圆的知识点总结
圆知识点总结大全 小学

圆知识点总结大全小学一、圆的基本属性1. 圆的定义:圆是由平面上距离某一点(圆心)等距禨大于固定值(半径)的所有点的集合。
2. 圆的元素:圆由圆心、半径、周长、直径和弧度等元素构成。
3. 圆的圆心和半径:圆心是圆的中心点,通常用O表示;半径是圆心到圆上任何一点的距离,通常用r表示。
4. 直径和周长:直径是圆的任意两点之间经过圆心的线段的长度的两倍,通常用d表示;周长是圆的边界长度,通常用C表示,周长的计算公式为C=2πr。
二、圆的测量1. 圆的直径和半径的关系:直径是半径的两倍,即d=2r。
2. 圆周率π的概念:圆周率π是一个无理数,其值约为3.14159,它是圆的周长与直径之比,通常用π表示。
3. 圆的周长计算:圆周长的计算公式为C=2πr,其中r为圆的半径。
4. 圆的直径计算:直径可以通过周长或者半径计算得出,即d=2r或者d=C/π。
三、圆与其他几何图形的关系1. 圆与正方形、长方形的关系:正方形和长方形可以围成圆,圆的周长与正方形和长方形的周长相等时,它们互相等价。
2. 圆与三角形、四边形的关系:圆与三角形和四边形之间可以有外切圆和内切圆,圆可以包围外接三角形和外接四边形,也可以被内接三角形和内接四边形包围。
四、圆的应用1. 圆的面积:圆的面积是圆内部的平面区域大小,通常用A表示,计算公式为A=πr²。
2. 圆环的面积:圆环是指一个圆中去掉内圆后形成的区域,圆环的面积可以通过两个圆的面积计算得出。
3. 圆的角度与弧长的关系:圆的角度与弧长之间存在一定的对应关系,通常用弧度制中圆周角来表示。
4. 圆的应用实例:圆的应用包括钟表、轮胎、水泵、建筑设计等各个领域,圆的性质在日常生活中有着广泛的应用。
通过本文的总结,相信学生们能够全面掌握关于圆的基本概念、测量方法、与其他几何图形的关系以及应用领域。
掌握这些知识将对学生今后学习中学阶段的几何学知识打下坚实的基础。
同时,学生们也能更好地理解和应用圆的概念,从而更好地理解世界和解决实际问题。
九年级圆的知识点总结

九年级圆的知识点总结一、圆的基本定义1. 圆的定义:平面上所有与给定点(圆心)距离相等的点的集合。
2. 圆心(O):圆心是圆的中心点,所有圆上的点到圆心的距离都等于半径。
3. 半径(r):圆心到圆上任意一点的距离。
4. 直径(d):通过圆心的最长弦,是半径的两倍长度。
5. 弦(c):连接圆上任意两点的线段。
6. 弧(a):圆上两点之间的圆周部分。
7. 优弧:大于半圆的弧。
8. 劣弧:小于半圆的弧。
9. 半圆:圆的一半,由直径所界定的弧。
10. 切线(t):与圆只有一个公共点的直线。
二、圆的性质1. 所有半径的长度相等。
2. 直径是圆内最长的弦。
3. 圆的任意两点之间的弧,优弧总是大于劣弧。
4. 切线与半径相交于圆外的一点,形成直角。
5. 圆周角定理:圆周上任意一点引出的两条半径与圆周所形成的角,其大小是圆心角的一半。
6. 圆心角定理:同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
三、圆的计算公式1. 圆的周长(C):C = πd = 2πr2. 圆的面积(A):A = πr²3. 扇形面积:S = (θ/360) × πr²,其中θ是扇形的中心角的度数。
4. 弓形面积:S = (θ/360) × πr² - (θ/360) × rθ/2,其中θ是弓形的中心角的度数。
四、圆的应用问题1. 圆与直线的关系:相交、相切、相离。
2. 圆与圆的关系:内含、外离、相交、内切、外切。
3. 圆的切线问题:求切线长度、切点坐标等。
4. 圆的弦长问题:根据圆心距、半径、弦心距等求弦长。
5. 圆的面积问题:根据圆的半径、直径、周长等求面积。
五、圆的作图方法1. 用圆规画圆:确定圆心和半径,旋转圆规即可画出圆。
2. 作圆的切线:通过圆外一点作圆的切线,需要利用圆心到切点的垂线与切线垂直的性质。
3. 作圆的中垂线:连接圆上任意两点,作其中点的垂线,即为圆的中垂线。
圆的知识点总结

圆的相关知识点1、圆心:圆中心一点叫做圆心。
用字母“O"来表示。
半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r"来表示.画圆时,圆规两脚间的距离就是半径.直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。
直径是圆中最长的线段。
2.圆心确定圆的位置,半径确定圆的大小。
圆是轴对称图形,直径所在的直线是圆的对称轴。
3.在同一个圆内,所有的半径都相等,所有的直径都相等。
在同一个圆内,有无数条半径,有无数条直径。
在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2r r =d÷24、正方形中画最大的圆:先画正方形的两条对角线,交点就是圆心,再以边长的一半作半径画圆.边长也就是圆的直径。
5、圆中画最大的正方形:先画两条互相垂直的直径,直径和圆相交的四个点连接起来就成了一个圆。
在长方形中画最大的圆,宽就是圆的直径。
6、扇形:由两条半径和一段弧围成的图形就是扇形.顶点在圆心的角是圆心角。
圆上两点间的一段叫弧。
7、在同一个圆中,扇形的大小与圆心角的大小有关.在不同的圆中,扇形的大小与圆心角的大小和半径的长短有关。
8.圆的周长:围成圆的曲线的长度叫做圆的周长。
圆的周长总是直径的3倍多一些,这个比值是一个固定的数.我们把圆的周长和直径的比值叫做圆周率,用字母π表示。
圆周率是一个无限不循环小数.在计算时,π取3。
14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之.周长是直径的π倍,是半径的2π倍。
6.圆的周长公式:C=πd 或C=2πr 周长等于直径乘π,等于半径乘2π。
直径等于周长除以π,或等于半径乘2,半径等于周长除以π再除以2,或等于直径除以2。
圆的直径、半径扩大或缩小几倍,周长也扩大或缩小相同的倍数,周长、直径、半径间的变化相同。
两个圆的直径、半径和周长之间的倍数关系完全相同。
7、圆的面积:圆所占平面的大小叫圆的面积.8.把一个圆割拼成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积= πr×r=πr²,要求圆的面积必须知道圆的半径(或知道半径的平方)。
圆知识点归纳总结

圆知识点归纳总结圆是平面几何中的重要图形,具有许多特殊的性质和应用。
在学习圆的相关知识时,我们需要了解圆的定义、性质、公式、相关定理等内容。
下面,我们将对圆的知识点进行归纳总结。
一、圆的定义和性质1.圆的定义圆是平面上到一个固定点距离不超过一定值的所有点的集合。
这个固定点叫做圆心,到圆心的距离叫做半径,通常以字母r表示。
2.圆的性质(1) 任意一条弦所对应的圆心角相等。
(2) 圆的半径垂直于弦,且以弦的中点为端点。
(3) 圆内接角在同一个弧上的两个弦等于一半的圆周角。
(4) 圆周角等于它所对的弧的一半。
(5) 等圆周角的两个弧所对的圆心角相等。
(6) 相交弦的外接角相等。
(7) 圆内切于另一圆的直径的两圆相交。
二、圆的公式和关系1. 圆的周长和面积(1) 圆的周长:C=2πr(2) 圆的面积:S=πr²2. 圆的弧长和扇形面积(1) 圆的弧长公式:L=2πr(α/360),其中α为圆心角(2) 圆的扇形面积公式:A=1/2r²α,其中α为圆心角的度数3. 圆与直线、圆与直线的位置关系(1) 直线与圆的位置关系:相离、相切、相交(2) 圆与直线的位置关系:圆内切、圆外切、相交三、圆的相关定理和推论1. 弧长定理(1) 弧长定理1:圆的所有圆心角的度数和一定为360°(2) 弧长定理2:如果一个角的角度是一个圆的圆周角的1/2,那么这个角的对应弦长就是这个圆的半径。
2. 弦长定理(1) 弦长定理1:两条相等的弦所对的两条圆弧是相等的。
(2) 弦长定理2:相等弦等,相等弦所对的字母也相等。
3. 圆心角定理(1) 圆心角定理:这个角的角度是这个圆弧的角度的一半。
4. 圆的切线定理(1) 切线定理1:切线与半径垂直,且切点处的切线与圆的切线平行。
(2) 切线定理2:切线与半径的成正比,切线的长度等于切点到圆心的距离。
四、圆的相关应用1. 圆的综合应用(1) 圆的几何问题:例如圆心角、圆周角、弧长等问题(2) 圆的物理应用:例如汽车行驶的弧形路径、转动物体的圆周运动等(3) 圆的工程应用:例如建筑中的圆形构造、机械运动中的圆弧运动等2. 圆的新颖应用(1) 圆的信息技术应用:例如在计算机编程中的圆的相关算法和数据结构(2) 圆的工业应用:例如在制造工艺中的圆形零件加工、在生产中的圆形产品设计等以上就是圆的相关知识点的归纳总结。
小学数学中的圆知识点总结

小学数学中的圆知识点总结一、圆的定义和性质1. 圆的定义圆是平面上与给定点距离相等的点的集合。
给定点叫做圆心,距离叫做半径。
用圆形符号表示为⭕。
例如,在坐标系中,圆的方程可以表示为(x-a)² + (y-b)² = r²,其中(a,b)是圆心的坐标,r是半径的长度。
2. 圆的性质(1)圆的直径是经过圆心两点的线段,长度等于圆的半径的两倍。
(2)圆心到圆上任意一点的距离都是相等的,等于半径的长度。
(3)圆被分成的两部分叫做扇形,扇形的两边是圆的两条半径。
(4)圆的周长叫做圆的周长,通常用C表示,可以用公式C=2πr计算出来,其中r是半径的长度,π是圆周率,约等于3.14。
二、圆的相关图形1. 圆的切线给定一个圆和一点P在圆外,通过点P有且仅有一条与圆相交于P的直线,这条直线叫做圆的切线。
切线与半径的夹角是直角。
2. 圆的切点切线与圆相切的点叫做圆的切点。
圆的切点与圆心连线垂直于切线。
3. 圆内接四边形如果一个四边形的四个顶点都在同一个圆上,那么这个四边形叫做圆内接四边形。
圆内接四边形的两组对边和相等。
4. 圆外接四边形如果一个四边形的四个顶点都在同一个圆的圆周上,那么这个四边形叫做圆外接四边形。
圆外接四边形的对角线相交于一点,这个点叫做四边形的对角点。
三、圆的相关定理和公式1. 圆的面积圆的面积叫做圆的面积,一般用S表示,可以用公式S=πr²计算出来。
2. 圆心角的性质(1)圆心角的度数等于所对弧的中心角的角度。
(2)一个圆的圆心角的度数等于圆的周长除以半径的长度。
3. 圆的圆心角的度数和弧长的关系(1)圆心角的度数等于弧长的度数。
(2)圆心角的弧度数等于弧长除以半径的长度。
4. 弧长和扇形面积的计算(1)弧长的计算可用公式L=2πr计算,其中r是半径的长度。
(2)扇形面积的计算可用公式S=πr² × (θ/360)计算,其中r是半径的长度,θ是圆心角的度数。
圆的知识点归纳总结大全

圆的知识点归纳总结大全一、圆的定义。
1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素。
1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质。
1、圆的对称性。
(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为 r ,OP=d。
d< r( r d= rd > r(r > d)< d)点 P在⊙O内点 P在⊙O上点 P在⊙O外7、( 1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角三角形的外心就是斜边的中点。
)8、直线与圆的位置关系。
d 表示圆心到直线的距离,r 表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。
认识圆形知识点总结

1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做
圆心。
一般用字母O表示。
它到圆上任意一点的距离都相等.
3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所
有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的'长度是直径的1/2。
用字母表示为:d=2r或r=d/2
8、轴对称图形:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形
只有3条对称轴的图形是:等边三角形
只有4条对称轴的图形是:正方形;
有无数条对称轴的图形是:圆、圆环。
圆的知识点归纳

圆的知识点归纳圆作为几何学中的重要概念之一,其知识点包括圆的定义、圆的特性、圆的元素以及圆的相关定理。
下面将对这些内容进行详细归纳。
一、圆的定义圆是由平面上距离一个确定点距离相等的所有点构成的集合。
这个确定点称为圆心,所有在圆心到圆上任意一点的线段都称为半径,而半径之间的距离称为圆的直径,圆的直径等于半径的两倍。
二、圆的特性1. 圆的所有点到圆心的距离相等,因此圆上的任意两点之间的距离也相等。
2. 圆是一个封闭的曲线,内部和外部分别称为圆的内部和圆的外部。
3. 圆的内部点与圆心的距离小于半径,外部点与圆心的距离大于半径。
三、圆的元素1. 圆心:圆心是圆的核心,标志着整个圆的位置。
2. 半径:半径是从圆心到圆上任意一点的线段,所有半径的长度相等。
3. 直径:直径是连接圆上两个点且通过圆心的线段,直径等于半径的两倍。
4. 圆周:圆上所有点组成的曲线称为圆周,并围绕着圆心。
5. 弧:圆周上的一段连续的曲线部分称为弧,两个端点分别为弦。
四、圆的相关定理1. 弧度与弧长的关系:弧度是角度的一种衡量方式,在圆内以半径长度作为圆心角所对应的弧长为1弧度。
2. 圆的面积:圆的面积公式为πr²,其中r为半径。
3. 圆周长:圆的周长公式为2πr,其中r为半径。
4. 切线定理:一个切线与半径所构成的角为直角。
5. 弧长定理:在同一圆周上的两个弧所对应的圆心角相等时,它们所对应的弧长也相等。
总结:圆是几何学中重要的基本概念之一,它具有独特的定义和特性。
除此之外,掌握圆的元素和相关定理对于解决与圆相关的问题具有重要意义。
因此,对于圆的知识点进行归纳总结,有助于我们更好地理解和应用圆的概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1 圆
课程标准要求
1.理解圆的有关概念.
2.经历探索点与圆的位置关系的过程,会运用点到圆心的距离与圆的半径之间的数量关系判断点与圆的位置关系.
3.理解弧、弦、半圆、优弧、劣弧等与圆有关的概念,
1.圆概念(重点)
把线段OP的一个端点O固定,使线段OP绕着点O在平面内旋转1周(如图5 -1-1所示),另一个端点P运动所形成的图形叫做圆,其中,定点O叫做圆心,线段OP叫做半径,以点O为圆心的圆,记作“⊙O”,读作“圆0”.2.点与圆的位置(难点)
点与圆的位置关系有三种:点在圆内、点在圆上、点在圆外,设⊙0的半径为r,点P到圆心0的距离为d,用图形表示点与圆的位置关系如图5-1-2所示
3.与圆有关的概念
①弦:连接圆上任意两点的线段叫做弦,如图5-1-3中的弦 AB,BC。
②直径:经过圆心的弦叫做直径,如图5-1-3中的弦AB为⊙0的直径直径等于半径的两倍。
③弧、优弧、劣弧:圆上任意两点间的部分叫做圆弧,简称弧,弧用符号“⌒”表示;圆的任意一条直径的两个端点分圆成两条弧,每条弧都叫做半圆;小于半圆的弧叫做劣弧,如图5 -1-3中以B、C为端点小于半圆的
劣弧“”;大于半圆的弧叫做优弧,优弧要用三个字母表示,如图5~1—3中的优弧“”.
④等圆、同心圆:能够互相重合的两个圆叫做等圆,如图5 -1-4中的⊙和⊙是等圆;圆心相同,半径不相等的两个圆叫做同心圆,如图5—1—5中的两圆,
5.2 圆的对称性
课程标准要求.
1.理解圆的对称性及有关性质.
2.理解同圆或等圆中,圆心角、弧、弦各组量之间的关系,并会应用.
3.探索垂径定理并会应用其解决有关问题.
1.圆是轴对称图形(重点)
通过折叠与旋转的方法,我们可以得到:
圆是轴对称图形,其对称轴为任意一条过圆心的直线;
圆是中心对称图形,其对称中心是圆心.
2.圆心角,弧,弦之间的关系(重点)
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。
在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
(1)在具体运用以上定理解决问题时,可根据需要选择,如“在等圆中,相等的弧所对的圆心角相等”.
(2)不能忽略“在同圆或等圆中”这个前提条件,如果丢掉这个前提条件,即使圆心角相等,所对的弧、弦也不一定相等.
(3)要结合图形深刻理解圆心角、孤、弦这三个概念和“所对应的”一词的含义,因为一条弦所对的弧有两条,所以由“弦等”得出“弧等”,这里的“弧等”指的是对应的劣弧和劣弧相等,对应的优弧和优弧相等。
3.圆心角的度数与它所对的弧的度数的关系
(1)1°的弧:将顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.因为同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份.我们把1°的圆心角所对的弧叫做1°的弧.(2)圆心角的度数与它所对的弧的度数的关系:圆心角的度数与它所对的弧的度数相等.
1.垂径定理的应用(难点)
(1)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧,
垂径定理的表现形式:如图5-2-8所示,
5.3 圆周角
课程标准要求
1.经历探索圆周角的有关性质的过程.
2.理解圆周角的概念及其相关性质,并能运用相关性质解决实际问题.
3.体会分类、转化等数学思想方法,学会用数学的思想方法思考问题.
1.识别圆周角
顶点在圆上,并且两边都和圆相交的角叫做圆周角.
2.圆周角定理的应用
定理:同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。
3.圆周角定理的推论(难点)
直径(或半圆)所对的圆周角是直角90°的圆周角所对的弦是直径.
本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。