点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是 1cm/s .若P , Q 同时开始运动,设运动时间为t (s ), △ BPQ 的面积为y (cm ).已知y 与t 的函数图象如图2,则下列结论 错误的是()4 B.sin /EBC —52 2 C. 当 0 v t < 10 时,y= — t5D. 当t=12s 时,△ PBQ 是等腰三角形思路分析:由图2可知,在点(10, 40)至点(14, 40)区间,△ BPQ 的面积不变,因此可 推论(1 )在BE 段,BP=BQ 持续时间10s ,贝U BE=BC=10 y 是t 的二次函数; (2 )在ED 段, y=40是定值,持续时间 4s ,则ED=4; (3)在DC 段, y 持续减小直至为0, y 是t 的一次函数. 解:(1)结论A 正确.理由如下:分析函数图象可知, BC=10cm ED=4cm 故 AE=AD-ED=BC-ED=10-4=6cm如答图1所示,连接EC,过点E 作EF 丄BC 于点F ,11由函数图象可知, BC=BE=10cm BEC =40=— BC?EF= X 10X EF,2 2E F 8/• sin / EBC= =-BE 10(3)结论C 正确.理由如下: 如答图2所示,过点P 作PGLBQ 于点G,•/ BQ=BP=,AEA. 图1AE=6cmEF=8,(2)结论B 正确.理由如下:答圏2答郎1 1 1 4 2••• y=S^BPC= BQ?PG= BQ?BP?sinZ EBC= t?t? = t2.2 2 2 5 5(4)结论D错误.理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如答图3所示,连接NB, NC此时AN=8 ND=2由勾股定理求得:NB=S J2,NC=2j17 ,•/ BC=10,•••△ BCN不是等腰三角形,即此时厶PBQ不是等腰三角形.点评:本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC=BE=10cm。
七年级数学下册第七章平面直角坐标系经典大题例题

(名师选题)七年级数学下册第七章平面直角坐标系经典大题例题单选题1、如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为(1,3).若小丽的座位为(3,2),以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是()A.(1,3)B.(3,4)C.(4,2)D.(2,4)答案:C分析:根据小丽的座位坐标为(3,2),根据四个选项中的座位坐标,判断四个选项中与其相邻的座位,即可得出答案.解:∵只有(4,2)与(3,2)是相邻的,∴与小丽相邻且能比较方便地讨论交流的同学的座位是(4,2),故C正确.故选:C.小提示:本题主要考查了坐标确定位置,关键是根据有序数对表示点的位置,根据点的坐标确定位置.2、点P(a,b)在第二象限,若点P到x轴的距离是5,到y轴的距离是2,则点P的坐标为()A.(-2,5)B.(-5,2)C.(2,-5)D.(5,-2)答案:A分析:根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.解:∵点P(a,b)在第二象限内,点P到x轴的距离是5,到y轴的距离是2,∴点P的横坐标为a=−2,纵坐标为b=5,∴点P的坐标为(−2,5).故选:A.小提示:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.3、在平面直角坐标系xoy中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,,点A2的伴随点为A3,,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(2,4),点A2020的坐标为( )A.(-3,3)B.(-2,-2)C.(3,-1)D.(2,4)答案:C分析:根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2020除以4,根据商和余数的情况确定点A2020的坐标即可.∵A1(2,4),∴A2(-3,3),A3(-2,-2),A4(3,-1),A5(2,4),A6(-3,3),…,依此类推,每4个点为一个循环组依次循环,∵2020÷4=505,∴点A2020的坐标与A4的坐标相同,为(3,-1),故选:C.小提示:本题考查点的坐标规律,读懂题目信息,理解“伴随点”的定义,并求出每4个点为一个循环组依次循环是解题的关键.4、如果第二列第一行用有序数对(2,1)表示,那么数对(3,6)和(3,4)表示的位置是()A.同一行B.同一列C.同行同列D.不同行不同列答案:B分析:数对中第一个数字表示列数,第二个数字表示行数,据此可作出判断.解:第二列第一行用数对(2,1)表示,则数对(3,6)表示第三列,第六行,数对(3,4)表示表示第三列,第四行.所以数对(3,6)和(3,4)表示的位置是同一列不同行.故选:B.小提示:本题主要考查了坐标确定位置,一般用数对表示点位置的方法是第一个数字表示列,第二个数字表示行,也有例外,具体题要根据已知条件确定.5、在平面直角坐标系xOy中,对于点P(x,y)我们把点P(−y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(2,4),点A2022的坐标为()A.(−3,3)B.(−2,−2)C.(3,−1)D.(2,4)答案:A分析:据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2022除以4,根据商和余数的情况确定点A2022的坐标即可.观察发现:A1(2,4)、A2(−3,3)、A3(−2,−2)、A4(3,−1)、A5(2,4)、A6(−3,3)⋅⋅⋅依此类推,可以发现每4个点为一个循环组依次循环,∵2022÷4=505余2,∴点A2022的坐标与A2的坐标相同为(−3,3),故选:A.小提示:本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.6、如图,在平面直角坐标系xOy中,将四边形ABCD先向上平移,再向左平移得到四边形A1B1C1D1,已知A1(−3,5),B1(−4,3),A(3,3),则点B坐标为()A.(1,2)B.(2,1)C.(1,4)D.(4,1)答案:B解析:由题意得到点A的坐标变化规律,然后根据点A的变化规律反推可以由B1得到B的坐标.解:∵-3-3=-6,5-3=2,∴点A变到A1的过程中,横坐标加-6,纵坐标加2,∴由B1反推到B的过程,必须是横坐标加6,纵坐标加-2,∴-4+6=2,3-2=1,∴B点坐标为(2,1),故选B.小提示:本题考查平移的坐标变化,得到图形的平移规律是解题关键.7、家长会前,四个孩子分别向家长描述自己在班里的座位,在没有其他参考信息的情况下,家长能根据描述准确找到自己孩子座位的是()A.小强说他坐在第一排B.小明说他坐在第三列C.小刚说他的座位靠窗D.小青说她坐在第二排第五列答案:D分析:直接利用坐标确定位置需要两个量,进而分析得出答案解∶A、小强说他坐在第一排,无法确定座位位置,故此选项不符合题意;B、小明说他坐在第三列,无法确定座位位置,故此选项不符合题意;C、小刚说他的座位靠窗,无法确定座位位置,故此选项不符合题意;D、小青说她坐在第二排第五列,能准确确定座位位置,故此选项符合题意.故选:D小提示:本题主要考查了利用坐标确定位置.掌握具体位置的确定需两个量是解题关键.8、如图,在平面直角坐标系中,线段AB的两个端点是A(1,3),B(2,1),若点A的对应点A′的坐标为(﹣2,0),则点B的对应点B′的坐标为()A.(﹣3,2)B.(﹣1,﹣3)C.(﹣1,﹣2)D.(0,﹣2)答案:C分析:利用平移变换中对应点的平移方向和平移距离完全相同知:点A到点A′的坐标变化与点B到点B′的坐标变化完全相同得出结果.解:∵从点A(1,3)到点A′(-2,0),横坐标减3,纵坐标减3,点B的对应点B′的坐标为(2-3,1-3),即为(-1,-2).故选:C.小提示:本题考查点的平移变换,掌握对应点的坐标变换完全相同是解决问题的关键.9、如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),那么棋子“炮”的坐标为()A.(3,0)B.(3,1)C.(3,2)D.(2,2)答案:C分析:根据“车”的位置,向右平移2个单位,再向下平移3个单位得到坐标原点,建立平面直角坐标系,再根据“炮”的位置解答.解:由棋子“车”的坐标为(﹣2,3)、棋子“马”的坐标为(1,3),建立如图平面直角坐标系,原点为底边正中间的点,以底边为x轴,向右为正方向,以左右正中间的线为y 轴,向上为正方向;根据建立的坐标系可知,棋子“炮”的坐标为(3,2).故选:C.小提示:本题考查坐标确定位置,是基础考点,掌握相关知识是解题关键.10、如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0),第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2022分钟时,这个粒子所在位置的坐标是()A.(44,5)B.(44,2)C.(45,5)D.(45,2)答案:B分析:找出粒子运动规律和坐标之间的关系即可解题.解:由题知(0,0)表示粒子运动了0分钟,(1,1)表示粒子运动了2=1×2(分钟),将向左运动,(2,2)表示粒子运动了6=2×3(分钟),将向下运动,(3,3)表示粒子运动了12=3×4(分钟),将向左运动,…,于是会出现:(44,44)点粒子运动了44×45=1980(分钟),此时粒子将会向下运动,∴在第2022分钟时,粒子又向下移动了2022-1980=42个单位长度,∴粒子的位置为(44,2),故选:B.小提示:本题考查的是动点坐标问题,解题的关键是找出粒子的运动规律.填空题11、如图,A和B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则ab的值为________.答案:1分析:由图可得到点B的纵坐标是如何变化的,让A的纵坐标也做相应变化即可得到b的值;看点A的横坐标是如何变化的,让B的横坐标也做相应变化即可得到a的值,相加即可得到所求.解:由题意可知:a=0+(3−2)=1;b=0+(2−1)=1;∴ab=1,所以答案是:1.小提示:本题主要考查了坐标与图形变化—平移,熟知在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.12、在平面直角坐标系中,点A(−5,3)到y轴的距离为_______.答案:5分析:根据点到y轴的距离是横坐标的绝对值,可得答案.解:点A(-5,3)到y轴的距离是:|-5|=5.所以答案是:5.小提示:本题考查了点的坐标,正确掌握点的坐标特点是解决的关键.13、在平面直角坐标系中,第二象限内有一点M,点M到x轴的距离为5,到y轴的距离为4,则点M的坐标是______.答案:(-4,5)分析:根据点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,得到点M的横纵坐标可能的值,进而根据所在象限可得点M的具体坐标.解:设点M的坐标是(x,y).∵点M到x轴的距离为5,到y轴的距离为4,∴|y|=5,|x|=4.又∵点M在第二象限内,∴x=−4,y=5,∴点M的坐标为(−4,5),故答案是:(−4,5).小提示:本题考查了点的坐标,用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值;第二象限(−,+).14、将点P(m+2,2m+4)向右平移1个单位长度到点Q,且点Q恰好在y轴上,那么点Q的坐标是________.答案:(0,−2)分析:先根据平移方式表示出点Q的坐标,再根据y轴上点的特征解题即可.由题意,得点Q的坐标为(m+3,2m+4),∵点Q恰好在y轴上则m+3=0,解得m=−3,故2m+4=−2,点Q的坐标为(0,−2).所以答案是:(0,−2).小提示:本题主要考查点的平移及在y轴上点的特征,掌握点的平移规律及在y轴上点的特征是解题的关键.15、如图,在平面直角坐标系中,直线l交x轴于点A,交y轴于点A1,∠A1AO=45°,A2,A3,...在直线l上,点B1,B2,B3...在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,已知点A坐标是(-2,0),则点B n的横坐标为______.答案:2n+1−2##−2+2n+1分析:先求B1,B2,B3的坐标,探究规律后,根据规律即可解出答案.由题意得:OA=OA1=2∴OB1=OA1=2,B1B2=B1A2=4,B2A3=B2B3=8∴B1(2,0),B2(6,0),B3(14,0)∵2=22−2,6=23−2,14=24−2∴B n的横坐标为2n+1−2所以答案是:2n+1−2.小提示:本题考查了点的坐标和等腰直角三角形的性质等知识,利用知识点得出每个点的坐标,寻找出规律是解决问题的关键.解答题16、已知:如图△ABC的位置如图所示,(每个方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上).点A,B,C的坐标分别为(−1,−1),(5,−1),(1,4).(1)请在图中建立平面直角直角坐标系,平移△ABC使A,B,C的对应点分别为A′,B′,C′且点A的对应点A′坐标为(1,0),分别写出B′,C′两点的坐标并画出平移后的图形;(2)点P(m,n)是(1)中平面直角坐标系内的一点,点P随着△ABC一起平移,点P的对应点P′(n+2,4).求点P的坐标并求平移过程中线段PC扫过的面积.答案:(1)点B′,C′的坐标分别是(7,0),(3,5),见解析(2)点P的坐标为(3,3),P′(5,4),4分析:(1)根据A,B,C的坐标确定平面直角坐标系即可,判断出B′,C′的坐标,画出图形即可;(2)利用平移变换的性质求出m,n的值,画出图形可得结论.(1)解:∵点A(−1,−1)的对应点A′坐标为(1,0),∴点的坐标平移规律是:横坐标加2,纵坐标加1,∵B,C的坐标分别为(5,−1),(1,4)∴点B′,C′的坐标分别是(7,0),(3,5),平面直角坐标系如图所示:(2)解:∵点P(m,n)平移后落在P′(n+2,4),∴m+2=n+2,n+1=4,解得,m=n=3,∴点P的坐标为(3,3),P′(5,4),∵平移过程中线段PC扫过的图形是一个平行四边形,×2×1=4.它的面积=4×2−4×12即平移过程中线段PC扫过的面积为4.小提示:本题考查作图——平移变换,平行四边形的面积等知识,解题的关键是掌握平移变换的性质,学会用割补法求平行四边形面积.17、阅读材料:两点间的距离公式:如果平面直角坐标系内有两点A(x1,y1)、B(x2,y2),那么A、B两点的距离AB=√(x1−x2)2+(y1−y2)2,则AB2=(x1−x2)2+(y1−y2)2.例如:若点A(4,1),B(3,2),则AB=√(4−3)2+(1−2)2=√2,若点A(a,1),B(3,2),且AB=√2,则(√2)2=(a−3)2+(1−2)2.根据实数章节所学的开方运算即可求出满足条件的a的值.根据上面材料完成下列各题:(1)若点A(−2,3),B(1,2),则A、B两点间的距离是.(2)若点A(−2,3),点B在x轴上,且A、B两点间的距离是5,求B点坐标.答案:(1)√10(2)B(−6,0)或B(2,0)分析:(1)根据题目所给两点间的距离公式求解即可.(2)设B(m,n).根据点B的位置和题目所给点的两点间距离公式列出方程,再根据开方运算求解即可.(1)解:∵A(−2,3),B(1,2),∴AB=√(−2−1)2+(3−2)2=√10.所以答案是:√10.(2)解:设B(m,n).∵点B在x轴上,∴n=0.∴B(m,0).∵A(−2,3),且A、B两点间的距离是5,∴52=(−2−m)2+(3−0)2.整理得(−2−m)2=16.∵±√16=±4,∴−2−m=4或−2−m=−4.∴m=−6或m=2.∴B(−6,0)或B(2,0).小提示:本题考查平面直角坐标系中点的坐标,利用平方根解方程,实数的混合运算,正确理解题意是解题关键.18、对于平面直角坐标系中的图形M上的任意点P(x,y),给出如下定义:将点P(x,y)平移到P′(x+e,y−e)称为将点P进行“e型平移”,点P称为将点P进行“e型平移”的对应点;将图形M上的所有点进行“e型平移”称为将图形M进行“e型平移”例如,将点P(x,y)平移到P′(x+1,y−1)称为将点P进行“1型平移”.(1)已知点A(−1,2),B(2,3).将线段AB进行“1型平移”后得到对应线段A′B′.①画出线段A′B′,并直接写出A′,B′的坐标;②四边形ABB′A′的面积为________(平方单位);(2)若点A(2−a,a+1),B(a+1,a+2),将线段AB进行“2型平移”后得到对应线段A′B′,当四边形ABB′A′的面积为8平方单位,试确定a的值.答案:(1)①图见解析,A′(0,1),B′(3,2);②4(2)2分析:(1)①根据新定义将点A,B先向右平移1个单位再向下平移1个单位,得到A′,B′,连接A′B′,根据平移写出点的坐标即可,②根据四边形AA′B′B的面积=S△ABA′+S△AB′B,即可求解.(2)根据点坐标,构造大长方形CDEF,根据长方形的面积减去4个三角形的面积,根据坐标与图形求得C(2−a,a+2),D(a+3,a+2),E(a+3,a−1),F(2−a,a−1),进而根据新定义求得S△AA′F=S△B′BD=12×2×2=2,根据坐标系求得S△ABC=S△A′B′E=12×1×(2a−1)=a−12,根据四边形ABB′A′的面积为CF×CD−(S△AA′F+S△B′BD)−(S△ABC+S△A′B′E),四边形ABB′A′的面积为8平方单位建立方程,即可求解.(1)如图所示,A′(0,1),B′(3,2),②四边形AA′B′B的面积=S△ABA′+S△AB′B=12×4×1+12×4×1=4,(2)∵点A(2−a,a+1),B(a+1,a+2),将线段AB进行“2型平移”后得到对应线段A′B′,∴A′(2−a+2,a+1−2),B′(a+1+2,a+2−2),A′(4−a,a−1),B′(a+3,a),标注字母如图,则C(2−a,a+2),D(a+3,a+2),E(a+3,a−1),F(2−a,a−1),根据定义可知AF=A′F=2,BD=B′D=2,∴S△AA′F=S△B′BD=12×2×2=2,∵A(2−a,a+1),B(a+1,a+2),∴AC=a+2−(a+1)=1,BC=a+1−(2−a)=2a−1,∴S△ABC=S△A′B′E=12×1×(2a−1)=a−12,∴FC=AC+AF=1+2=3,CD=CB+BD=2a−1+2=2a+1,∴四边形ABB′A′的面积为CF×CD−(S△AA′F+S△B′BD)−(S△ABC+S△A′B′E)=3×(2a+1)−(2+2)−(a−12+a−12)=6a+3−4−2a+1 =4a,∵四边形ABB′A′的面积为8平方单位,∴4a=8,解得a=2.小提示:本题考查了新定义,平移的性质,坐标与图形,理解新定义是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系一、知识点复习1.有序数对:有顺序的两个数a 与b 组成的数对,记作),(b a 。
注意a 与b 的先后顺序对位置的影响。
2.平面直角坐标系(1)定义:在同一平面内画两条相互垂直并且原点重合的数轴,组成平面直角坐标系。
这个平面叫做坐标平面。
(2)平面直角坐标系中点的坐标:通常若平面直角坐标系中有一点A ,过点A 作横轴的垂线,垂足在横轴上的坐标为a ,过点A 作纵轴的垂线,垂足在纵轴上的坐标为b ,有序实数对),(b a 叫做点A 的坐标,其中a 叫横坐标,b 叫做纵坐标。
3.各象限内的点与坐标轴上的点的坐标特征:4. 特殊位置点的特殊坐标5.对称点的坐标特征:6.点到坐标轴的距离:点)P到X轴距离为y,到y轴的距离为x。
x,(y7.点的平移坐标变化规律:简单记为“左减右加,上加下减”二、典型例题讲解考点1:点的坐标与象限的关系1.在平面直角坐标系中,点P (-2,3)在第( )象限. A .一 B .二 C .三 D .四2.若点)2,(-a a P 在第四象限,则a 的取值范围是( )A. 02<<-aB.20<<aC.2>aD.0<a 3.在平面直角坐标系中,点P (-2,12+x )所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 考点2:点在坐标轴上的特点1.点)1,3(++m m P 在x 轴上,则P 点坐标为( ) A .)2,0(- B.)0,2( C.)0,4( D.)4,0(-2.已知点)12,(-m m P 在y 轴上,则P 点的坐标是 。
3.若点P (x ,y )的坐标满足xy=0(x ≠y ),则点P 必在( ) A .原点上 B .x 轴上 C .y 轴上 D .x 轴上或y 轴上(除原点) 考点3:对称点的坐标1.平面直角坐标系中,与点)3,2(-关于原点中心对称的点是( ) A.)2,3(- B.)2,3(- C.)3,2(- D.(2,3)2.已知点A 的坐标为(-2,3),点B 与点A 关于x 轴对称,点C 与点B 关于y 轴对称,则点C 关于x 轴对称的点的坐标为( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3) 3.若坐标平面上点P (a ,1)与点Q (-4,b )关于x 轴对称,则( ) A .a=4,b=-1 B .a=-4,b=1 C .a=-4,b=-1 D .a=4,b=1 考点4:点的平移1.已知点A (-2,4),将点A 往上平移2个单位长度,再往左平移3个单位长度得到点A ′,则点A ′的坐标是( )A .(-5,6)B .(1,2)C .(1,6)D .(-5,2)2.已知A (2,3),其关于x 轴的对称点是B ,B 关于y 轴对称点是C ,那么相当于将A 经过( )的平移到了C .A .向左平移4个单位,再向上平移6个单位B .向左平移4个单位,再向下平移6个单位C .向右平移4个单位,再向上平移6个单位D .向下平移6个单位,再向右平移4个单位3.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5考点5:点到坐标轴的距离考点6:平行于x轴或y轴的直线的特点1.如图,AD∥BC∥x轴,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同2.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.2 B.-4 C.-1 D.33.已知点M(-2,3),线段MN=3,且MN∥y轴,则点N的坐标是()A.(-2,0) B.(1,3)C.(1,3)或(-5,3) D.(-2,0)或(-2,6)考点7:角平分线的理解1.已知点A(3a+5,a-3)在二、四象限的角平分线上,则a= .考点8:特定条件下点的坐标1.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)考点9:面积的求法(割补法)1.(1)在平面直角坐标系中,描出下列3个点:A(-1,0),B(3,-1),C(4,3);( 2)顺次连接A,B,C,组成△ABC,求△ABC的面积.参考答案:(1)略(2)8.52.如图,在四边形ABCD中,A、B、C、D的四个点的坐标分别为(0,2)(1,0)(6,2)(2,4),求四边形ABCD的面积.3.在图中A(2,-4)、B(4,-3)、C(5,0),求四边形ABCO的面积.考点10:根据坐标或面积的特点求未知点的坐标1.已知A(a,0)和B点(0,10)两点,且AB与坐标轴围成的三角形的面积等于20,则a 的值为()A.2 B.4 C.0或4 D.4或-42.如图,已知:)4,5(-A、)2,2(--B、)2,0(C。
(1)求ABC∆的面积;(2)y轴上是否存在点P,使得PBC∆面积与ABC∆的面积相等,若存在求出P点的坐标,若不存在,请说明理由。
考点11:有规律的点的坐标1.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).2.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是.三、课后作业一.选择题1.下列各点中位于第四象限的点是()A.(3,4) B.(-3,4) C.(3,-4) D.(-3,-4)2.已知a>0,b<0,那么点P(a,b)在第()象限.A.一 B.二 C.三 D.四3.点)1,2M关于x轴对称的点的坐标是()(-A.)1,1(-,2(- D.)2,2- B.)1,2( C.)1(-4.若点A(3-m,n+2)关于原点的对称点B的坐标是(-3,2),则m,n的值为()A.m=-6,n=-4 B.m=O,n=-4 C.m=6,n=4 D.m=6,n=-45.若点P(x,y)的坐标满足xy=0,则点P的位置是()A.在x轴上 B.在y轴上 C.是坐标原点 D.在x轴上或在y轴上6.若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N的坐标是()A.(2,2) B.(-2,-2)C.(2,2)或(-2,-2) D.(-2,2)或(2,-2)7.点(2,3),(1,0),(0,-2),(0,0),(-3,2)中,不属于任何象限的有()A.1个 B.2个 C.3个 D.4个8.将△ABC的三个顶点的横坐标乘以-1,纵坐标不变,则所得图形()A.与原图形关于y轴对称 B.与原图形关于x轴对称C.与原图形关于原点对称 D.向x轴的负方向平移了一个单位9.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0) B.(﹣1,6) C.(﹣3,﹣6) D.(﹣1,0)10.若点P(a,-b)在第三象限,则M(ab,-a)应在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题11.已知点)12,mP在y轴上,则P点的坐标是。
m(-12.在如图所示的象棋盘上,若“将”位于点(1,-2)上,“象”位于点(3,-2)上,则“炮”位于点上。
13.在平面直角坐标系中,点A(-2,a),B(b,3),点A在点B的左边,已知AB=3,且AB ∥x轴,则a= ;b= 。
三、解答题14.已知点P(-3a-4,2+a),解答下列各题:(1)若点P在x轴上,则点P的坐标为;(2)若Q(5,8),且PQ∥y轴,则点P的坐标为;(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2018+2018的值.15.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A( , ),B( , );(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.四、典型例题讲解考点1:点的坐标与象限的关系2.在平面直角坐标系中,点P (-2,3)在第( )象限. B .一 B .二 C .三 D .四 参考答案:B2.若点)2,(-a a P 在第四象限,则a 的取值范围是( )B. 02<<-a B.20<<aC.2>aD.0<a 参考答案:B3.在平面直角坐标系中,点P (-2,12+x )所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 参考答案:B考点2:点在坐标轴上的特点1.点)1,3(++m m P 在x 轴上,则P 点坐标为( ) A .)2,0(- B.)0,2( C.)0,4( D.)4,0(- 参考答案:B2.已知点)12,(-m m P 在y 轴上,则P 点的坐标是 。
参考答案:)1,0(-3.若点P (x ,y )的坐标满足xy=0(x ≠y ),则点P 必在( ) A .原点上 B .x 轴上 C .y 轴上 D .x 轴上或y 轴上(除原点)参考答案:D考点3:对称点的坐标1.平面直角坐标系中,与点)3,2(-关于原点中心对称的点是( ) A.)2,3(- B.)2,3(- C.)3,2(- D.(2,3) 参考答案:C2.已知点A 的坐标为(-2,3),点B 与点A 关于x 轴对称,点C 与点B 关于y 轴对称,则点C 关于x 轴对称的点的坐标为( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3) 参考答案:C3.若坐标平面上点P (a ,1)与点Q (-4,b )关于x 轴对称,则( ) B .a=4,b=-1 B .a=-4,b=1 C .a=-4,b=-1 D .a=4,b=1 参考答案:C考点4:点的平移1.已知点A(-2,4),将点A往上平移2个单位长度,再往左平移3个单位长度得到点A′,则点A′的坐标是()A.(-5,6) B.(1,2) C.(1,6) D.(-5,2)参考答案:A2.已知A(2,3),其关于x轴的对称点是B,B关于y轴对称点是C,那么相当于将A经过()的平移到了C.A.向左平移4个单位,再向上平移6个单位B.向左平移4个单位,再向下平移6个单位C.向右平移4个单位,再向上平移6个单位D.向下平移6个单位,再向右平移4个单位参考答案:B3.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5参考答案:A考点5:点到坐标轴的距离考点6:平行于x轴或y轴的直线的特点1.如图,AD∥BC∥x轴,下列说法正确的是()B.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同参考答案:C2.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.2 B.-4 C.-1 D.3参考答案:C3.已知点M(-2,3),线段MN=3,且MN∥y轴,则点N的坐标是()A.(-2,0) B.(1,3)C.(1,3)或(-5,3) D.(-2,0)或(-2,6)参考答案:D考点7:角平分线的理解1.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)参考答案:A考点9:面积的求法(割补法)1.(1)在平面直角坐标系中,描出下列3个点:A(-1,0),B(3,-1),C(4,3);( 2)顺次连接A,B,C,组成△ABC,求△ABC的面积.参考答案:(1)略(2)8.52.如图,在四边形ABCD中,A、B、C、D的四个点的坐标分别为(0,2)(1,0)(6,2)(2,4),求四边形ABCD的面积.参考答案:123.在图中A(2,-4)、B(4,-3)、C(5,0),求四边形ABCO的面积.参考答案:12.5考点10:根据坐标或面积的特点求未知点的坐标1.已知A(a,0)和B点(0,10)两点,且AB与坐标轴围成的三角形的面积等于20,则a的值为()A.2 B.4 C.0或4 D.4或-4参考答案:D2.如图,已知:)4,5-B、)2,0(C。