相转移催化技术的原理及应用.doc
相转移催化原理和应用

高产率
PTC:季铵盐、冠醚、穴醚 RCOO- 进入有机相,亲核性增强!
例1:卢言菊,赵振东,陈玉湘,等. 相转移催化法合成 松香树脂酸烯丙酯工艺.化工进展,2009,28(7):12611265.
PTC:CTMAB,收率90.2%. 十六烷基三甲基溴化铵
例2:酯类香精羧酸苄酯的合成
RCOONa
+
(1)NaOH水溶液(50%~60%)/R4NX: 使pKa为22~25的底物去质子化。 如:醛、酮、酯、腈的α- H,酸性N-H、 ROH、ArOH、 端炔氢等
O NH O
N H
常见酸性N—H: 亚胺类:(C H ) NH
6 5 2
N N H N H N H N H
O
O NH O
酰亚胺: 腙:
R R'
7.9×105 2.9×104
* 萃取常数E R4N+(Pic-) = [R4N+Pic-]/{[R4N+]水· -]水},Pic为苦味酸根 [Pic
相转移催化剂:鎓盐类催化剂(2)
不同季铵盐由水相到1,2-二氯乙烷中的萃取常数 Q+BrN(n-C16H33)(CH3)3Br N(n-C15H31)(CH3)3Br N(n-C14H29)(CH3)3Br N(n-C12H25)(CH3)3Br Cn 19 18 17 13 logE 3.88 3.28 2.66 0.34 Q+BrN(n-C14H29)(C2H5)3Br N(n-C12H25)(C2H5)3Br N(n-C10H21)(C2H5)3Br N(n-C10H21)(n-C3H5)3Br N(n-C10H21)(n-C4H9)3Br Cn 20 18 16 19 22 logE 3.72 2.54 1.36 3.91 4.15
相转移催化剂的原理及应用

相转移催化剂的原理及应用1. 相转移催化剂的基本概念相转移催化剂(Phase Transfer Catalyst,简称PTC)是一种特殊的催化剂,其原理是通过在两相体系中传递离子以实现催化反应。
相转移催化剂通常是具有高度可溶性的季铵盐类化合物,能在两相体系中稳定存在,并能转移来自一个相中的离子到另一个相中,从而促进反应的进行。
2. 相转移催化剂的原理相转移催化剂的原理可以通过以下步骤来说明: - 第一步:相转移催化剂在两相体系中稳定存在,并能在有机相和水相之间快速传递离子。
- 第二步:催化剂从有机相中捕获亲核离子,如负离子,形成化学活性的复合物。
- 第三步:催化剂将活性复合物转移到水相中,使其转化为相应的中间产物。
- 第四步:中间产物在水相中进一步反应,形成最终产物。
- 第五步:催化剂在反应结束后重新回到有机相中,准备进行下一轮催化反应。
相转移催化剂通常通过离子对的形式催化反应,其中一个离子在有机相中,另一个离子在水相中。
该过程使得通常不相容的底物和反应条件能够同时存在,从而实现了一些特殊反应的高效催化。
3. 相转移催化剂的应用相转移催化剂在有机合成中具有广泛的应用。
以下是其中一些主要的应用领域:3.1 反应条件温和相转移催化剂通常能够在温和的反应条件下完成催化反应,如室温下或轻度加热下。
这样的反应条件对于一些温度敏感的底物很有利,能够避免产生副反应和底物失活。
3.2 反应底物选择性相转移催化剂常常能够实现一些传统催化剂无法实现的选择性合成。
通过调节催化剂的结构和反应条件,可以选择性地引发特定的反应途径,从而得到期望的产物。
3.3 应用于不相容溶剂中的反应一些有机反应需要在水相中进行,而底物和催化剂却是有机溶剂可溶的。
相转移催化剂的引入使得这些不相容溶剂中的反应得以顺利进行,提高了反应的效率和收率。
3.4 可控化学反应相转移催化剂在一些高附加值化学反应中发挥了重要作用。
通过合理选择催化剂和调节反应条件,能够实现反应速率的可控和产物分布的选择性。
相转移催化在有机合成中的应用

相转移催化在有机合成中的应用相转移催化是一种常用于有机合成中的重要方法,它能够提高反应速率、改善反应选择性,并减少副反应的生成。
本文将介绍相转移催化在有机合成中的应用,并探讨其原理和优势。
一、相转移催化的原理和优势相转移催化是一种在两相体系中进行的催化反应。
它的基本原理是通过添加相转移剂,将两相中的底物和催化剂有效地转移至反应中心,从而实现反应的进行。
相转移剂通常是一种能够在有机溶剂和水之间形成可溶性离子对的化合物,如季铵盐、季磷盐等。
相转移催化的优势主要体现在以下几个方面:1. 扩大反应底物范围:相转移催化可以使底物在两相体系中均匀分布,从而扩大了反应底物的范围。
许多对水敏感的有机底物,在传统的有机反应中往往无法使用,但在相转移催化条件下,可以通过选择合适的相转移剂来实现反应。
2. 提高反应速率:相转移催化使底物和催化剂之间的质量传递更加快速,从而提高了反应速率。
相比传统的有机反应,相转移催化可以在更温和的条件下进行,从而减少能量消耗和废物产生。
3. 改善反应选择性:相转移催化可以通过调节相转移剂的类型和用量来控制反应的选择性。
相转移剂可以形成离子对,使底物和催化剂之间形成亲疏水性相互作用,从而选择性地催化特定的反应。
相转移催化在有机合成中有广泛的应用,以下将介绍其中几个典型的应用。
1. 酯化反应:酯化反应是有机合成中常见的反应之一。
在传统的酯化反应中,常使用酸性催化剂,但这种反应条件下往往伴随着副反应的生成。
相转移催化可以通过选择合适的相转移剂和催化剂,实现高效、选择性的酯化反应。
2. 羧化反应:羧化反应是合成羧酸的重要方法。
传统的羧化反应常需要高温和高压条件下进行,反应速率较慢,且伴随着副反应的生成。
相转移催化可以在温和条件下实现羧化反应,提高反应速率和选择性。
3. 氨化反应:氨化反应是合成胺类化合物的常用方法。
传统的氨化反应往往需要高温和高压条件下进行,且反应速率较慢。
相转移催化可以在温和条件下实现氨化反应,并提高反应速率和产率。
相转移催化在药物合成中的应用

普罗帕酮,为广谱高效膜抑制性抗心律 失常药。能降低心肌兴奋性,延长动作电位 时程及有效不应期,延长传导。
适用于预防或治疗室性或室上性异位搏 动,室性或室上性心动过速,预激综合征, 电转复律后室颤发作等。经临床试用,疗效 确切,起效迅速,作用时间持久,对冠心病、 高血压所引起的心律失
首先是催化剂与悲催化的阴离子形成离子 对Q+CN-的平衡过程
其次是形成的离子对转移到有机相的平衡 过程
最后是有机相的卤代烷反应生成Q+CN-和催 化剂鎓盐。
常用的相转移催化剂很多,主要包括:
季铵盐类,如BTEAC(氯化苄基三乙铵)、 DMAP(4-N,N-二甲基氨基吡啶)、TBAB (四丁基溴化铵)CTMAB(十六烷基三甲基 溴化铵)
重排
O
CH3
PhOH
PEG2Байду номын сангаас0 相转移催化
CH3 OH
O
NaOH
CaCl 成盐
O
O
CH3
CH3
O
OH
Ca·H2O
O
2
局部抗真菌药硝酸芬替康唑 (fenticonazole nitrate)合成时以二甲 基亚砜为溶剂,在无水无氧条件下,以NaH 为催化剂,所得产物利用硅胶柱分离,最 终收率不超过60%。
1、烃基化反应(取代反应)
在碱性介质中进行的取代反应,用于不 用相转移催化剂反应的收率、反应条件相 差很大。
如扑炎痛(benorilate)的制备中的关键 步骤——成酯反应(O-烃基化反应),利 用PEG100作为相转移催化剂,反应条件温 和,产品纯度较高,易于处理而且产率也大 幅度增加。
相转移催化技术在药物合成中的应用

二、相转移催化剂
1.相转移催化剂的要求 . 具备形成离子对的条件;或者能与反应物 形成复合离子。 有足够的碳原子,以便形成的离子对具 有亲有机溶剂的能力。 R的结构位阻应尽可能小,R基为直链居 多 稳定并便于回收
2.常用的相转移催化剂 . 鎓盐类、冠醚和非环多醚三大类 (1)鎓盐类: 中心原子、中心原子上的取 代基和负离子三部分组成。价廉,毒性 小,应用广泛,其中季铵盐(R4N+X—) 应用最广
CHO OH (CH3)2SO 4 OCH3
40%NaOH/PhH TEBA
CHO OCH3 NaOSO2OCH3 H2O OCH3
需要指出:
在相转移反应中,使用碘代烷效果不好 在相转移反应中,
①碘代烷价格高; ②碘离子在非极性溶剂中与季铵盐阳离 子选择性地形成离子对,妨碍了生成铵 的醇盐,结果使反应变慢或停止。
第八章 相转移催化技术在 药物合成中的应用
制药工程教研室 李丽娟
工作任务: 工作任务
相转移催化技术合成药物及中间体 采用相转移催化技术 相转移催化技术
学习目标: 学习目标
1.了解相转移催化反应的原理 2.熟悉常用相转移催化剂、影响相转移催化 反应的主要因素 3.掌握典型 典型相转移催化技术的操作方法 典型 4.了解相转移催化技术在科研与生产中的应 用与发展。
一、相转移催化的原理
C 8 H 17 C l
有机相
N aC N
水相
C 8 H 17 C N
有机相
N aC l
水相
1
C8H17X
Q CN
1
C8H17CN
Q X
有机相 相界面
NaX
Q CN
NaCN
Q X
水相
相转移催化剂的应用原理

相转移催化剂的应用原理1. 相转移催化剂的定义相转移催化剂是指具有两种不相溶相(比如有机相和水相)之间可转移的反应物催化剂。
它们能够在两相界面之间催化反应,并且能够通过改变界面的性质来促进反应进程。
2. 相转移催化剂的类型2.1 相转移催化剂的基本分类- 相转移催化剂可分为两类:水相转移催化剂(Phase Transfer Catalyst, PTC)和有机相转移催化剂(Liquid-Liquid Phase Transfer Catalyst, LLPTC)。
- 水相转移催化剂的特点是在水相中活化反应物,并促进反应物进入有机相中进行反应。
- 有机相转移催化剂也被称为双相催化剂,可以在有机相中形成催化反应的临界微环境。
2.2 相转移催化剂的具体分类相转移催化剂可以根据催化机理的不同进一步分类,包括:- 表面活性剂型催化剂:如季铵盐类、硫酸亚铁、碘和多巴酸铵等。
- 配位性催化剂:如一些过渡金属离子和有机配体组成的络合物等。
- 键键相转移催化剂:如它们通过共价键与反应物发生作用,然后通过非共价成键与另一个相中的反应物发生作用的催化剂。
3. 相转移催化剂的应用原理3.1 反应物的传递相转移催化剂通过调控界面的性质来促进反应物的传递,并降低反应的活化能。
它们能够将水溶性的反应物转移至有机相,或者将有机溶剂中的反应物转移到水相。
这种转移过程可以降低反应物之间的扩散阻力,提高反应的效率。
3.2 反应物的激活在相转移催化剂的作用下,反应物可以在界面处经历激活过程。
水相转移催化剂通常通过阴离子或阳离子的形式激活反应物,使其更易于反应。
有机相转移催化剂则通过形成络合物或其他非共价键的方式激活反应物。
3.3 反应物的选择性相转移催化剂的选择性主要取决于其结构和配体的性质。
不同的催化剂对于不同的反应物具有不同的选择性。
通过合理选择催化剂,可以实现对于特定反应物的高选择性催化作用。
3.4 反应物的回收相转移催化剂能够促进反应的进行,并确保反应物在两相中的传递。
相转移催化

相转移催化相转移催化是一种重要的催化反应,它在有机合成、材料科学、环境保护等领域都有广泛的应用。
相转移催化的基本原理是利用水溶性的催化剂在有机相和水相之间传递电子或离子,从而促进反应的进行。
本文将从相转移催化的基本原理、应用领域和发展趋势等方面进行探讨。
相转移催化是一种特殊的催化反应,它的基本原理是利用水溶性的催化剂在有机相和水相之间传递电子或离子,从而促进反应的进行。
相转移催化的反应机理可以分为两种类型:一种是离子型相转移催化,另一种是电子型相转移催化。
离子型相转移催化是指催化剂在有机相和水相之间传递离子,从而促进反应的进行。
这种催化反应通常需要使用季铵盐、季磺酸盐等离子型催化剂。
例如,季铵盐可以在有机相中形成季铵离子,然后通过水相中的反应物与季铵离子发生反应,从而促进反应的进行。
电子型相转移催化是指催化剂在有机相和水相之间传递电子,从而促进反应的进行。
这种催化反应通常需要使用钯、铑等过渡金属催化剂。
例如,钯催化剂可以在有机相中形成钯配合物,然后通过水相中的反应物与钯配合物发生反应,从而促进反应的进行。
二、相转移催化的应用领域相转移催化在有机合成、材料科学、环境保护等领域都有广泛的应用。
1. 有机合成相转移催化在有机合成中有着广泛的应用,可以用于合成各种有机化合物,如酯、醚、酰胺、酰化反应等。
相转移催化可以提高反应的速率和选择性,同时还可以减少催化剂的用量和废弃物的产生,具有很高的经济效益和环保效益。
2. 材料科学相转移催化在材料科学中也有着广泛的应用,可以用于合成各种材料,如金属有机框架材料、纳米材料、多孔材料等。
相转移催化可以控制反应的速率和选择性,同时还可以控制材料的形貌和结构,具有很高的研究价值和应用前景。
3. 环境保护相转移催化在环境保护中也有着广泛的应用,可以用于处理各种废水和废气,如有机废水、重金属废水、有机废气等。
相转移催化可以降低废水和废气中有害物质的含量,同时还可以提高废水和废气的处理效率,具有很高的环保效益和社会效益。
2.14.4 相转移催化技术

相转移催化(Phase transfer catalysis ,简称FTC)),是20 世纪70 年代发展起来的在有机合成中应用日趋广泛的一种新的合成技术。
在有机合成中,常常遇到水溶性的无机物和不溶于水的有机物之间的非均相反应,这类反应通常速度慢、产率低,甚至很难进行。
但如果用水溶解无机盐,用极性小的有机溶剂溶解有机物,并加入催化量的季铵盐或季磷盐,此时催化剂利用自身对有机溶剂的亲和性,将水相中的反应物转移到有机相中,转化为均相反应,则反应很容易进行。
这类能提高反应速度并在两相间转移负离子的鎓盐,称为相转移催化剂。
相转移催化使许多用传统方法很难进行的反应或者不能发生的反应能顺利进行,而且具有选择性好、条件温和、产率高、操作简单、反应速度快、不要求无水操作、避免使用常规方法所需的危险试剂等优点。
相转移催化最初用于亲核取代反应,如引进一CN 和一F 的亲核取代、二氯卡宾的生成反应等。
目前,相转移催化已广泛应用于有机反应的绝大多数领域,如取代反应、氧化反应、还原反应、卡宾反应、重氮化反应、烷基化反应、酰基化反应、聚合反应,甚至高聚物修饰等,同时在医药、农药、香料、造纸、制革等行业也得到了广泛应用。
2.14.4.1 相转移催化机理相转移催化反应一般属于两相反应,主要用于液—液体系,也可用于液—固体系及液—固—液体系。
反应过程主要包括反应物从一相向另一相的转移以及被转移物质与待反应物质所发生的化学反应。
下面以季铵盐Q +X -催化RX 和NaCN 的反应为例说明相转移催化原理:R X NaCN+Q X+-(PTC)2RCN NaX +R X NaCN +Q X+-RCN+Q CN+-NaX ++Q CN+-Q X+-水相有机 相相 界面溶于水相的亲核试剂NaCN 和有机相的卤代烷RX 两者由于处于不同的相中而不能互相接近,反应很难进行。
加入季铵盐Q +X -相转移催化剂,由于季铵盐既溶于水又溶于有机溶剂,在水相中NaCN 与Q +X -相接触时,可以发生X -与CN -的交换反应生成Q +CN -离子对,这个离子对能够转移到有机相中;在有机相中Q +CN -与RX 发生亲核取代反应,生成目标产物RCN ,同时生成Q +X -,Q +X -再转移到水相,如此循环使相转移催化反应完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相转移催化技术的原理及应用
相转移催化原理及应用:介绍了相转移催化的基本原理,并分别讨论了液-液相转移催化、固-液相转移催化和三相催化的特点。
着重介绍了近年来相转移催化技术在制药工业和化学工业中的应用进展。
该相转移催化技术具有操作简单、反应条件温和、收率高、质量好等优点,对工业生产改进工艺技术、降低生产成本具有重要的现实意义。
关键词:
相转移催化技术、原理、制药工业、化学工业及应用进展相转移催化反应(简称PTC反应)是XXXX几年来发展起来的一种新的非均相反应理论和方法。
它能顺利进行传统方法难以实现的多相反应,加快反应速度,降低反应温度,改变反应的选择性,抑制副反应的发生。
同时,相转移催化反应不需要使用昂贵的无水溶剂或非质子溶剂,对碱的要求低,可以使用碱金属和碱土金属氧化物的水溶液。
因此,该技术的研究和应用发展迅速。
目前,相转移催化技术已应用于化学合成的大部分领域,涉及医药、农药、香料、造纸、化工、制革、高分子材料等重要领域。
1.相转移催化反应的原理虽然相转移催化反应涉及的化学反应种类很多,但可以分为三类:液-液相转移催化、固-液相转移催化和三相催化。
1.1固-液相转移催化在固-液相转移催化反应中,广泛使用的络合剂有冠醚、穴醚和聚乙二醇,其中价格低廉的聚乙二醇等两亲性化合物在工业上应用广泛。
聚乙二醇是一种常见的螺旋结构化工产品。
其催化机理类似于冠醚等。
它们都是通过氧原子与金属阳离子的络合将活性阴离子带入有机相,从而达到相转移催化的目的。
聚乙二醇是理想的冠醚替代品,因为它可以形成类似冠醚的环,并且不受孔大小的限制。
1.2液-液相转移催化液-液相转移催化反应在不混溶的两相体系中进行。
一个相(通常是水相)是作为亲核试剂的碱或盐,另一个相是有机相,它包含与上述盐反应的反应物。
加入相转移催化剂后,这些物质中的阳离子是亲脂性的,可溶于水相和油相中。
当遇到分布在水相中的盐时,水相中多余的阴离子与相转移催化剂中的阴离子交换。
因此,正常相转移催化反应过程包括至少两个步骤:一种反应物从当前相转移到另一相;
转移的反应物与未转移的反应物反应。
在相转移催化机理中,亲核取代发生在有机相中,并且是控制步骤。
1.3三相催化为了解决相转移催化剂回收困难和价格昂贵的问题,近年来发展了一种新的相转移催化方法:三相催化反应。
相转移催化剂连接到聚合物载体上。
它是一种固体聚合物,不溶于水,也不溶于有机相,因此被称为三相催化剂,也称为聚合物催化剂。
该方法的突出优点是催化剂可以定量回收,干燥后活性不受影响,可以重复使用。
因此,这一领域的研究开发时间不长,但发展迅
速,积累了大量的理论和实践经验。
选择和应用负载型催化剂时,应考虑以下问题(1)三相催化剂颗粒:颗粒的尺寸小,活性大,但颗粒太小,无法过滤,后处理困难。
选择100-150目更合适。
(
2.相转移催化技术的应用2.1相转移催化技术在化学工业中的应用随着化学工业的发展,相转移催化反应技术近年来获得了足够的发展空间。
相转移催化反应在有机化学的制备中发挥了重要作用。
省略的部分——如:加成、消除、重排、酰化、酯化、偶合、聚合物聚合、有机金属化合物和有机磷的制备等。
都显示出他们独特的优势。
虽然对各种反应的研究还处于起步阶段,但已经突破了亲核反应的范畴,形成了一个比较完整的催化体系。
2.2相转移催化技术在药物合成中的应用相转移催化在制药工业中的应用[4]可以达到简化操作、提高收率等目的。
并且可以用便宜的材料代替昂贵的材料。
这可以很好地改进工艺技术,对于提高药物合成的收率,降低成本,最终提高市场竞争力具有非常重要的现实意义。
2.2.1抗炎镇痛药替尼达普(tenidap),化学名为5-氯-3- (2-噻吩基)-2-氧吲哚-1-氧酰胺,商品名为Enablex,临床上用于治疗类风湿性关节炎[5]。
其中,中间体5-氯-2,3-二氢吲哚-2-酮是通过还原5-氯-2,3-二氢2-氧吲哚制备的。
该反应是逐步进行的,操作复杂,产率为54%。
沈永胜等人使用聚乙二醇- 400作为相转移催化剂,一步完成,产率为63。
8%。
2.2.2抗菌增效剂阿莫西林。
奥尔默特尼布,
作为二氢叶酸还原酶抑制剂,也是甲氧基嘧啶(TMP)的替代新产品。
用金熔体合成5-二甲氧基苯甲醛及其中间体4-溴-3时,采用聚乙二醇-400作为相转移催化剂进行还原反应。
与未添加相转移催化剂的结果相比,产率提高了约30%。
2.2.3酮洛芬[6]。
3-邻苯二甲酰-2-甲基苯乙酸是酮洛芬的化学名称,酮洛芬是一种抗炎和镇痛药物。
有许多关于合成的报道,但它们不是由多相反应产生的。
大多数合成工艺存在反应慢、操作复杂、产率低等问题。
樊棋等人以阳离子表面活性剂度米芬为相转移催化剂,氢氧化钠水溶液为水相,苯为有机相,合成了酮洛芬,产率约70%,纯度99.5%。
2.2.4克林霉素磷酸酯醋。
克林霉素磷酸酯醋作为克林霉素的衍生物,具有水溶性强、抗菌性强、吸收快、副作用小等优点,目前已广泛应用于临床医学。
胡国强等人在合成克林霉素磷酸酯醋时,用TI3AI进行催化磷酸化反应得到中间体,产率约为86%。
3.由于相转移催化技术操作简单、反应效率提高、使用普通非极性溶剂和廉价的碱性底物原料,预计该技术对制造商改进工艺技术、降低生产成本和提高市场竞争力具有重要的现实意义。
然而,常用的催化剂价格昂贵,难以回收和纯化。
因此,有必要进一步研究和探索相转移催化反应机理,以获得廉价高效的催化剂和反应过程。
相转移催化在制药工业中的应用可以达到简化操作、提高收率等目的。
并且可以用便宜的材料代替昂贵的材料。
这可以很好地改进工艺技术,对于提高药物合成收率,降低成本,最终提高市场竞争力具有非常重要的现实意义。
赵。
相转移催化原理及应
用[[M]。
北京:化学工业出版社,200733603-4 [2]卞觉新。
相转移催化剂[。
化学世界,1982,23( 1) : 25。
[3]王乃兴,李继省。
有机合成中的相转移催化[[]。
化学世界,1994年。
9: 450- 453。
[4]孙长军、曹小兰、王秀菊。
《药物合成反应——理论与实践》,[M。
北京:化学工业出版社,2007。
5: 210- 211[5]周莹。
新的抗类风湿药物泰尼达[。
中国新药杂志,1997。
6( 5) : 341- 343。
[6]樊棋,程秀华,张勤等.相转移催化剂。