相似三角形的判定与性质综合运用经典题型(供参考)
相似三角形判定经典题型

相似三角形判定经典题型题型一、相似三角形判定的灵活运用例、如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD·AB。
其中单独能够判定△ABC∽△ACD的个数为[ ] A.1 B.2 C.3 D.4题型二、相似三角形判定的开放性问题例、如图,已知△ABC和△DEF,∠A=∠D=90°,且△ABC与△DEF不相似,问是否存在某种直线分割,使△ABC所分割成的两个三角形与△DEF所分割成的两个三角形分别对应相似?(1)如果存在,请你设计出分割方案,并给出证明;如果不存在,请简要说明理由;(2)这样的分割是唯一的吗?若还有,请再设计出一种.321点拨:本题主要考察对全等三角形和相似三角形的理解与应用,根据条件注意到的一个条件式,进而得到y与x的一)小题中,则要从果溯源,要使△BEH∽△BAE题型四、相似三角形的判定与性质综合运用例、如图,点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE 。
(1)试说明BE·AD=CD·AE(2)根据图形特点,猜想可能等于哪两条线段的比?并证明你的猜想(只须写出有线段的一组即可)。
题型五、相似在实际中的应用例、如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3 米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米.(1)求路灯A的高度;(2)当王华再向前走2米,到达F处时,他的影长是多少?例2、已知零件的外径为25cm,要求它的厚度x,需先求出它的内孔直径AB,现用一个交叉卡钳(AC和BD的长相等)去量(如图),若OA:OC=OB:OD=3,CD=7cm.求此零件的厚度x.题型六、相似方案的设计如图,已知Rt△ABC与△DEF不相似,其中∠C、∠F为直角,能否分别将这两个三角形各分割成两个三角形,使△ABC所分成的每个三角形与△DEF所分成的每个三角形分别对应相似?如果能,请设计出一种分割方案,并说明理由。
自学初中数学资料-相似三角形的性质和判定综合-(资料附答案)

自学资料一、相似三角形的性质和判定综合【知识探索】1.(1)三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③判定定理1:如果一个三角形的对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
④判定定理2:如果一个三角形的对应成比例,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
⑤判定定理3:如果一个三角形的对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。
(2)直角三角形相似的判定方法①以上各种判定方法均适用②垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
【错题精练】例1.如图,在矩形ABCD中,E、F分别是CD、BC上的点.若∠AEF=90°,则一第1页共23页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训定有()A. △ADE∽△ECFB. △ECF∽△AEFC. △ADE∽△AEFD. △AEF∽△ABF【解答】解:在矩形ABCD中,∵∠D=∠C=90°,∠AEF=90°,∴∠DEA+∠CEF=90°,∠DEA+∠DAE=90°,∴∠DAE=∠CEF,∴△ADE∽△ECF.故选:A.【答案】A例2.如图,已知AB、CD分别是半圆O的直径和弦,AD和BC相交于点E,若∠AEC=α,则S△CDE:S△ABE等于()A. sinαB. cosαC. sin2αD. cos2α【答案】D例3.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F 处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=______.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,第2页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE-HE=x-1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x-1)2=(x+2)2,整理得x2-6x-3=0,解得x1=3+2√3,x2=3-2√3(舍去),即AD的长为3+2√3.故答案为3+2√3.【答案】3+2√3例4.如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于______.【解答】解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴D′HPA′=PD′EA′,∴ax =x4a,∴x2=4a2,∴x=2a或-2a(舍弃),∴PA′=PD′=2a,∵12•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE=√22+42=2√5,PH=√12+22=√5,第3页共23页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∴AD=4+2√5+√5+1=5+3√5,∴矩形ABCD的面积=2(5+3√5)=10+6√5.故答案为10+6√5【答案】10+6√5例5.如图,在正方形ABCD中,AB=2,点E为AB的中点,AF⊥DE于点O,则AO=______.【解答】解:∵四边形ABCD是正方形,∴AD=BC=2,∠DAE=90°,∵AE=EB=1,∴DE=√22+12=√5,∵AO⊥DE,∴12×DE×AO=12×AE×AD,∴AO=2√55.故答案为2√55.【答案】2√55例6.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于BC的中点处.①如图甲,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;②如图乙,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N.求证:△ECN∽△MEN.第4页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训【答案】证明:(1)∵△ABC是等腰直角三角形,∴∠B=45°,∴∠1+∠2=135°又∵△DEF是等腰直角三角形,∴∠3=45°∴∠1+∠4=135°∴∠2=∠4,∵∠B=∠C=45°,∴△BEM∽△CNE;(2)与(1)同理△BEM∽△CNE,∴BECN =EMNE,又∵BE=EC,∴ECCN =EMNE,∴ECEM =CNNE,又∵∠ECN=∠MEN=45°,∴△ECN∽△MEN.例7.如图,△ABC内接于⊙O,AD是边BC上的高,AE是⊙O的直径,连BE.(1)求证:△ABE与△ADC相似;(2)若AB=2BE=4DC=8,求△ADC的面积.【答案】第5页共23页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训例8.如图,AB是⊙O的直径,BE⊥CD于E.(1)求证:AB•BE=BC•BD;(2)若AB=26,CD=24,求sin∠CBD.【答案】(1)证明:连接AD,∵AB是直径,∴∠ADB=90°,∵BE⊥CD∴∠ADB=∠CEB∵∠A=∠C∴△CBE∽△ABD∴ABBC =BD BE∴AB•BE=BC•BD;(2)解:连接DO并延长交⊙O于点F,∵DF是直径,∴∠FCD=90°∴∠F=∠CBD AB=DF=26∴CD=24∴sin∠CBD=sin∠F=CDDF =2426=1213【举一反三】第6页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训第7页 共23页 自学七招之智慧树神拳:知识内容体系化,思维导图来助力 非学科培训1.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF ,则S △ABE :S △ECF 等于( )A. 1:2B. 4:1C. 2:1D. 1:4【答案】B2.矩形ABCD 中,AD=2AB=2√2,E 是AD 的中点,Rt ∠FEG 顶点与点E 重合,将∠FEG 绕点E 旋转,角的两边分别交AB ,BC (或它们的延长线)于点M ,N ,设∠AME=α(0°<α<90°),有下列结论:①BM=CN ;②AM+CN=√2;③S △EMN =1sin 2α,其中正确的是( )A. ①B. ②③C. ①③D. ①②③【解答】解:在矩形ABCD 中,AD=2AB ,E 是AD 的中点, 作EF ⊥BC 于点F ,则有AB=AE=EF=FC ,∵∠AEM+∠DEN=90°,∠FEN+∠DEN=90°,∴∠AEM=∠FEN ,在Rt △AME 和Rt △FNE 中,{∠AEM =∠FENAE =EF ∠MAE =∠NFE,∴Rt △AME ≌Rt △FNE ,∴AM=FN ,∴MB=CN ,故①正确;∴CF=AM+CN=12BC=√2,当点M 在AB 的延长线上时,AM-CN=√2,故②错误;∵Rt△AME≌Rt△FNE,∴EM=EN,∴△EMN是等腰直角三角形,∵∠AME=α,∴sinα=AEEM,∴EM=√2sinα,∴S△EMN=12EM2=1sin2α,故③正确,故选:C.【答案】C3.如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为.【答案】2√34.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD(2)分别延长AB,DC交于点P,若PB=OB,CD=2√2,求⊙O的半径.【答案】(1)证明:∵DC2=CE•CA,∴DCCE =CADC,而∠ACD=∠DCE,第8页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;(2)解:连结OC,如图,设⊙O的半径为r,∵CD=CB,∴CD̂=CB̂,∴∠BOC=∠BAD,∴OC∥AD,∴PCCD =POOA=2rr=2,∴PC=2CD=4√2,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴PCPA =PBPD,即4√23r=r6√2,∴r=4,即⊙O的半径为4.5.如图,AB⊥BC,DC⊥BC,E是BC上一点,使得AE⊥DE;(1)求证:△ABE∽△ECD;(2)若AB=4,AE=BC=5,求CD的长;(3)当△AED∽△ECD时,请写出线段AD、AB、CD之间数量关系,并说明理由.第9页共23页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【答案】(1)证明:∵AB⊥BC,DC⊥BC,∴∠B=∠C=90°,∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∴∠AEB+∠DEC=90°,∴∠DEC=∠BAE,∴△ABE∽△ECD;(2)解:Rt△ABE中,∵AB=4,AE=5,∴BE=3,∵BC=5,∴EC=5-3=2,由(1)得:△ABE∽△ECD,∴ABBE =ECCD,∴43=2CD,∴CD=32;(3)解:线段AD、AB、CD之间数量关系:AD=AB+CD;理由是:过E作EF⊥AD于F,∵△AED∽△ECD,∴∠EAD=∠DEC,∵∠AED=∠C,∴∠ADE=∠EDC,∵DC⊥BC,∴EF=EC,∵DE=DE,∴Rt△DFE≌Rt△DCE(HL),∴DF=DC,同理可得:△ABE≌△AFE,∴AF=AB,∴AD=AF+DF=AB+CD.6.已知,正方形DEFG内接于△ABC中,且点E、F在BC上,点D,G分别在AB,AC上.第10页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训(1)如图①,若△ABC是直角三角形,∠A=90°,AB=4,AC=3,求正方形的边长;(2)如图②,若S△ADG=1,S△BDE=3,S△FCG=1,求正方形的边长.【答案】解:(1)设正方形DEFG的边长是x,∵△ABC是直角三角形,∠A=90°,AB=4,AC=3,∴由勾股定理得:BC=5,过A作AM⊥BC于M,交DG于N,由三角形面积公式得:12AB×AC=12BC×AM,∵AB=4,AC=3,BC=5,∴AM=2.4,∵四边形DEFG是正方形,∴DG=GF=EF=DE=MN=x,DG∥BC,∴△ADG∽△ABC,∴DGBC =AN AM,∴x5=2.4−x2.4,x=6037,即正方形DEFG的边长是6037;(2)过A作AM⊥BC于M,交DG于N,设正方形DEFG的边长是a,AN=b,∵四边形DEFG是正方形,∴DG=GF=EF=DE=MN=a,DG∥BC,∵S△ADG=1,S△BDE=3,S△FCG=1,∴12ab=1,12BE•a=3,12CF•a=1,∴BE=3b,CF=b,∴S△ADG+S△BED+S CFG=12ab+32ab+12ab=1+3+1=5,∴ab=2,∴b=2a①,=1(BE+EF+CF)×(AN+MN)-(S△ADG+S△BDE+S△CFG)2(a+4b)(a+b)-5=a2,=12∴a=2b②,由①②得:a=2,即正方形的边长是2.7.如图,在长方形ABCD中,点E,F分别是BC,DC上的动点.沿EF折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,求CF的取值范围.【答案】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=5,CD=AB=3,当点D与F重合时,CF最大值为3,如图1所示:当B与E重合时,CF最小,如图2所示:在Rt△ABG中,∵BG=BC=5,AB=3,∴AG=√BG2−AB2=4,∴DG=AD-AG=1,设CF=FG=x,在Rt△DFG中,∵DF2+DG2=FG2,∴(3-x)2+12=x2,,∴x=53∴5≤CF≤3.≤CF≤3.故答案为:538.如图,在⊙O中,直径AB垂直于弦CD,垂足为点E,点F在AC上从A点向C点运动(点A、C 除外),AF与DC的延长线相交于点M.(1)求证:△AFD∽△CFM;(2)点F在运动中是否存在一个位置使△FMD为等腰三角形?若存在,给予证明;若不存在,请说明理由.【答案】1.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,则∠1与∠2的大小关系为()A. ∠1>∠2B. ∠1<∠2C. ∠1=∠2D. 无法确定【解答】解:∵∠AED+∠CEF=90°,∠DAE+∠ADE=90°,∴∠DAE=∠CEF,∵∠ADE=∠ECF=90°,又∵∠ADE=∠AEF,∴△ADE∽△AEF,∴∠1=∠2.【答案】C2.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为()A. 9B. 8C. 15D. 14.5【答案】A3.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A. S1=S2B. S1>S2C. S1<S2D. 3S1=2S2S矩形AEFC,即S1=S2,【解答】解:矩形ABCD的面积S=2S△ABC,而S△ABC=12故选:A.【答案】A4.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,且E为AD的中点,FC=3DF,连接EF并延长交BC的延长线于点G(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求△BEG的面积.=FCDF=3,∴CG=6,∴BG=BC+CG=10,∴△BEG的面积=12×BG×AB=20.5.如图,在正方形ABCD中,AB=4,点P、Q分别在直线CB与射线DC上(点P不与点C、点B重合),且保持∠APQ=90°,CQ=1,则线段BP的长为______.【解答】解:分三种情况:设BP=x,①当P在线段BC上时,如图1,∵四边形ABCD是正方形,∴∠B=∠C=90°,∴∠BAP+∠APB=90°,∵∠APQ=90°,∴∠APB+∠CPQ=90°,∴∠BAP=∠CPQ,∴△ABP∽△PCQ,∴ABBP=PCCQ,∴4x=4-x1,∴x1=x2=2,∴BP=2;②当P在CB的延长线上时,如图2,同瑆得:△ABP∽△PCQ,6.已知,如图,在圆O中,AB=CD。
相似三角形经典题型

相似三角形经典题型一、相似三角形的判定定理相关题型1. 题目已知在△ABC和△A'B'C'中,∠A = 50°,AB = 3cm,AC = 4cm,∠A'= 50°,A'B'= 6cm,A'C' = 8cm。
判断这两个三角形是否相似。
解析根据相似三角形的判定定理:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
在△ABC和△A'B'C'中,(AB)/(A'B')=(3)/(6)=(1)/(2),(AC)/(A'C')=(4)/(8)=(1)/(2),且∠A = ∠A' = 50°。
所以△ABC∽△A'B'C'。
2. 题目如图,在四边形ABCD中,∠B = ∠ACD,AB = 6,BC = 4,AC = 5,CD=(7)/(2),求AD的长。
解析因为∠B = ∠ACD,且(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),(AC)/(AD)未知。
又因为(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),不满足三边对应成比例。
但是由∠B = ∠ACD,(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),可以尝试证明△ABC和△ACD相似。
因为∠B = ∠ACD,(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),这里我们重新计算(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7)是错误的,应该是(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7)(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7)(AB)/(AC)=(BC)/(CD)所以△ABC∽△DCA。
人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)

人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)一、选择题(每小题6分,共48分)1.在△ABC 中,D 、F 是AB 上的点,E 、H 是AC 上的点,直线DE//FH//BC ,且DE 、FH 将△ABC 分成面积相等的三部分,若线段FH=65,则BC 的长为( ) A .15 B .10 C.6215 D .15322.在△ABC 中,DE//BC ,DE 交AB 于D ,交AC 于E ,且S △ADE :S 四边形DBCE=1:2,则梯形的高与三角形的边BC 上的高的比为( )A .1:2B .1:)12(-C .1:)13(-D .)13(-:33.在Rt △ABC 中,∠C=90°,CD 是斜边AB 上的高,AC=5,BC=8,则S △ACD :S △CBD 为( ) A .85B .6425 C .3925 D .8925 4.如图1—5—1,D 、E 、F 是△ABC 的三边中点,设△DEF 的面积为4,△ABC 的周长为9,则△DEF 的周长与△ABC 的面积分别是( )A.29,16 B. 9,4 C. 29,8 D. 49,165.如图1—5—2,在△ABC 中,AD ⊥BC 于D ,下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC ; (3)ABAC AD CD =;(4)AB 2=BD ·BC 。
其中一定能够判定△ABC 是直角三角形的共有( ) A .3个B .2个C .1个D .0个6.如图1—5—3,在正三角形ABC 中,D ,E 分别在AC ,AB 上,且31AC AD =,AE=BE ,则有( )A. △AED ∽△BED B .△AED ∽△CBD C. △AED ∽△ABD D .△BAD ∽△BCD7.如图1—5—4,PQ//RS//AC ,RS=6,PQ=9,SC 31QC =,则AB 等于( ) A. 415B. 436C. 217D. 58.如图1—5—5,平行四边形ABCD 中,O 1、O 2、O 3是BD 的四等分点,连接AO 1,并延长交BC 于E ,连接EO 2,并延长交AD 于F ,则FDAD等于( )A .3:1B .3:1C .3:2 D. 7:39.如果一个三角形的一条高分这个三角形为两个相似三角形,那么这个三角形必是( ) A .等腰三角形 B. 任意三角形C .直角三角形D .直角三角形或等腰三角形10.在△ABC 和△A'B'C'中,AB : AC=A'B':A'C',∠B=∠B',则这两个三角形( ) A .相似,但不全等 B .全等C .一定相似D .无法判断是否相似11.如图1—6—1,正方形ABCD 中,E 是AB 上的任一点,作EF ⊥BD 于F ,则BEEF为( )A .22B .21C .36D .2图1—6—112.如图1—6—2,把△ABC 沿边AB 平移到△A'B'C'的位置,它们的重叠部分(图中阴影部分)的面积是△ABC 的面积的一半,若2AB =,则此三角形移动的距离AA'是( )A .12-B .22C .1D .21 图1—6—213.如图1—6—3,在四边形ABCD 中,∠A=135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )A .24B .34C .4D .6 图1—6—314.如图1—6—4,平行四边形ABCD 中,G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F ,则图中相似三角形共有( )A .3对B .4对C .5对D .6对15.在直角三角形中,斜边上的高为6cm ,且把斜边分成3:2两段,则斜边上的中线的长为( )A.265cm B .64cm C .65cmD .325cm16.AD 为Rt △ABC 斜边BC 上的高,作DE ⊥AC 于E ,45AC AB =,则EACE=( ) A .2516 B .54C .45D .162517.如图1—6—5,△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC ,已知AB=m ,BC=n ,求CD 的长。
非学科数学学培训 相似三角形判定与性质综合(资料附答案)

自学资料一、相似三角形判定与性质综合【知识探索】1.A字型、反A字型(斜A字型)8字型、反8字型第1页共22页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训2.共享性:【错题精练】例1.如图,△ABC中,D边BC上一点,E是CD的中点,且∠ACD=∠ABE,已知AC=2,设AB=x,AD=y,则y与x满足的关系式为()A. xy=4;B. 2xy−y2=4;C. xy−y2=4;D. x2+xy−2y2=4.【答案】B例2.如右图,AD//CB,AB与CD相交于点E,过点B的直线交CD于点F,交AD于点G,若BEAE =23,BF GF =85,EF=2,则DF的长为()第2页共22页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训A. 72; B. 257;C. 185; D. 4.【答案】B例3.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A. 4;B. 6;C. 4√2;D. 4√3.【答案】C例4.如图,在△ABC中,点D在边AB上,过点D作DE∥BC交AC于点E,DF∥AC交BC于点F,若AE:DF=2:3,则BF:BC的值是()A. 23; B. 35;C. 12; D. 25.【答案】B例5.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则SΔDEF:SΔBAF:S四边形BCEF= .第3页共22页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【答案】9:25:48例6.如图,在△ABC中,D,E分别是AB,AC上的点,AF平分∠BAC,交DE于点G,交BC 于点F.若∠AED=∠B,且AG:GF=3:2,则DE:BC=.【答案】3:5例7.如图,在△ABC中,点D,E分别在边AB,AC上,∠ACD=∠B,DE∥BC.(1)求证:△ADE∽△ACD;(2)若DE=6,BC=10,求线段CD的长.【解答】(1)证明:∵∠ACD=∠B,又∵∠DAC=∠CAB,∴△ACD∽△ABC,∵DE∥BC,∴△ABC∽△ADE,∴△ADE∽△ACD;(2)解:∵DE∥BC,∴∠EDC=∠DCB,∵∠ACD=∠B,即∠ECD=∠B,∴△EDC∽△DCB,∴CDBC =DECD,即CD2=BC⋅DE,∵DE=6,BC=10,第4页共22页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训∴CD2=BC⋅DE=60,解得:CD=2√15.【答案】(1)略;(2)2√15.例8.如图,在△ABC中,AD、BE是中线,它们相交于点F,EG∥BC,交AD于点G.(1)求证:△FGE∽△FDB;(2)求AGDF的值.【解答】(1)解:由题意知:∵EG∥BC,∴∠GEF=∠FBD,∵∠BFD=∠GFE,∠GEF=∠FBD,∴△FGE∽△FDB;(2)解:∵AD、BE分别是三角形的中线,∴BD=CD,AE=EC,∵EG∥BC,∴EG是△ADC的中位线,∴EG=12CD,∵△EFG∽△BDF,∴EGBD =FGFD=12,∴DF=23DG,∵EG是△ADC的中位线,∴AG=DG,∴DF=23AG,∴AG:DF=3:2=32.【答案】(1)略;(2)32.第5页共22页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训例9.如图,等边△ABC中,点D是BC上任意点,以AD为边作∠ADE=∠ADF=60∘,分别交AC,AB于点E,F.(1)求证:AD2=AE×AC;(2)已知BC=2,设BD的长为x,AF的长为y,求y关于x的函数表达式;(3)若四边形AFDE的外接圆直径为13√312,求y与x的值.【解答】(1)解:在等边△ABC中∠B=∠C=60∘∵∠ADE=60∘∴∠ADE=∠ACD,∠DAE=∠CAD,∴△ADE=△ACD∴ADAE =ACAD∴AD2=AE×AC;(2)解:∵∠B=∠ADF,∠DAF∠BAD∴△DAF∽△BAD∴DABA =AFAD∴AD2=AF×AB∴△DAF∽△BAD由(1)知AD2=AE×AC,且AB=AC∴AE=AF∵∠B=∠C=∠ADE且∠BAD+∠B=∠ADE+∠CDE ∴∠BAD=∠CDE∴△ABD∽△DCE∴ABBD =DCCE∵BC=2,BD=x,AF=y∴AB=2,CD=2−x,CE=2−y∴2x =2−x2−y∴y=12x2−x+2(0≤x≤2);第6页共22页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训第7页 共22页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训(3)解:连接EF ,AF =AE ,∠EAF =60∘∠EDF =120∘则△AEF 为等边三角形 ∴四边形AFDE 的外接圆即为等边三角形△AEF 的外接圆 ∵四边形AFDE 的外接圆直径为13√312∴AF =EF =138∴当y =138时,x 1=12,x2=32.【答案】(1)略;(2)y =12x 2−x +2(0≤x ≤2);(3)当y =138时,x 1=12,x 2=32.例10.已知:如图,点D 是等腰直角△ABC 的重心,其中∠ACB =90∘,将线段CD 绕点C 逆时针旋转90°得到线段CE ,连结DE ,若△ABC 的周长为6,则△DCE 的周长为( )A. 2√2;B. 2√3;C. 4;D. 3√2.【答案】A例11.如图,△ABC 是等边三角形,D ,E 在BC 边所在的直线上,且BC 2=BD ⋅CE . (1)求∠DAE 的度数.(2)求证:AD 2=DB ⋅DE .【解答】(1)解: ∵△ABC 是等边三角形,∴∠ABC =∠ACB =60∘,AB =AC =BC , ∴∠ABD =∠ACE , ∵BC 2=BD ⋅CE , ∴AB ⋅AC =BD ⋅CE ,即ABBD =CEAC,∴△ABD∽△ECA;∴∠DAB=∠E,∴∠DAE=∠DAB+∠BAC+∠EAC=120∘(2)证明:∵∠DAE=∠ADB=120∘,∠D=∠D,∴△ABD∽△EAD∴ADDE =BDAD,∴AD2=DB⋅DE.【答案】(1)∠DAE=120∘;(2)略.例12.如图使用卡钳测量容器内径的示意图,现量得卡钳上A、D两端点的距离为6cm,AOBO =DOCO=47,求容器的内径BC.【解答】解:∵AOBO =DOCO又∵∠AOD=∠BOC ∴△AOD∽△BOC∴ADBC =AOBO=DOCO=47∵AD=6cm∴BC=212cm【答案】BC=212cm.例13.如图,在△ABC中,∠A=36∘,AC=AB=2,将△ABC绕点B逆时针方向旋转得到△DBE,使点E在边AC上,DE交AB于点F,则△AFE与△DBF的面积之比等于()第8页共22页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训A. √5−1;2;B. √5−14C. 3−√5;2D. 3−√5.4【答案】C例14.如图,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=k(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的x解析式为.【答案】y=2x例15.如图:在⊙O中,经过⊙O内一点P有一条弦AB,且AP=4,PB=3,过P点另有一动弦CD,连接AC,DB.设CP=x,PD=y.(1)求证:△ACP∽△DBP;(2)写出y关于x的函数解析式;(3)若CD=8时,求S△ACP:S△DBP的值.第9页共22页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【解答】(1)证明:∵∠C=∠B,∠A=∠D,∴△ACP∽△DBP.(2)解:由(1)可得:CP⋅PD=AP⋅PB,即xy=12.∴y=12x.(3)解:由题意得{xy=12x+y=8.由②得y=8−x.代入①得x(8−x)=12.得x1=2,x2=6.∴CP=2,PD=6或CP=6,PD=2.S△ACP:S△DBP=CP2:BP2=22:32=4:9或S△ACP:S△DBP=CP2:BP2=62:32=4:1.【答案】(1)略;(2)y=12x;(3)4:1.【举一反三】1.如图,在直角△ABC中,∠ACB=90∘,AC=3,BC=4,且点D,D分别在BC,AB上,连结AD和CE交于点H,若BDCD =2,AHDH=1,则BE的长为.【答案】154.第10页共22页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训2.在平行四边形ABCD中,E为AB上的一点,连结CE,P为CE的中点,过P作直线MN分别交边AD,BC于点M,N,若EA:EB=5:4,则且PM:PN=.【答案】723.已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)在原图上作DE∥AB交AC与点E,请直接写出另一个与△ABD相似的三角形,并求出DE的长.【解答】(1)∵AB=2,BC=4,BD=1,∴ABBC =24=12,BD AB =12,∴ABBC =BDAB,∵∠ABD=∠CBA,∴△ABD∽△CBA;(2)∵DE∥AB,∴△CDE∽△CBA,∴△ABD∽△CDE,∴DE=1.5.【答案】(1)见解答;(2)DE=1.5.4.如图,在平行四边形ABCD中,∠BCD和∠ABC的平分线分别交AD于E,G两点,CE,BG相交于点O.(1)求证:AG=DE;(2)已知AB=4,AD=5,求OEOC的值;(3)求四边形ABOE的面积与△BOC的面积之比.【解答】(1)证明:BG平分∠ABC,CE平分∠BCD∴∠ABG=∠CBG,∠BCE∠DCE∵AD∥BC∴∠CBG=∠AGB,∠BCE=∠CED∴AB=AG,CD=DE∵AB=CD∴AG=DE;(2)解:∵AB=4,AD=5∴AG=DG=4,AE=AD−DE=1,GD=AD−AG=1∴EG=AD−AE−DG=3∵AD∥BC∴OEOC =EGBC=35;(3)解:连接AO,设SΔOEG=9a∵AD∥BC,∴△OEG∽△OCB∴SΔOEG:SΔOBC=9:25∴SΔOBC=25a∵AE:EG=1:3∴SΔOAE:SΔOEG=1:3∴SΔOAE=3a∴SΔOAG=12a∵SΔOAB:SΔOAG=OB:OG=5:3∴SΔOAB=20a∴S四边形ABOE=SΔOAB+SΔOAE=23a∴S四边形ABOE:SΔOBC=23a:25a=23:25.【答案】(1)略;(2)35;(3)23∶25.5.如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC,若AD=2,DB=1,△ADE、△ABC的面积分别为S1、S2,则S1的值为()S2;A. 23B. 1;2;C. 49D. 2.【答案】C6.如图,在△ABC中,AC=4,BC=2,点D是边AB上一点,CD将△ABC分成△ACD和△BCD,若△ACD是以AC为底的等腰三角形,且△BCD与△BAC相似,则CD的长为..【答案】4√337.如图,在△ABC中,EF∥CD,DE∥BC.(1)求证:AF:FD=AD:DB;(2)若AB=15,AD:BD=2:1,求DF的长.【解答】(1)证明:∵EF∥CD,∴AFFD =AEEC,∵DE∥BC,∴ADBD =AEEC,∴AF:FD=AD:DB;(2)解:∵AD:BD=2:1,∴BD=12AD,∴AD+12AD=15,∴AD=10,∵AF:FD=AD:DB,∴AF:FD=2:1,∴AF=2DF,∵AF+DF=10,∴2DF+DF=10,∴DF=103.【答案】(1)略;(2)DF=103.8.在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,如果AE=2,△ADE的面积为4,四边形BCED的面积为5,那么AB的长为.【答案】3.9.如图,ABCD中,AC,BD交于点O,BC=6,OE=2,BO=4.(1)求证△DEF∽△BEC;(2)求AF的长.【解答】(1)证明:∵∠FDE=∠CBE,∠DFE=∠BCE,∠DEF=∠BEC,∴△DEF∽△BEC;(2)解:∴OB=OD=4,AD∥BC,AD=BC=18,∵OE=2,∴DE=4−2=2,∵AD∥BC,∴△DFE∽△BCE,∴DF+BC=DE+BE,∴DF+18=24+2,∴DF=6,∴AF=18−6=12.【答案】(1)略;(2)12.10.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90∘,E为AB的中点,连接CE、DE.AC 与DE相交于点F.(1)求证:△ADF∽△CEF;的值.(2)若AD=4,AB=6,求ACAF【解答】(1)证明:∵∠ACB=90∘,E为AB的中点,∴AE=CE,∴∠EAC=∠ACE,∵AC平分∠DAB,∴∠DAC=∠CAB,∴∠DAC=∠ACE,∴AD∥CE,∴△ADF∽△CEF;(2)解:∵E为AB的中点,∴CE=12AB=AE,∴∠EAC=∠ECA;∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;∴△AFD∽△CFE,∴AD:CE=AF:CF;∵CE=12AB=3,AD=4,∴AFCF =ADCE=43,∴ACAF =74.【答案】(1)略;(2)ACAF =74.11.如图,矩形ABCD中,AB=4,BC=3,将△ABC沿AC折叠,点B落到E点,此时AE交CD于F,则AF:EF=()A. 24:7;B. 25:7;C. 2:1;D. 3:1.【答案】B12.如图,B、C、D在同一直线上,△ABC和△DCE都是等边三角形,且在直线BD的同侧,BE交AD于F,BE交AC于M,AD交CE于N.(1)求证:AD=BE;(2)求证:△ABF∽△ADB.【解答】(1)证明:∵△ABC与△DCE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60∘.∴∠ACB+∠ACE=∠ACE+∠DCE,即∠BCE=∠ACD.在△BCE和△ACD中,{BC=AC∠BCE=∠ACDCD=CE,∴△BCE≌△ACD(SAS),∴AD=BE;(2)证明:由(1)知:△BCE≌△ACD,∴∠CBE=∠CAD,又∵∠BMC=∠AMF,∴∠AFB=∠ACB=60∘=∠ABC,又∵∠BAF=∠BAD,∴△ABF∽△ADB.【答案】(1)略;(2)略.13.在梯形ABCD中,AB∥CD,点E在线段DA上,直线CE与BA的延长线交于点G.(1)求证:△CDE∽△GAE;(2)当DE:EA=1:2时,过点E作EF∥CD交BC于点F且CD=4,EF=6,求AB的长.【解答】(1)证明:∵梯形ABCD,AB∥CD,∴∠CDE=∠GAE,∠DCE=∠EAG.∴△CDE∽△GAE.(2)证明:由(1)△CDE∽△GAE,∴DE:EA=DC:GA.∵DE:EA=1:2,CD=4,∴GA=8,CE:CG=1:3.又∵EF∥CD,AB∥CD,∴EF∥GB.∴△CEF∽△CGB.∴CE:CG=EF:GB.∵EF=6,∴GB=18.∴AB=GB−GA=18−8=10.【答案】(1)略;(2)10.14.如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D.求证:(1)D是BC的中点;(2)△BEC∽△ADC.【解答】(1)证明:∵AB为⊙O的直径,∴∠BDA=90∘∴AD⊥BC,∵AB=AC,∴BD=CD,∴D是BC的中点;(2)证明:AB=AC,∴∠C=∠ABD,∵AB为⊙O的直径,∴∠ADB=∠BEC=90∘,∴△BEC∽△ADC.【答案】(1)略;(2)略.1.如图,在△ABC中,AB=8,AC=6,点D在边AB上,AD=4.5,△ABC的角平分线AE交CD于点F.(1)求证:△ACD∽△ABC;(2)求AFAE的值.【解答】(1)证明:ADAC =ACAB,∵∠BAC=∠CAD,∴△ACD∽△ABC (2)解:∵△ACD∽△ABC,AE是∠BAC的角平分线,∴AFAE =ACAB=34.【答案】(1)略;(2)AFAE =ACAB=34.2.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40∘,∠B=60∘,求证:CD为△ABC的完美分割线;(2)在△ABC中,∠A=48∘,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数;(3)如图2,△ABC中,AC=2,BC=√2,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【解答】(1)证明:如图1中,∵∠A=40∘,∠B=60∘,∴∠ACB=80∘,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=12∠ACB=40∘,∴∠ACD=∠A=40∘,∴△ACD为等腰三角形,∵∠DCB=∠A=40∘,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD为△ABC的完美分割线;(2)解:①当AD=CD时,如图2,∠ACD=∠A=48∘,∵△BDC∽△BCA,∴∠BCD=∠A=48∘,∴∠ACB=∠ACD+∠BCD=96∘;②当AD=AC时,如图3中,∠ACD=∠ADC=180∘−48∘2=66∘,∵△BDC∽△BCA,∴∠BCD=∠A=48∘,∴∠ACB=∠ACD+∠BCD=114∘;③当AC=CD时,如图4中,∠ADC=∠A=48∘,∵△BDC∽△BCA,∴∠BCD=∠A=48∘,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96∘或114°;(3)解:由已知AC=AD=2,∵△BCD∽△BAC,∴BCBA =BDBC,设BD=x,∴(√2)2=x(x+2),∵x>0,∴x=√3−1,∵△BCD∽△BAC,∴,∴CD=√3−1√2×2=√6−√2.【答案】(1)略;(2)略;(3)√6−√2.3.已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)在原图上作DE∥AB交AC与点E,请直接写出另一个与△ABD相似的三角形,并求出DE的长.【解答】(1)证明:∵AB=2,BC=4,BD=1,∴ABBC =24=12,BDAB=12,∴ABBC =BDAB,∵∠ABD=∠CBA,∴△ABD∽△CBA;(2)解:∵DE∥AB,∴△CDE∽△CBA,∴△ABD∽△CDE,∴DE=1.5.【答案】(1)略;(2)1.5.4.如图,正方形ABCD的对角线AC、BD相交于点O,E是BC中点,DE交AC于F,若DE=12,则EF等于()第21页共22页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训A. 8;B. 6;C. 4;D. 3.【答案】C第22页共22页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训。
相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)1.在三角形ABC中,点D在边BC上,且∠BAC=∠DAG,∠XXX∠BAD。
证明:=。
当GC⊥BC时,证明:∠BAC=90°。
2.在三角形ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足。
证明:AC^2=AF•AD。
联结EF,证明:AE•DB=AD•EF。
3.在三角形ABC中,PC平分∠ACB,PB=PC。
证明:△APC∽△ACB。
若AP=2,PC=6,求AC的长。
4.在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠XXX∠C。
证明:△ABF∽△EAD。
若AB=4,∠BAE=30°,求AE的长。
5.在三角形ABC中,∠ABC=2∠C,BD平分∠ABC。
证明:AB•BC=AC•CD。
6.在直角三角形ABC中,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S。
说明AF•BE=2S的理由。
7.在等边三角形ABC中,边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P。
若AE=CF,证明:AF=BE,并求∠APB的度数。
若AE=2,试求AP•AF的值。
若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长。
8.在钝角三角形ABC中,AD,BE是边BC上的高。
证明。
9.在三角形ABC中,AB=AC,DE∥BC,点F在边AC 上,DF与BE相交于点G,且∠XXX∠ABE。
证明:(1)△DEF∽△BDE;(2)DG•DF=DB•EF。
10.在等边三角形ABC、△DEF中,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H两点,BC=2.问E在何处时CH的长度最大?11.在AB和CD交于点O的图形中,当∠A=∠C时,证明:OA•OB=OC•OD。
12.在等边三角形△AEC中,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外)。
相似三角形的判定与性质练习题(附答案)

相似三角形的判定与性质练习题一、单选题1.如果两个相似三角形的相似比是1:2, 那么这两个相似三角形的面积比是( ) A.2:1 B. 1:2C.1:2D.1:42.如图,点D 是△ABC 的边AB 上的一点,过点D 作BC 的平行线交AC 于点E,连接BE,过点D 作BE 的平行线交AC 于点F,则下列结论错误的是( )A. AD AE BD EC= B. AF DF AE BE= C. AE AF EC FE= D. DE AF BC FE = 3.下列四条线段中,不能组成比例线段的是( )A.3,6,2,4a b c d ====B.1,2,3,6a b c d ====C.4,6,5,10a b c d ====D.2,5,23,15a b c d ====4.如图,在ABC ∆中,点D 、E 分别在边AB 、AC 上,下列条件中不能判断ABC AED ~△△ ( )A. AED B ∠=∠B. ADE C ∠=∠C. AD AC AE AB =D. AD AE AB AC= 5.如图27-4-4,在四边形ABCD 中,BD 平分,90,ABC BAD BDC E ∠∠=∠=°为BC 的中点,AE 与BD 相交于点F.若4,30BC CBD =∠=°,则DF 的长为( )A.235B.233C.334D.4356.如图,在中,E是边AD的中点,EC交对角线BD于点F,则:EF FC等于( )A.3:2B.3:1C.1:1D.1:27.如图,点A,B,C,D的坐标分别是(1,7),(11),,(41),,(61),,以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(60),B.(63),C.(65),D.(42),8.如图,在正方形网格上,若使△ABC∽△PBD,则点P应在处( )A.P1B.P2C.P3D.P49.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=( )A.1:3B.1:4C.2:3D.1:210.如图,在等边三角形ABC 中,D 、E 分别在AC 、AB 上,且AD ︰AC=1︰3,AE=BE,则有( )A.△AED∽△BEDB.△AED∽△CBDC.△AED∽△ABDD.△BAD∽△BCD11.如图所示,四边形ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件:①∠APB=∠EPC;②∠APE=∠APB;③P 是BC 的中点;④BP:BC=2:3.其中能推出△ABP∽△ECP 的有( )A.4个B.3个C.2个D.1个12.如图,在ABC △中,CB CA =,90ACB ∠︒=,点D 在边BC 上(与,B C 不重合),四边形ADEF 为正方形,过点F 作FG CA ⊥,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:AC FG =;四边形1:2FAB 四边形CBFG S :S =△③ABC ABF ∠=∠;④2AD FQ AC =,其中正确结论有( ) A.1个 B.2个C.3个D.4个13.如图,点A 在线段BD 上.在BD 的同侧作等腰Rt ABC △和等腰Rt ADE △,CD 与BE ,AE 分别交于点,P M .对于下列结论:① BAE CAD △△;②MP MD MA ME ⋅=⋅;③22CB CP CM =⋅.其中正确的是( )A.①②③B.①C.①②D.②③14.如图,在平行四边形ABCD 中, E 为CD 上一点,连接AE 、BE 、BD ,且AE 、BD 交于点F ,:4:25DEF ABF S S ∆∆=,则:?DE EC = ( ) A. 2:3B. 2:5C. 3:5D. 3?:?2二、证明题15.如图,已知,,B C E 三点在同一条直线上,ABC △与DCE △都是等边三角形.其中线段BD 交AC 于点G ,线段AE 交CD 于点F ,连接GF .求证:(1)ACE BCD ≅△△;(2)AG AF GC FE=. 16.如图,在等边三角形ABC 中,点P 是BC 边上任意一点,AP 的垂直平分线分别交,AB AC 于点,M N .求证:BP CP BM CN ⋅=⋅.17.如图,D BC 已知是边上的中点,且AD AC =,DE BC ⊥,DE BA E 与相交于点,EC AD F 与相交于点.(1)求证:ABC FCD △△;(2)若5FCD S =△,10BC =,求DE 的长18.如图,已知AD 平分BAC ∠, AD 的垂直平分线EP 交BC 的延长线于点P .求证:2.PD PB PC =⋅19.如图,//AB FC ,D 是AB 上一点,DF 交AC 于点E ,DE FE =,分别延长FD 和CB 交于点G(1)求证:ADE CFE ≅△△;(2)若2GB =,4BC =,1BD =,求AB 的长.20.如图,在ABCD 中,,AM BC AN CD ⊥⊥,垂足分别为,M N .求证:(1)AMB AND △△;(2)AM MN AB AC=. 三、解答题21.如图,在4x3的正方形方格中,ABC △和DEC △的顶点都在边长为1的小正方形的顶点上.(1) 填空:ABC ∠= ,BC = ;(2) 判断ABC △和DEC △是否相似,并证明你的结论.22.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米,点P 从点O 开始沿OA 边向点A 以1厘米/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以1厘米/秒的速度移动.如果P,Q 同时出发,用t(秒)表示移动的时间(0≤t≤6),那么1.设△POQ 的面积为y,求y 关于t 的函数关系式;2.当t 为何值时,△POQ 与△AOB 相似.23.如图,已知矩形ABCD 的一条边8AD =,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.已知折痕与边BC 交于点O ,连接,,.AP OP OA(1)求证:OCP PDA △△;(2)若OCP △与PDA △的面积比为1:4,求边AB 的长.24.如图,在平面直角坐标系xOy 中,直线3y x =-+与x 轴交于点C ,与直线AD 交于点45(,)33A ,点D 的坐标为(0)1,.(1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当BOD △与BCE △相似时,求点E 的坐标. 25.如图,在矩形ABCD 中,12AB = cm ,6BC = cm ,点P 沿AB 边从点A 开始向点B 以2cm/s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果P ,Q 同时出发,用()t s 表示移动的时间(06t ≤≤),那么:(1)当t 为何值时,QAP △为等腰直角三角形?(2)对四边形QAPC 的面积,提出一个与计算结果有关的结论(3)当t 为何值时,以点Q ,A ,P 为顶点的三角形与ABC △相似?四、填空题26.如图,在直角梯形ABCD 中, 90ABC ∠=,//AD BC ,4AD =,5AB =,6BC =,点P 是AB 上一个动点,当PC PD +的和最小时, PB 的长为__________.27.如图,若AB∥CD,则△__________∽△__________,__________=__________=AO CO.28.如图,在等边三角形ABC 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且90ADF BED CFE ∠=∠=∠=︒,则DEF ∆与ABC ∆的面积之比为__________ 29.已知578a b c ==,且329a b c -+=,则243a b c +-的值为 . 30.如图,已知在Rt ABC △中,5,3AB BC ==,在线段AB 上取一点D ,作DE AB ⊥交AC 于E ,将ADE △沿DE 析叠,设点A 落在线段BD 上的对应点为11,A DA 的中点为,F 若1FEA FBE △△,则AD= .31.已知:如图,在△ABC 中,点A 1,B 1,C 1分别是BC 、AC 、AB 的中点,A 2,B 2,C 2分别是B 1C 1,A 1C 1,A 1B 1的中点,依此类推….若△ABC 的周长为1,则△A n B n C n 的周长为__________.32.如图,正三角形ABC 的边长为2,以BC 边上的高1AB 为边作正三角形11AB C ,ABC △与1ABC △公共部分的面积记为1S ,再以正三角形11AB C 的边1C 上的高2AB 为边作正三角形22AB C ,11AB C △与22AB C △公共部分的面积记为2S ,……,以此类推,则n S = .(用含n 的式子表示,n 为正整数)33.如图,在正方形ABCD 中,点E 是BC 边上一点,且 : 2:1,BE EC AE =与BD 交于点F ,则AFD △与四边形DFEC 的面积之比是 .34.如图,在△ABC 中,∠C=90°,BC=16cm,AC=12cm,点P 从点B 出发,沿BC 以2 cm /s 的速度向点C 移动,点Q 从点C 出发,以1cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为ts,当t=__________时,△CPQ 与△CBA 相似.35.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且1,4CF CD =下列结论: ①30BAE ∠=°; ②;ABE ECF △△③AE EF ⊥; ④ADF ECF △△.其中正确结论是 .(填序号)36.如图27-4-9,在ABC △中,90,8m 10m,C BC AB ∠===,°点 P 从B 点出发,沿BC 方向以2m/s 的速度移动,点Q 从C 出发,沿CA 方向以1m/s 的速度移动.若P Q 、同时分别从B C 、出发,经过____________s,CPQ CBA △△~.37.如图24-4-10,ABC △的两条中线AD 和BE 相交于点G ,过点E 作//EF BC 交AD 于点F ,则FG AG=________.参考答案1.答案:C解析:2.答案:D解析:3.答案:C解析:A 选项,因为3:62:4=,所以,,,a b c d 四条线段成比例B 选项,因为1232,2226==,所以,,,a b c d 四条线段成比例C 选项,因为4:56:10≠,所以,,,a b c d 四条线段不成比例D 选项,因为2252325,55515==,所以,,,a b c d 四条线段成比例故选C 4.答案:D解析:∵DAE CAB ∠=∠,∴当AED B ∠=∠或ADE C ∠=∠时,由两角分别相等的两个三角形相似,可以得出ABC AED ~△△;当AD AC AE AB=时,由两边成比例且夹角相等的两个三角形相似,可得ABC AED ~△△. 只有选项D 中条件不能判断ABC AED ~△△,故选D.5.答案:D解析:如图,在Rt BDC △中,4,30,BC CBD =∠=°2,2 3.CD BD ∴=∴=连接,90,DE BDC ∠=°,点E 是BC 中点,1 2.2DE BE CE C ∴====30,30,CBD BDE DBC ∠=∴∠=∠=°°,30,BD CBC ABD DBC ∠∴∠=∠=°,//,,ABD BDE DE AB DEF BAF ∴∠=∠∴∴△△~.DF DE BF AB ∴=在Rt ABD △中,230,23,3,,3DF ABD BD AD BF ∠==∴=∴=°22243,23,5555DF DF BD BD ∴=∴==⨯=故选D.6.答案:D解析:在中, //AD BC ,∴DEF BCF ∆~∆,∴DE EF BC CF=. ∴点E 是边AD 的中点, ∴12AE DE AD ==, ∴12EF CF =. 7.答案:B解析:ABC ∆中, 90,6,3,:2ABCAB BC AB BC ∠====. A 、当点E 的坐标为()6,0时, 90,2,1CDE CD DE ∠===,则::,AB BC CD DE CDE ABC =∆~∆,故本选项不符合题意; B 、当点E 的坐标为()6,3时, 90,2,2CDE CD DE ∠===,则::,AB BC CD DE CDE ≠∆与ABC ∆不相似,故本选项符合题意; C 、当点E 的坐标为()6,5时, 90,2,4CDE CD DE ∠===,则::,AB BC DE CD EDC ABC =∆~∆,故本选项不符合题意; D 、当点E 的坐标为()4,2时, 90,2,1ECD CD CE ∠===,则::,?AB BC CD CE DCE ABC =∆~∆,故本选项不符合题意; 故选:B.8.答案:C解析:从图中可知,要使△ABC 与△PBD相似,根据勾股定理,得BC =BD =12BC AB BD BP ===,因为AB=2,那么BP=4,故选择P 3处 . 考点:相似三角形点评:该题主要考查学生对相似三角形概念的理解,以及对其性质的应用。
相似三角形的判定十大题型

在△BPG 中,∵∠B=45°,
∴∠AGB=∠CPF,
∴∠BPG+∠BGP=135°,
∵∠B=∠C,
∴∠BGP=∠CPF,
∴△PBG∽△FCP.
∵∠B=∠C,
∴△PBG∽△FCP;
【题型4 利用相似三角形的判定探究线段之间的关系】
【例 4】四边形 ABCD 中,点 E 在边 AB 上,连接 DE,CE. (1)若∠A=∠B=∠DEC=50°,找出图中的相似三角形,并说明理由; (2)若四边形 ABCD 为矩形,AB=5,BC=2,且图中的三个三角形都相似,求 AE 的 长. (3)若∠A=∠B=90°,AD<BC,图中的三个三角形都相似,请判断 AE 和 BE 的数 量关系并说明理由.
解:(1)∵D、E 分别是 AC、BC 的中点, ∴DE∥AB,DE= 12AB=5, ∵DE∥AB, ∴∠DEC=∠B,而∠F=∠B, ∴∠DEC=∠F, ∴DF=DE=5; (2)∵AC=BC, ∴∠A=∠B, ∵∠CDE=∠A,∠CED=∠B, ∴∠CDE=∠B, ∵∠B=∠F, ∴∠CDE=∠F, ∵∠CED=∠DEF, ∴△CDE∽△DFE.
出发,问在运动 5 秒钟内,以点 D,A,E 为顶点的三角形何时与△OCD 相似?(只考
虑以点 A、O 为对应顶点的情况)
解:(1)C(3,4),D(9,4);
(2)易知:OB=AB=10;
∵C 点坐标为(3,4),
∴点 C 到 x 轴的距离为 4
①当点 D 在线段 OA 上,即 0<t≤6 时,OD=2t;
则:S=
12OD×4=
1 2
×2t×4=4t;
②当 D 在线段 AB 上,即 6≤t<11 时,BD=OA+AB﹣2t=22﹣2t;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1文档来源为:从网络收集整理.word 版本可编辑.
相似三角形的判定与性质综合运用经典题型
考点一:相似三角形的判定与性质:
例1、如图,△PCD 是等边三角形,A 、C 、D 、B 在同一直线上,且∠APB=120°. 求证:⑴△PAC ∽△BPD ;⑵ CD 2
=AC ·BD.
例2、如图,在等腰△ABC 中, ∠BAC=90°,AB=AC=1,点D 是BC 边上的一个动点(不与B 、C 重合),在AC 上取一点E ,使∠ADE=45°(1)求证:△ABD ∽△DCE ;
(2)设BD=x ,AE=y ,求y 关于x 函数关系式及自变量x 值范围,并求出当x 为何值时AE 取得最小值? (3)在AC 上是否存在点E ,使得△ADE 为等腰三角形?若存在,求AE 的长;若不存在,请说明理由? 例3、如图所示,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B :1)求证:△ADF ∽△DEC ; 2)若AB=4,
3
3=AD ,AE=3
,求AF 的长。
考点二:射影定理:
例4、如图,在Rt ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=4cm,AD=8cm,求AC 、BC 及BD 的长。
例5、如图,已知正方形ABCD ,E 是AB 的中点,F 是AD 上的一点,且AF=1
4 AD ,EG ⊥CF 于点G ,
(1)求证:△AEF ∽△BCE ; (2)试说明:EG 2
=CG ·FG.
例6、已知:如图所示的一张矩形纸片ABCD (AD>AB ),将纸片折叠一次,使点A 与点C 重合,再展开,折痕EF 交AD 边于E ,交BC 边于F ,分别连结AF 和CE .
(1)求证:四边形AFCE 是菱形;(2)若AE=10cm ,△ABF 的面积为24cm 2
,求△ABF 的周长;
(3)在线段AC 上是否存在一点P ,使得2AE 2
=AC ·AP ?若存在,请说明点P 的位置,并予以证明;若不存在,请说明理由.
考点三:相似之共线线段的比例问题:
例7、已知如图,P 为平行四边形ABCD 的对角线AC 上一点,过P 的直线与AD 、BC 、CD 的延长线、AB
的延长线分别相交于点E 、F 、G 、H. 求证:PG
PH
PF PE =
例8、如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于点E ,交BA 的延长线于点F .(1)求证:PC 2
=PE •PF ;(2)若菱形边长为8,PE=2,EF=6,求FB 的长. 例9、如图,CD 是Rt △ABC 斜边上的高,E 为AC 的中点,ED 交CB 的延长线于F . 求证:BD •CF=CD •DF .
例10、如图:已知在等边三角形ABC 中,点D 、E 分别是AB 、BC 延长线上的
点,且BD=CE ,直线CD 与AE 相交于点F .(1)求证:DC=AE ;(2)求证:AD 2
=DC •DF .
例11、如图,E 是矩形ABCD 的边BC 上一点,EF ⊥AE ,EF 分别交AC ,CD 于点M ,F ,BG ⊥AC ,垂足为G ,BG 交AE 于点H .(1)找出与△ABH 相似的三角形,并证明;(2)若E 是BC 中点,BC=2AB ,AB=2,求EM 的长. 例12、如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG ,AE 与CG 相交于点M ,CG 与AD 相交于点N .求证:(1)AE=CG ;(2)AN •DN=CN •MN . 例13、如图,在Rt △ABC 中,CD 是斜边AB 上的高,点M 在CD 上,DH ⊥
BM 且与AC 的延长线交于点E .求证:(1)△AED ∽△CBM ; (2)AE •CM=AC •CD .
例14、如图,△ABC 是直角三角形,∠ACB=90°,CD ⊥AB 于D ,E 是AC 的中点,ED 的延长线与CB 的延长线交于点F .(1)求证:FD 2
=FB •FC ; (2)若G 是BC 的中点,连接GD ,GD 与EF 垂直吗?并说明理由. 例15、如图,四边形ABCD 、CDEF 、EFGH 都是正方形.
(1)⊿ACF 与⊿ACG 相似吗?说说你的理由.(2)求∠1+∠2的度数. 考点四:相似三角形的实际应用:
例16、如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上. (1)若这个矩形是正方形,那么边长是多少?
(2)若这个矩形的长PQ 是宽PN 的2倍,则边长是多少?
例17、已知左,右并排的两棵大树的高分别是AB=8m 和CD=12m ,两树的
根
A
B
C
D
F
部的距离BD=5m。
一个身高1.6m的人沿着正对着两棵树的一条水平直路从左向右前进,当他与左边较低的树的距离小于多少时,就不能看见右边较高的树的顶端点C?
例18、两颗树的高度分别为AB=6m,CD=8m,两树的根部间的距离AC=4m,小强沿着正对这两棵树的方向从左向右前进,如果小强的眼睛与地面的距离为1.6m,当小强与树AB的距离小于多少时,就不能看到树CD的树顶D?
例19、小亮想利用太阳光下的影子测量校园内一棵大树
的高,小亮发现因大树靠近学校围墙,大树的影子不全
落在地面上,如图所示,经测量,墙上影高CD=1.5m,地
面影长BC=10m.
若此时1米高的标杆的影长恰好为2m.请你求出这棵大
树AB的高度.
例20、如图,九年级的数学活动课上,小明发现电线杆AB的影子落在土
坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD与地面成30°角,
且此时测得1米杆的影长为2米,求电线杆的高度.
例21、如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明
在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长
FG=4m,如果小明的身高为1.6m,求路灯杆AB的高度.
考点五:相似三角形中的动点问题:
例22、在矩形ABCD中,AB=12cm,AD=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动,点Q沿DA边从点D开始向点A以1cm/秒的速度移动,如果P、Q同时出发,用t(秒)表示运动时间(0≤t≤6),那么当t为何值时,△APQ与△ABD相似?说明理由.
例23、如图,在△ABC中,∠B=90°,AB=6米,BC=8米,动
点P以2米/秒的速度从A点出发,沿AC向点C移动.同时,
动点Q以1米/秒的速度从C点出发,沿CB向点B移动.当其
中有一点到达终点时,它们都停止移动.设移动的时间为t秒.
(1)①当t=2.5秒时,求△CPQ的面积;②求△CPQ的面积S
(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,写出t的值。
例24、如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x.(1)当x为何值时,PQ∥BC;(2)当S△BCQ:S△ABC=1:3 ,求S△BPQ:S△ABC的值;(3)△APQ能否与△CQB相似?若能,求出AP的长;若不能,请说明理由.
例25、如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标为(6,0),(6,8).动点M、N分别从O、B同时出发,都以每秒1个单位的速度运动,其中,点M沿OA向终点A运动,点N沿BC 向终点C运动,过点N作NP⊥BC,交AC于点P,连接MP,已知动点运动了x秒.
(1)用含x的代数式表示P的坐标(直接写出答案);(2)设y=S四边形OMPC,
求y的最小值,并求此时x的值;(3)是否存在x的值,使以P、A、M为顶
点的三角形与△AOC相似?若存在,请求出x的值;若不存在,请说明理由.
例26、如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,
过P作PF⊥AE于F.
(1)求证:△PFA∽△ABE;
(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P、F、E
为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由.
例27、如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x2﹣7x+12=0的两根(OA<OB),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点0运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.
(1)求A、B两点的坐标;(2)求当t为何值时,△APQ与△AOB相似;(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,求出M点的坐标;若不存在,请说明理由.
2文档来源为:从网络收集整理.word版本可编辑.。