一元二次方程经典难题

合集下载

一元二次方程难题

一元二次方程难题

一元二次方程难题一元二次方程的定义x,122(1) (2)=2x (3)kx-3x+=0 x,3,(x,1)(x,4)x以上3道方程是否为一元二次方程,并说明理由。

2m,1(4)已知方程。

当m为何值时是一元二次方程,求出此方,,m,1x,(m,3)x,1,0程的解,m为何值时是一元一次方程,关于整体思想22321、如果x,x,1,0,那么代数式3x,3x的值,代数式的值x,2x,7,2x,3x,1,02、已知x是一元二次方程的实数根,求代数式的x,35,x,,(2)值。

2x,x,x236配方法的应用31523x,x,,1、试用配方法证明:代数式的值不小于。

(提示什么时候最小值) 24122、你能用配方法求:当,为何值时,代数式有最大值,(提示什么时候,3x,6x,5最大值)42423、试证:不论当x为何值时,多项式的值总大于的值。

2x,4x,12x,2x,424、求证:对任何实数x,代数式的值-12x,3x,5永远是负数。

225、当x、y取何值时,代数式有最大值,最大值是多少, ,x,2y,2x,8y,5 2x,mx,366、当m= 时,是一个完全平方式。

关于两个未知数的问题x221、已知,求的值。

x,10xy,25y,0y2ab223a,ab,2b,0,求代数式,2、已知的值。

ba关于方程有相同的根22k若方程与方程有一个相同的根,求的值。

x,2,02y,3y,k,0关于新定义228.在实数范围内定义一种运算“※”,其规则为a※,b=ab,根据这个规则,求方程(x+2)※5=0的解试解关于的特殊方程: x2222x,2mx,m,n,0(1) (2) (a,b,c)x,2x2x,x,2,0(3)3数形结合222221、已知直角三角形的三边a、b、c,且两直角边满足等式a、b(+ab),2(a+b),15=0,求斜边c的值。

2、在等腰?ABC中,三边分别为a、b、c,其中a=5,若关于x的方程2 x,(b,2)x,6,b,0有两个相等的实数根,求?ABC周长。

中考数学培优 易错 难题(含解析)之一元二次方程含详细答案

中考数学培优 易错 难题(含解析)之一元二次方程含详细答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.2.已知关于x 的一元二次方程()220x m x m -++=(m 为常数) (1)求证:不论m 为何值,方程总有两个不相等的实数根;(2)若方程有一个根是2,求m 的值及方程的另一个根.【答案】(1)见解析;(2) 即m 的值为0,方程的另一个根为0.【解析】【分析】(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根;(2)设方程的另一个根为t ,利用根与系数的关系得到2+t=21m + ,2t=m,最终解出关于t 和m 的方程组即可.【详解】(1)证明:△=(m+2)2−4×1⋅m=m 2+4,∵无论m 为何值时m 2≥0,∴m 2+4≥4>0,即△>0,所以无论m 为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t ,()220x m x m -++=根据题意得2+t=21m + ,2t=m , 解得t=0,所以m=0,即m 的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t ,用根于系数关系列出方程组,在求解.3.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m【解析】【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--=解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.4.已知关于x的一元二次方程有两个实数x2+2x+a﹣2=0,有两个实数根x1,x2.(1)求实数a的取值范围;(2)若x12x22+4x1+4x2=1,求a的值.【答案】(1)a≤3;(2)a=﹣1.【解析】试题分析:(1)由根的个数,根据根的判别式可求出a的取值范围;(2)根据一元二次方程根与系数的关系,代换求值即可得到a的值.试题解析:(1)∵方程有两个实数根,∴△≥0,即22﹣4×1×(a﹣2)≥0,解得a≤3;(2)由题意可得x1+x2=﹣2,x1x2=a﹣2,∵x12x22+4x1+4x2=1,∴(a﹣2)2﹣8=1,解得a=5或a=﹣1,∵a≤3,∴a=﹣1.5.校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.【解析】【分析】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.6.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.【答案】(1)k=1;(2)证明见解析.【解析】【分析】(1)把x=1代入方程,即可求得k的值;(2)求出根的判别式是非负数即可.【详解】(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣(k﹣3)+3k=0,1﹣k﹣3+3k=0解得k=1;(2)证明:1,(3),3a b k c k==-+=24b ac∆=-∴△=(k+3)2﹣4•3k =(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键.7.今年以来猪肉价格不断走高,引起了民众与区政府的高度关注,当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至11月 10 日,猪排骨价格不断走高,11 月 10 日比年初价格上涨了 75%.今年 11 月 10 日某市民于 A 超市购买 5 千克猪排骨花费 350 元.(1)A 超市 11 月排骨的进货价为年初排骨售价的32倍,按 11 月 10 日价格出售,平均一天能销售出 100 千克,超市统计发现:若排骨的售价每千克下降 1 元,其日销售量就增加20千克,超市为了实现销售排骨每天有 1000 元的利润,为了尽可能让顾客优惠应该将排骨的售价定位为每千克多少元?(2)11 月 11 日,区政府决定投入储备猪肉并规定排骨在 11 月 10 日售价的基础上下调a%出售,A 超市按规定价出售一批储备排骨,该超市在非储备排骨的价格不变情况下,该天的两种猪排骨总销量比 11 月 10 日增加了a%,且储备排骨的销量占总销量的57,两种排骨销售的总金额比 11 月 10 日提高了128a %,求 a 的值. 【答案】(1)售价为每千克65元;(2)a =35.【解析】【分析】 (1)先根据题意计算出11月10的售价和11月的进货价,设每千克降价x 元,则每千克的利润为10-x 元,日销量为100+20x 千克,根据销量×单利润=总利润列出方程求解,并根据为了尽可能让顾客优惠,对所得的解筛选;(2)根据销售总金额=储备排骨销售单价×储备排骨销售数量+非储备排骨销售单价×非储备排骨销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)11月10日的售价为350÷5=70元/千克年初的售价为:350÷5÷175%=40元/千克,11月的进货价为: 340602元/千克设每千克降价x 元,则每千克的利润为70-60-x=10-x 元,日销量为100+20x 千克 则(10020)(10)1000x x ,解得10x =,25x =因为为了尽可能让顾客优惠,所以降价5元,则售价为每千克65元. (2)根据题意可得52170(1%)100(1%)70100(1%)701001%7728a a a a ⎛⎫-++⨯+=⨯+ ⎪⎝⎭解得135a =,20a =(舍去)所以a =35.【点睛】 本题考查一元二次方程的应用,(1)中理清销售量随着单价的变化而变化的数量关系是解题关键;(2)中在求解时有些难度,可先设令%a t =,解方程求出t 后再求a 的值.8.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.9. ∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m 吨(或水费是按y=1.7x 来计算的),五月份用水量超过m 吨(或水费是按来计算的) 则有151=1.7×80+(80-m )×即m 2-80m+1500=0解得m 1=30,m 2=50.又∵四月份用水量为35吨,m 1=30<35,∴m 1=30舍去.∴m=50【解析】10.我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答: (1)每千克茶叶应降价多少元?(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?【答案】(1)每千克茶叶应降价30元或80元;(2)该店应按原售价的8折出售.【解析】【分析】(1)设每千克茶叶应降价x 元,利用销售量×每件利润=41600元列出方程求解即可; (2)为了让利于顾客因此应下降价80元,求出此时的销售单价即可确定几折.【详解】(1)设每千克茶叶应降价x 元.根据题意,得:(400﹣x ﹣240)(200+10x ×40)=41600. 化简,得:x 2﹣10x +240=0.解得:x 1=30,x 2=80.答:每千克茶叶应降价30元或80元.(2)由(1)可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.此时,售价为:400﹣80=320(元),320100%80%400⨯=. 答:该店应按原售价的8折出售.【点睛】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.。

一元二次方程难题、易错题

一元二次方程难题、易错题

一元二次方程难题、易错题1.一元二次方程已知关于x的方程mx^2-3(m-1)x+2m-3=0,求证:m取任何实数时,方程总有实数根。

解析:根据一元二次方程的判别式,当判别式大于等于0时,方程有实数根。

将方程化简得到 mx^2-(3m-3)x+2m-3=0,判别式为 (3m-3)^2-8m(m-1) = m^2-2m+1 = (m-1)^2 ≥ 0,因此对于任何实数m,方程都有实数根。

已知关于x的一元二次方程ax^2+bx+1=0有两个相等的实数根,求ab^2-22(a-2)+b-4的值。

解析:由于方程有两个相等的实数根,根据一元二次方程的求根公式,可得到 b^2-4ac=0,即 b^2-4a=0.将b^2-4a代入ab^2-22(a-2)+b-4中,得到 ab^2-22(a-2)+b-4 = ab^2-22b+44+b-4 = ab^2-21b+40 = (ab-16)(b-5)。

因此,要求的值为(ab-16)(b-5)。

2.方程的实数根1)已知关于x的方程2x^2+kx-1=0,求证:方程有两个不相等的实数根。

解析:对于一元二次方程ax^2+bx+c=0,当判别式b^2-4ac>0时,方程有两个不相等的实数根。

将2x^2+kx-1=0的判别式代入得到k^2+8 ≥ 0,即对于任何实数k,方程都有两个不相等的实数根。

2)若方程2x^2+3x+1=0的一个根是-1,求另一个根及k 值。

解析:由于方程的一个根是-1,则另一个根为 -1/2.将-1和-1/2代入方程得到两个方程:2-3+k=0和4+3/2+k=0,解得k=-11/2.3.三角形形状已知a、b、c分别是△ABC的三边,其中a=1,c=4,且关于x的方程x^2-4x+b=0有两个相等的实数根,试判断△XXX的形状。

解析:根据三角形两边之和大于第三边的性质,可知bc,b+c>a,a+c>b,因此△ABC是一个等腰三角形。

一元二次方程经典难题

一元二次方程经典难题

1、已知关于x 的方程226250x x m m -+-+=的一个根为2,求另一个根及的值。

2、已12x x 、知是方程22340x x +-=的两个根,利用根与系数的关系,求42241212**x x x x +的值。

3、已知关于x 的方程22(1)10x m x m --++=的两根满足关系式121x x -=,求的值及方程的两个根4、已知关于的一元二次方程21(2)302x m x m +-+-= (1)求证:无论取什么实数值,这个方程总有两个不相等的实数根。

(2)若这个方程的两个实数根12x x 、满足122+=m+1x x ,求的值。

5、122+=m+1x x ,12+=m-2x x , 211*32x x m =-,求m 6、已知方程222(2)40x m x m +-++=有两个实数根,且两个根的平方和比两根的积大21,求的值。

7、已知关于的一元二次方程22(1)(1)10a x a x --++=两实根互为倒数,求a8、已知两数的和等于6,这两数的积是4,求这两数。

0、已知方程240x mx ++=和2(2)160x m x ---=一个相同的根,求的值及这个相同的根。

10,求23610x x -+-的最值11、已知a,b 是方程221140x x -+=的解,求22920a a b -+=的值12、关于x 的方程2(21)(1)0kx k x k -++-=,实数在什么范围取值时①有正的实数根?②同号?13、解不等式x 2+3x-10<0 14、已知关于的一元二次方程01x 1()122=++--)(a x a 两实根互为倒数,求a 15、已知a 、b 是方程0522=-+x x 的两个实数根,求22a ab a ++的值。

16、已知两方程和至少有一个相同的实数根,求这两个方程的四个实数根的乘积。

17、是否存在实数,使关于的方程9x 2-(4k-7)x+6k 2=0的两个实根x 1、x 2,满足123||2x x =,如果存在,试求出所有满足条件的k 的值,如果不存在,请说明理由。

一元二次方程的重难点及题型

一元二次方程的重难点及题型

一元二次方程的重难点及题型【重难点1 一元二次方程的概念】【方法点拨】解决此类问题掌握一元二次方程的定义是关键;等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。

【思路点拨】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【题型】①ax2+x+2=0,当a=0时,该方程属于一元一次方程,故错误;②3(x﹣9)2﹣(x+1)2=1、④(a2+a+1)x2﹣a=0符合一元二次方程的定义,故正确;③x+3=1/x属于分式方程,故错误;⑤√x+1=x﹣1属于无理方程,故错误;故选:B【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2。

【重难点2 一元二次方程的解】【方法点拨】一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解,解决此类问题,通常是将方程的根或解反代回去再进行求解.【思路点拨】把x=0代入方程(m﹣3)x²+3x+m²﹣9=0中,解关于m的一元二次方程,注意m的取值不能使原方程对二次项系数为0【题型】把x=0代入方程(m﹣3)x²+3x+m²﹣9=0中,得m²﹣9=0,解得m=﹣3或3,当m=3时,原方程二次项系数m﹣3=0,舍去,故选:B【点睛】本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了一元二次方程的概念【重难点3 用指定方法解一元二次方程】【方法点拨】解决此类问题需熟练掌握直接开方法、配方法、公式法、因式分解法的步骤【思路点拨】(1)方程变形后,利用平方根的定义开方即可求出解;(2)方程常数项移到右边,两边加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方即可求出解;(3)方程整理为一般形式,找出a,b,c的值,当根的判别式大于等于0时,代入求根公式即可求出解;(4)方程左边提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【点睛】此题考查了解一元二次方程﹣因式分解法,配方法,公式法,以及直接开平方法,熟练掌握各自解法是解本题的关键.【重难点4 一元二次方程根的判别式】【方法点拨】解决此类问题需熟练掌握根的判别式:当①b²-4ac>0时,方程有两个不相等的实数根;②b²-4ac=0时,方程有两个相等的实数根;③b²-4ac<0时,方程无实数根,反之亦成立.【思路点拨】(1)根据一元二次方程根的判别式列出不等式,结合一元二次方程的定义可得a的范围;(2)将a的值代入得出方程,解之可得.【题型】(1)由题意知△≥0,即4(a﹣1)²﹣4(a﹣2)(a+1)≥0,解得:a≤3,∴a≤3且a≠2;(2)由题意知a=3,则方程为x2﹣4x+4=0,解得:x1=x2=2.【点睛】本题考查的是根的判别式,熟知一元二次方程ax²+bx+c=0(a≠0)的根与△=b²﹣4ac的关系是解答此题的关键.【重难点5 一元二次方程根与系数的关系】【方法点拨】解决此类问题需熟练掌根与系数的关系,熟记两根之和与两根之积,并且能够灵活运用所学知识对代数式进行变形得到两根之和与两根之积的形式,代入即可求值.【思路点拨】(1)将所求的代数式进行变形处理:x₁²+x₂²=(x₁+x₂)²﹣2x₁x₂。

一元二次方程难题精选

一元二次方程难题精选

1,财政预计,三峡工程投资需2039亿元,由静态投资901亿元,贷款利息成本a 亿元,物价上涨价差(a +360)亿元三部分组成。

但事实上,因国家调整利率,使贷款利息减少了15.4%;因物价上涨幅度比预测要低,使物价上涨价差减少了18.7%。

2004年三峡电站发电量为392亿度,预计2006年的发电量为573亿度,这两年的发电量年平均增长率相同。

若年发电量按此幅度增长,到2008年全部机组投入发电时,当年的发电量刚好达到三峡电站设计的最高年发电量,以后每年发电量按最高发电量计算。

从2009年,将三峡电站和葛洲坝电站的发电收益全部用于返还三峡工程投资成本。

葛洲坝年发电量为270亿度,国家规定电站出售电价为0.25元/度。

(1)因利息调整和物价上涨幅度因素使三峡工程总投资减少多少亿元?(结果精确到1亿元)(2)大约到哪一年可以收回三峡工程的投资成本?3,已知方程()011996199419952=-∙-x x 的较大根是r ,0199519942=-+x x 的较小值是s ,求s r -的值。

1.随着城市人口的不断增加,美化城市、改善人们的居住环境,已成为城市建设的一项重要内容,•某城市到2006•年要将该城市的绿地面积在2004•年的基础上增加44%,同时,要求该城市到2006年人均绿地的占有量在2004年基础上增加21%,•为保证实验这个目标,这两年该城市人口的平均增长率应控制在多少以内?(精确1%)1.解:设2004年城市的人口总量为m ,绿地面积为n ,•这两年该城市人口的年平均增长率为x ,由题意,得2(144%)(1)n m x nm++=1+21%,整理,得(1+x )2=1.44 1.2,11.21 1.1x +=±. ∴x 1=21239%,1111x ≈=-(舍去).设m 为整数,且4<m<40,方程x 2-2(2m -3)x+4m 2-14m+8=0有两个整数根,求m 的值. 分析:由△=b 2-4ac ,得△=4(2m -3)2-4(4m 2-14m+8)=4(2m+1).∵方程有两个整数根,∴△=4(2m+1)是一个完全平方数,所以2m+1也是一个完全平方数.∵4<m<40,∴9<2m+1<81,∴2m+1=16,25,36或49,∵m 为整数,∴m=12或24.代入已知方程,得x=16,26或x=38,25.综上所述m 为12,或24.17.如图,在矩形ABCD 中,BC=20cm,P 、Q 、M 、N 分别从A 、B 、C 、D 出发沿AD 、BC 、CB 、DA 方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x ≠0),则AP=2xcm,CM=3xcm,DN=2x cm.(1)当x 为何值时,以PQ 、MN 为两边,以矩形的边(AD 或BC )得一部分为第三边构成一个三角形;(2)当x 为何值时,以P 、Q 、M 、N 为顶点的四边形是平行四边形;(3)以P 、Q 、M 、N 为顶点的四边形能否为等腰梯形?如果能,求出x的值。

一元二次方程中考经典题型

一元二次方程中考经典题型

一元二次方程是中考数学中的重要内容,以下是几个经典的中考题型:
1.已知一元二次方程x² - kx - 6 = 0 的两根分别是2 和3,则k 的值为多少?
解析:由求根公式可知,一元二次方程ax² + bx + c = 0 的两根分别为x1 = (-b + √(b² - 4ac)) / 2a 和x2 = (-b - √(b² - 4ac)) / 2a。

题目已知方程x² - kx - 6 = 0 的两根为2 和3,根据求根公式可得2 + 3 = k,即k = 5。

2. 若一元二次方程x² - x - a = 0 的两根之差为3,则a 的值为多少?
解析:根据题意,设该方程的两根为x1 和x2,则有x2 - x1 = 3。

根据求和公式可知,x1 + x2 = 1。

而根据一元二次方程的求根公式,x1 + x2 = 1/a。

将上述两个式子联立,可得1/a = 3,即a = 1/3。

3. 若一元二次方程x² - 5x + b = 0 的两根之比为2:3,则
b 的值为多少?
解析:根据题意,设该方程的两根为x1 和x2,则有x1/x2 = 2/3。

根据求根公式可知,x1 + x2 = 5,x1x2=b。

将x1/x2 = 2/3代入得x1=2x2/3,代入x1+x2得5=8x2/3,即x2=15/8。

代入x1/x2=2/3得x1=10/3。

于是b=x1x2=15/8*10/3=25/4。

中考数学中的一元二次方程考题形式多样,需要学生结合具体的知识点进行综合练习和思考,提高解题技能和水平。

一元二次方程经典考题难题

一元二次方程经典考题难题

一元二次方程经典考题难题一元二次方程经典考题难题1.用适当的方法解下列方程:4(x-5)^2=16$3x^2+5(2x+1)=0$x^2+22x-4=0$2x-1)^2=4(x+3)^2$12(2x+3)=4(2x+3)^2+9$2x^2+3(x+1)(2-x)-2(x-2)^2=0$x^2+3x+4)(x^2+3x+5)=6x$x(x^2-1)^2=9x(x+1)(x+3)(x+5)(x+7)=20$2.若$t$是一元二次方程$ax+bx+c\neq 0$的根,则判别式$\Delta=b^2-4ac$和完全平方式$M=(2at+b)^2$的关系式为$|\Delta|=M$。

3.已知关于$x$的一元二次方程$x+bx+c$的两根为$x_1=-1$,$x_2=2$,则$x+bx+c=(x+1)(x-2)$。

4.在实数范围内因式分解$x-4x-7=(x-7)(1-4)$。

5.已知$-\frac{4x}{4x+3}$,则$3x+12x-3=\frac{45x}{4x+3}$。

6.$4x+mx+m$是一个完全平方式,则$m=4$。

7.已知$a(x^2+1)=\left(x+\frac{1}{\sqrt{2}}\right)^2+m$,则$a=2$,$m=-\frac{1}{2}$。

8.当$k=3$时,方程$(k-3)x-2x+k+1=0$是关于$x$的一元二次方程。

9.关于$x$的方程$(m-16)x+(m+4)x+2m+3=0$,当$m=12$时是一元一次方程,当$m=20$时是一元二次方程。

10.已知$x-\frac{1}{x-1}=\frac{1}{2x+2009}$,则$-x+2x+2009=-2007$。

11.已知$(x+y)+(x+y)-12=0$,则$x+y=2$。

12.证明关于$x$的方程$(a-8)x^2+2ax+1=0$,无论$a$取何值,该方程都是一元二次方程。

13.已知关于$x$的一元二次方程$(k-1)x+2x-k-2k+3=0$的一个根为零,则$k=3$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、已知关于x 的方程226250x x m m -+-+=的一个根为2,求另一个根及
的值。

2、已12x x 、知是方程22340x x +-=的两个根,利用根与系数的关系,求
42241212**x x x x +的值。

3、已知关于x 的方程22(1)10x m x m --++=的两根满足关系式121x x -=,求的值
及方程的两个根
4、已知关于的一元二次方程21(2)302
x m x m +-+
-= (1)求证:无论取什么实数值,这个方程总有两个不相等的实数根。

(2)若这个方程的两个实数根12x x 、满足122+=m+1x x ,求
的值。

5、122+=m+1x x ,12+=m-2x x , 211*32x x m =
-,求m 6、已知方程222(2)40x m x m +-++=有两个实数根,且两个根的平方和比两根的积大
21,求的值。

7、已知关于的一元二次方程22(1)(1)10a x a x --++=两实根互为倒数,求a
8、已知两数的和等于6,这两数的积是4,求这两数。

0、已知方程240x mx ++=和2(2)160x m x ---=一个相同的根,求
的值及这个相同的根。

10,求23610x x -+-的最值
11、已知a,b 是方程221140x x -+=的解,
求2
2920a a b -+=的值
12、关于x 的方程2(21)(1)0kx k x k -++-=,实数在什么范围取值时①有正的实数根?②同号?
13、解不等式x 2+3x-10<0 14、已知关于的一元二次方程
01x 1()122=++--)(a x a 两实根互为倒数,求a 15、已知a 、b 是方程0522=-+x x 的两个实数根,求22a ab a ++的值。

16、已知两方程和至少有一个相同的实数根,求这两个方程的四个实数根的乘积。

17、是否存在实数,使关于的方程9x 2-(4k-7)x+6k 2=0的两个实根x 1、x 2,满足123||2x x =,如果存在,试求出所有满足条件的k 的值,如果不存在,请说明理由。

18、实数、分别满足方程19m 2+99m+1=0和19+99n+n 2=0,且mn ≠1求代数式n m mn 14++的值。

19、解方程x x 22310=+-。

相关文档
最新文档