指派问题1

合集下载

lingo 指派问题

lingo 指派问题

Lingo 作业题1、指派问题设有n 个人, 计划作n 项工作, 其中ij c 表示第i 个人做第j 项工作的收益,求一种指派方式,使得每个人完成一项工作,使总收益最大.现6个人做6项工作的最优指派问题,其收益矩阵如表所示,请给出合理安排.一、问题分析根据第一题的题意我们可以知道,此题的最终目标是让我们建立一种数学模型来解决这个实际生活中的问题,此题意简而言之就是为了解决6个人做6项工作的指派最优问题,从而使题目中的ij C 收益等达到所需要的目的。

在题目中曾提到:每个人完成一项工作。

其意思就是每人只能做一项工作且每项工作只能做一人做。

二、符号说明此题属于最优指派问题,引入如下变量:题目中说:ij C 表示第i 个人做第j 项工作的收益。

例如56C 则表示第5个人做第6项工作。

即6611max ij ij i j z xy c ===∑∑s.t.:611ij i C==∑ ,j=1,2,3,···,6611ij j C==∑ ,i=1,2,3,···,6 01ij C =或 ,i,j=1,2,3,···,6此题需要求出最大值最优(最大值),即需要使用max ,表示最大。

在编程过程中“@bin (x )”是“限制x 为0或1”。

三、建立模型此题属于最优指派问题,与常见的线性问题极为类似。

因此,使用Lingo软件。

由于“每人只能做一项工作且每项工作只能做一人做”故采用0-1规划求得优。

四、模型求解(一)常规程序求解Lingo输入框:max=20*c11+15*c12+16*c13+5*c14+4*c15+7*c16+17*c21+15*c22+33*c23+12*c24+8*c25+6*c26+9*c31+12*c32+18*c33+16*c34+30*c35+13*c36+12*c41+8*c42+11*c43+27*c44+19*c45+14*c46+0*c51+7*c52+10*c53+21*c54+10*c55+32*c56+0*c61+0*c62+0*c63+6*c64+11*c65+13*c66;c11+c12+c13+c14+c15+c16=1;c21+c22+c23+c24+c25+c26=1;c31+c32+c33+c34+c35+c36=1;c41+c42+c43+c44+c45+c46=1;c51+c52+c53+c54+c55+c56=1;c61+c62+c63+c64+c65+c66=1;c11+c21+c31+c41+c51+c61=1;c12+c22+c32+c42+c52+c62=1;c13+c23+c33+c43+c53+c63=1;c14+c24+c34+c44+c54+c64=1;c15+c25+c35+c45+c55+c65=1;c16+c26+c36+c46+c56+c66=1;@bin(c11);@bin(c12);@bin(c13);@bin(c14);@bin(c15);@bin(c16);@bin(c21);@bin(c22);@bin(c23);@bin(c24);@bin(c25);@bin(c26);@bin(c31);@bin(c32);@bin(c33);@bin(c34);@bin(c35);@bin(c36);@bin(c41);@bin(c42);@bin(c43);@bin(c44);@bin(c45);@bin(c46);@bin(c51);@bin(c52);@bin(c53);@bin(c54);@bin(c55);@bin(c56);@bin(c61);@bin(c62);@bin(c63);@bin(c64);@bin(c65);@bin(c66);Lingo输出(结果)框:Global optimal solution found.Objective value: 142.0000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostC11 1.000000 -20.00000C12 0.000000 -15.00000C13 0.000000 -16.00000C14 0.000000 -5.000000C15 0.000000 -4.000000C21 0.000000 -17.00000 C22 0.000000 -15.00000 C23 1.000000 -33.00000 C24 0.000000 -12.00000 C25 0.000000 -8.000000 C26 0.000000 -6.000000 C31 0.000000 -9.000000 C32 0.000000 -12.00000 C33 0.000000 -18.00000 C34 0.000000 -16.00000 C35 1.000000 -30.00000 C36 0.000000 -13.00000 C41 0.000000 -12.00000 C42 0.000000 -8.000000 C43 0.000000 -11.00000 C44 1.000000 -27.00000 C45 0.000000 -19.00000 C46 0.000000 -14.00000 C51 0.000000 0.000000 C52 0.000000 -7.000000 C53 0.000000 -10.00000 C54 0.000000 -21.00000 C55 0.000000 -10.00000 C56 1.000000 -32.00000 C61 0.000000 0.000000 C62 1.000000 0.000000 C63 0.000000 0.000000 C64 0.000000 -6.000000 C65 0.000000 -11.00000 C66 0.000000 -13.00000Row Slack or Surplus Dual Price1 142.0000 1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.00000011 0.000000 0.00000013 0.000000 0.000000(二)循环语句求解Lingo输入框:model:sets:gz/A1..A6/:a;ry/B1..B6/:b;yw(gz,ry):xy,x;endsetsdata:a=1,1,1,1,1,1;b=1,1,1,1,1,1;xy=20 15 16 5 4 7,17 15 33 12 8 6,9 12 18 16 30 13,12 8 11 27 19 14,0 7 10 21 10 32,0 0 0 6 11 13;enddatamax=@sum(yw:xy*x);@for(gz(i):@sum(ry(j):x(i,j))=1);@for(ry(j):@sum(gz(i):x(i,j))=1);@for(yw(i,j):@bin(x(i,j)));EndLingo输出(结果)框Global optimal solution found.Objective value: 142.0000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced Cost A( A1) 1.000000 0.000000 A( A2) 1.000000 0.000000 A( A3) 1.000000 0.000000 A( A4) 1.000000 0.000000 A( A5) 1.000000 0.000000 A( A6) 1.000000 0.000000 B( B1) 1.000000 0.000000 B( B2) 1.000000 0.000000B( B4) 1.000000 0.000000 B( B5) 1.000000 0.000000 B( B6) 1.000000 0.000000 XY( A1, B1) 20.00000 0.000000 XY( A1, B2) 15.00000 0.000000 XY( A1, B3) 16.00000 0.000000 XY( A1, B4) 5.000000 0.000000 XY( A1, B5) 4.000000 0.000000 XY( A1, B6) 7.000000 0.000000 XY( A2, B1) 17.00000 0.000000 XY( A2, B2) 15.00000 0.000000 XY( A2, B3) 33.00000 0.000000 XY( A2, B4) 12.00000 0.000000 XY( A2, B5) 8.000000 0.000000 XY( A2, B6) 6.000000 0.000000 XY( A3, B1) 9.000000 0.000000 XY( A3, B2) 12.00000 0.000000 XY( A3, B3) 18.00000 0.000000 XY( A3, B4) 16.00000 0.000000 XY( A3, B5) 30.00000 0.000000 XY( A3, B6) 13.00000 0.000000 XY( A4, B1) 12.00000 0.000000 XY( A4, B2) 8.000000 0.000000 XY( A4, B3) 11.00000 0.000000 XY( A4, B4) 27.00000 0.000000 XY( A4, B5) 19.00000 0.000000 XY( A4, B6) 14.00000 0.000000 XY( A5, B1) 0.000000 0.000000 XY( A5, B2) 7.000000 0.000000 XY( A5, B3) 10.00000 0.000000 XY( A5, B4) 21.00000 0.000000 XY( A5, B5) 10.00000 0.000000 XY( A5, B6) 32.00000 0.000000 XY( A6, B1) 0.000000 0.000000 XY( A6, B2) 0.000000 0.000000 XY( A6, B3) 0.000000 0.000000 XY( A6, B4) 6.000000 0.000000 XY( A6, B5) 11.00000 0.000000 XY( A6, B6) 13.00000 0.000000 X( A1, B1) 1.000000 -20.00000 X( A1, B2) 0.000000 -15.00000 X( A1, B3) 0.000000 -16.00000 X( A1, B4) 0.000000 -5.000000X( A1, B6) 0.000000 -7.000000 X( A2, B1) 0.000000 -17.00000 X( A2, B2) 0.000000 -15.00000 X( A2, B3) 1.000000 -33.00000 X( A2, B4) 0.000000 -12.00000 X( A2, B5) 0.000000 -8.000000 X( A2, B6) 0.000000 -6.000000 X( A3, B1) 0.000000 -9.000000 X( A3, B2) 0.000000 -12.00000 X( A3, B3) 0.000000 -18.00000 X( A3, B4) 0.000000 -16.00000 X( A3, B5) 1.000000 -30.00000 X( A3, B6) 0.000000 -13.00000 X( A4, B1) 0.000000 -12.00000 X( A4, B2) 0.000000 -8.000000 X( A4, B3) 0.000000 -11.00000 X( A4, B4) 1.000000 -27.00000 X( A4, B5) 0.000000 -19.00000 X( A4, B6) 0.000000 -14.00000 X( A5, B1) 0.000000 0.000000 X( A5, B2) 0.000000 -7.000000 X( A5, B3) 0.000000 -10.00000 X( A5, B4) 0.000000 -21.00000 X( A5, B5) 0.000000 -10.00000 X( A5, B6) 1.000000 -32.00000 X( A6, B1) 0.000000 0.000000 X( A6, B2) 1.000000 0.000000 X( A6, B3) 0.000000 0.000000 X( A6, B4) 0.000000 -6.000000 X( A6, B5) 0.000000 -11.00000 X( A6, B6) 0.000000 -13.00000Row Slack or Surplus Dual Price1 142.0000 1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.00000012 0.000000 0.00000013 0.000000 0.000000五、模型结果通过以上的应用Lingo模型求解,得出结论:第1项工作由第1个人来完成。

运筹学__指派问题

运筹学__指派问题

•下面要证明M m. 如图假定覆盖所有0元素的m条直线 有r行、c列,m=r+c.
所有r行上不在j1,…,jc列上的0元 素个数≥ r,这些0元素至少有r个位
于不同列
同理:所有c列上不在i1,…,ir行上
j1 j2
的0元素个数≥c ,且这些0元素至
少有c个位于不同
i1 i2
ir jc
若上述两部分0个数总和为S,则S≥m;其中有m 个,又它们必无重复元素,彼此独立,则SM,故 有m≤M, 故可得M=m.
覆盖所有“0”元素的最少直线数 = 独立的“0”元素 的最多个数
推论1:覆盖所有“0”元素的直线数≥ 不同行不同列的“0”元素的最多个数(m)
推论2:覆盖所有“0”元素的最少直线数≥ 不同行不同列的“0”元素的个数
定理2说明: 1. 只要表中含有不同行或不同列的“0”元素,
都可以通过直线覆盖的方式来找到它们 2. 当覆盖直线的最少条数达到m条时,
(二)算法的基本原理 匈牙利数学家狄·康尼格(D·Konig)证明的两个定理
定理1 如果从指派问题效率矩阵[cij]的每一行元素中分别 减去(或加上)一个常数ui(被称为该行的位势), 从每一列分别减去(或加上)一个常数vj(称为该列的位势) 得到一个新的效率矩阵[bij], 若其中bij=cij-ui-vj,
一、指派问题的数学模型
(一)举例
例7: 有一份中文说明书, 要分别译成英、日、德、俄四种文字, 分别记作E 、 J 、 G 、 R ,交与甲、乙、丙、丁 四个人去完成. 因个人专长不同, 他们完成翻译不同语种的说明书所需的时间(h)如表所示. 应如何指派,使四个人分别完成这四项任务总时间为最小?
任务 人员
将其代入目标函数中得到zb=0,它一定是最小值。 ❖ 这就是以(bij)为系数矩阵的指派问题的最优解。

CASE02-(指派问题案例答案1)

CASE02-(指派问题案例答案1)

a)Assign one scientist to each of the five projects to maximize the total number of bid points.To maximize the scientists preferences you want to assign Dr. Tsai to lead project Up,Dr. Kvaal to lead project Stable, Dr. Zuner to lead project Choice, Dr. Mickey to leadproject Hope, and Dr. Rollins to lead project Release.b) Dr. Rollins is not available, so his “Supply” in cell I14 is reduced to zero. Since nowmust allow a project to not be done, the constraints in rows 15 to 17 becomeTotalAssigne d(B15:F15) ≤ Demand(B17:F17) rather than =.Project Up would not be done.c) Since Dr. Zooner or Dr. Mickey can lead two projects, their “Supply” in column I ischanged to 2 and the corresponding constraint changed to ≤ (in order to allow them to do either one or two projects).Dr. Kvaal leads project Stable, Dr. Zuner leads project Choice, Dr. Tsai leads project Release, and Dr. Mickey leads the projects Hope and Up.d) Under the new bids of Dr. Zuner the assignment does not change:e) Certainly Dr. Zuner could be disappointed that she is not assigned to project Stable,especially when she expressed a higher preference for that project than the scientist assigned. The optimal solution maximizes the preferences overall, but individual scientists may be disappointed. We should therefore make sure to communicate the reasoning behind the assignments to the scientists.f) Whenever a scientist cannot lead a particular project we constrain the correspondingchanging cell (E10, F10, C13, E13, and B14) to equal 0.Dr. Kvaal leads project Stable, Dr. Zuner leads project Choice, Dr. Tsai leads project Release, Dr. Mickey leads project Up, and Dr. Rollins leads project Hope.g) When we want to assign two assignees to the same task we need to duplicate that task.Project Up is led by Dr. Mickey, Stable by Dr. Kvaal, Choice by Dr. Zuner, Hope by Dr. Arriaga and Dr. Santos, and Release by Dr. Tsai and Dr. Rollins.h) No. Maximizing overall preferences does not maximize individual preferences.Scientists who do not get their first choice may become resentful and therefore lack the motivation to lead their assigned project. For example, in the optimal solution of part(g), Dr. Santos clearly elected project Release as his first choice, but he was assigned tolead project Hope.In addition, maximizing preferences ignores other considerations that should befactored into the assignment decision. For example, the scientist with the highestpreference for a project may not be the scientist most qualified to lead the project.。

指派问题(经典运筹学)

指派问题(经典运筹学)
c 11 c 取 C 21 c n1 c 12 c 22 cn2 c1n c 2n c nn
1 1 c 11 2 c 21 … i c i1 … n c n1 2
c 12 c 22 ci2 cn2


1 2 3 4
6 20 10
21
25 14 0
5
x6
解:x i
1
2
0
不在第i个地区建站
i=1,2, …,6
Z表示全区消防站总数
2 6 1 x3 x4 1 s.t x3 x4 x5 1 x x x 1 4 5 6 x i 0 ,1 i 1, 2 , , 6
一、决策问题与0-1变量
决策变量
xi
x i 是否做第
i 件事 i 1, 2 , , n
1 0
做第i件事 不做第i件事
x1 x 2 x n k
n件事中必须做k件并只做k件事 n件事中最多做k件事 n件事中至少做k件事
x1 x 2 x n k x1 x 2 x n k
当n=4时, 有16变量,8个约束方程
例:现有4份工作,4个人应聘,由 于各人技术专长不同,他们承担 各项工作所需费用如下表所示, 且规定每人只能做一项工作,每 一项工作只能由一人承担,试求 使总费用最小的分派方案。
工作
Z表示总费用
max Z 3 x11 5 x12 4 x13 5 x14 6 x 21 7 x 22 6 x 23 8 x 24 8 x 31 9 x 32 8 x 33 10 x 34 10 x 41 10 x 42 9 x 43 11 x 44

lingo指派问题

lingo指派问题

实用文档大全Lingo 作业题1、指派问题设有n 个人, 计划作n 项工作, 其中ij c 表示第i 个人做第j 项工作的收益,求一种指派方式,使得每个人完成一项工作,使总收益最大.现6个人做6项工作的最优指派问题,其收益矩阵如表所示,请给出合理安排.一、问题分析根据第一题的题意我们可以知道,此题的最终目标是让我们建立一种数学模型来解决这个实际生活中的问题,此题意简而言之就是为了解决6个人做6项工作的指派最优问题,从而使题目中的ij C 收益等达到所需要的目的。

在题目中曾提到:每个人完成一项工作。

其意思就是每人只能做一项工作且每项工作只能做一人做。

二、符号说明此题属于最优指派问题,引入如下变量:题目中说:ij C 表示第i 个人做第j 项工作的收益。

例如56C 则表示第5个人做第6项工作。

即6611max ij ij i j z xy c ===∑∑s.t.:611iji C==∑ ,j=1,2,3,···,6611ijj C==∑ ,i=1,2,3,···,6 01ij C =或 ,i,j=1,2,3,···,6此题需要求出最大值最优(最大值),即需要使用max ,表示最大。

在编程过程中“bin (x )”是“限制x 为0或1”。

三、建立模型此题属于最优指派问题,与常见的线性问题极为类似。

因此,使用Lingo 软实用文档件。

由于“每人只能做一项工作且每项工作只能做一人做”故采用0-1规划求得优。

四、模型求解(一)常规程序求解Lingo输入框:max=20*c11+15*c12+16*c13+5*c14+4*c15+7*c16+17*c21+15*c22+33*c23+12*c24+8*c25+6*c26+9*c31+12*c32+18*c33+16*c34+30*c35+13*c36+12*c41+8*c42+11*c43+27*c44+19*c45+14*c46+0*c51+7*c52+10*c53+21*c54+10*c55+32*c56+0*c61+0*c62+0*c63+6*c64+11*c65+13*c66;c11+c12+c13+c14+c15+c16=1;c21+c22+c23+c24+c25+c26=1;c31+c32+c33+c34+c35+c36=1;c41+c42+c43+c44+c45+c46=1;c51+c52+c53+c54+c55+c56=1;c61+c62+c63+c64+c65+c66=1;c11+c21+c31+c41+c51+c61=1;c12+c22+c32+c42+c52+c62=1;c13+c23+c33+c43+c53+c63=1;c14+c24+c34+c44+c54+c64=1;c15+c25+c35+c45+c55+c65=1;c16+c26+c36+c46+c56+c66=1;bin(c11);bin(c12);bin(c13);bin(c14);bin(c15);bin(c16);bin(c21);bin(c22);bin(c23);bin(c24);bin(c25);bin(c26);bin(c31);bin(c32);bin(c33);bin(c34);bin(c35);bin(c36);bin(c41);bin(c42);bin(c43);bin(c44);bin(c45);bin(c46);bin(c51);bin(c52);bin(c53);bin(c54);bin(c55);bin(c56);bin(c61);bin(c62);bin(c63);bin(c64);bin(c65);bin(c66);Lingo输出(结果)框:Global optimal solution found.Objective value: 142.0000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostC11 1.000000 -20.00000C12 0.000000 -15.00000C13 0.000000 -16.00000C14 0.000000 -5.000000C15 0.000000 -4.000000大全实用文档大全C16 0.000000 -7.000000 C21 0.000000 -17.00000 C22 0.000000 -15.00000 C23 1.000000 -33.00000 C24 0.000000 -12.00000 C25 0.000000 -8.000000 C26 0.000000 -6.000000 C31 0.000000 -9.000000 C32 0.000000 -12.00000 C33 0.000000 -18.00000 C34 0.000000 -16.00000 C35 1.000000 -30.00000 C36 0.000000 -13.00000 C41 0.000000 -12.00000 C42 0.000000 -8.000000 C43 0.000000 -11.00000 C44 1.000000 -27.00000 C45 0.000000 -19.00000 C46 0.000000 -14.00000 C51 0.000000 0.000000 C52 0.000000 -7.000000 C53 0.000000 -10.00000 C54 0.000000 -21.00000 C55 0.000000 -10.00000 C56 1.000000 -32.00000 C61 0.000000 0.000000 C62 1.000000 0.000000 C63 0.000000 0.000000 C64 0.000000 -6.000000 C65 0.000000 -11.00000 C66 0.000000 -13.00000Row Slack or Surplus Dual Price1 142.0000 1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.00000011 0.000000 0.000000实用文档大全12 0.000000 0.00000013 0.000000 0.000000(二)循环语句求解Lingo输入框:model:sets:gz/A1..A6/:a;ry/B1..B6/:b;yw(gz,ry):xy,x;endsetsdata:a=1,1,1,1,1,1;b=1,1,1,1,1,1;xy=20 15 16 5 4 7,17 15 33 12 8 6,9 12 18 16 30 13,12 8 11 27 19 14,0 7 10 21 10 32,0 0 0 6 11 13;enddatamax=sum(yw:xy*x);for(gz(i):sum(ry(j):x(i,j))=1);for(ry(j):sum(gz(i):x(i,j))=1);for(yw(i,j):bin(x(i,j)));EndLingo输出(结果)框Global optimal solution found.Objective value: 142.0000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostA( A1) 1.000000 0.000000A( A2) 1.000000 0.000000A( A3) 1.000000 0.000000A( A4) 1.000000 0.000000A( A5) 1.000000 0.000000A( A6) 1.000000 0.000000B( B1) 1.000000 0.000000B( B2) 1.000000 0.000000实用文档大全B( B3) 1.000000 0.000000B( B4) 1.000000 0.000000B( B5) 1.000000 0.000000B( B6) 1.000000 0.000000 XY( A1, B1) 20.00000 0.000000 XY( A1, B2) 15.00000 0.000000 XY( A1, B3) 16.00000 0.000000 XY( A1, B4) 5.000000 0.000000 XY( A1, B5) 4.000000 0.000000 XY( A1, B6) 7.000000 0.000000 XY( A2, B1) 17.00000 0.000000 XY( A2, B2) 15.00000 0.000000 XY( A2, B3) 33.00000 0.000000 XY( A2, B4) 12.00000 0.000000 XY( A2, B5) 8.000000 0.000000 XY( A2, B6) 6.000000 0.000000 XY( A3, B1) 9.000000 0.000000 XY( A3, B2) 12.00000 0.000000 XY( A3, B3) 18.00000 0.000000 XY( A3, B4) 16.00000 0.000000 XY( A3, B5) 30.00000 0.000000 XY( A3, B6) 13.00000 0.000000 XY( A4, B1) 12.00000 0.000000 XY( A4, B2) 8.000000 0.000000 XY( A4, B3) 11.00000 0.000000 XY( A4, B4) 27.00000 0.000000 XY( A4, B5) 19.00000 0.000000 XY( A4, B6) 14.00000 0.000000 XY( A5, B1) 0.000000 0.000000 XY( A5, B2) 7.000000 0.000000 XY( A5, B3) 10.00000 0.000000 XY( A5, B4) 21.00000 0.000000 XY( A5, B5) 10.00000 0.000000 XY( A5, B6) 32.00000 0.000000 XY( A6, B1) 0.000000 0.000000 XY( A6, B2) 0.000000 0.000000 XY( A6, B3) 0.000000 0.000000 XY( A6, B4) 6.000000 0.000000 XY( A6, B5) 11.00000 0.000000 XY( A6, B6) 13.00000 0.000000 X( A1, B1) 1.000000 -20.00000 X( A1, B2) 0.000000 -15.00000 X( A1, B3) 0.000000 -16.00000 X( A1, B4) 0.000000 -5.000000实用文档大全X( A1, B5) 0.000000 -4.000000 X( A1, B6) 0.000000 -7.000000 X( A2, B1) 0.000000 -17.00000 X( A2, B2) 0.000000 -15.00000 X( A2, B3) 1.000000 -33.00000 X( A2, B4) 0.000000 -12.00000 X( A2, B5) 0.000000 -8.000000 X( A2, B6) 0.000000 -6.000000 X( A3, B1) 0.000000 -9.000000 X( A3, B2) 0.000000 -12.00000 X( A3, B3) 0.000000 -18.00000 X( A3, B4) 0.000000 -16.00000 X( A3, B5) 1.000000 -30.00000 X( A3, B6) 0.000000 -13.00000 X( A4, B1) 0.000000 -12.00000 X( A4, B2) 0.000000 -8.000000 X( A4, B3) 0.000000 -11.00000 X( A4, B4) 1.000000 -27.00000 X( A4, B5) 0.000000 -19.00000 X( A4, B6) 0.000000 -14.00000 X( A5, B1) 0.000000 0.000000 X( A5, B2) 0.000000 -7.000000 X( A5, B3) 0.000000 -10.00000 X( A5, B4) 0.000000 -21.00000 X( A5, B5) 0.000000 -10.00000 X( A5, B6) 1.000000 -32.00000 X( A6, B1) 0.000000 0.000000 X( A6, B2) 1.000000 0.000000 X( A6, B3) 0.000000 0.000000 X( A6, B4) 0.000000 -6.000000 X( A6, B5) 0.000000 -11.00000 X( A6, B6) 0.000000 -13.00000Row Slack or Surplus Dual Price1 142.0000 1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.000000实用文档大全11 0.000000 0.00000012 0.000000 0.00000013 0.000000 0.000000五、模型结果通过以上的应用Lingo模型求解,得出结论:第1项工作由第1个人来完成。

第4章整数规划——指派问题

第4章整数规划——指派问题


13 11 2 0 10 11 57 4 4 2 13 7 0 0 6 9 5 32 0 0
0 0 X 1 0
0 0 1 1 0 0 0 0 0 0 1 0

故可得到指派问题的最优解X,这样 安排能使总的维修时间最少,维修时间为 z=4+4+9+11=28(小时)。
X (2)
都是指派问题的最优解。
4 指派问题
4.3 指派问题的求解 指派问题既是一类特殊的整数规划问题,又是特殊的运输问 题,因此可以用多种相应的解法来求解,然而这些解法都没有充 分利用指派问题的特殊性质,有效地减少计算量,直到1955年库 恩(W. W. Kuhn)提出的匈牙利法才有效地解决了指派问题。 匈牙利法的理论基础 定义2 独立零元素组 在效率矩阵中,有一组在不同行不同 列的零元素,称为独立零元素组,其每个元素称为独立零元素。 5 0 2 0 2 3 0 0 C 【例4】 已知效率矩阵 0 5 6 7 4 8 0 0 求其独立零元素组。
4 指派问题
0 , 不 指 派 第 i小 组 维 修 第 j台 机 床 x ij ( i , j 1, 2 ,3, 4 ) 1, 指 派 第 i 小 组 维 修 第 j 台 机 床 机车 该问题的数学模型为: 1 2 3 4 4 小组 min z cij xij i 1 j 1 1 x11 x12 x13 2 x11 15 x12 2 x21 x22 x23 任务约束 4 x 1, j 1, 2 , 3 , 4 3 x31 x32 x33 ij i 1 4 x41 x42 x43 人员约束 4 x ij 1, i 1, 2 , 3, 4 j 1 x ij 0 或 1 i , j 1 , 2 , 3 , 4

匈牙利法解决人数与任务数不等的指派问题1

匈牙利法解决人数与任务数不等的指派问题于凯重庆科技学院经济管理学院物流专业重庆沙坪坝区摘要:本文将讨论运筹学中的指派问题,而且属于非标准指派问题,即人数与任务数不相等的指派问题,应当视为一个多目标决策问题,首先要求指派给个人任务数目两两之间相差不能超过1,其次要求所需总时间最少,并且给出了该类问题的求解方法。

关键词:运筹学指派问题匈牙利算法系数矩阵解矩阵引言:在日常的生产生活中常遇到这样的问题:有n项任务,有n个人员可以去承担这n 项任务,但由于每位人员的特点与专长不同,各对象完成各项任务所用的时间费用或效益不同;有因任务性质要求和管理上需要等原因,每项任务只能由一个人员承担来完成,这就涉及到应该指派哪个人员去完成哪项任务,才能使完成n项任务花费总时间最短,总费用最少,产生的总效益最佳。

我们把这类最优匹配问题称为指派问题或分配问题。

1.指派问题的解法——匈牙利法早在1955年库恩(w.w.ku.hn)就提出了指派问题的解法,该方法是以匈牙利数学家康尼格(koning)提出的一个关于矩阵中0元素的定理为基础,因此得名匈牙利法(The Hungonrian Method of Assignment)1.1匈牙利解法的基本原理和解题思路直观的讲,求指派问题的最优方案就是要在n阶系数矩阵中找出n个分布于不用行不同列的元素使得他们的和最小。

而指派问题的最优解又有这样的性质:若从系数矩阵C(ij)的一行(列)各元素都减去该行(列)的最小元素,得到新矩阵CB(ij),那么以CB(ij)为系数矩阵求得的最优解和原系数矩阵C(ij)求得的最优解相同。

由于经过初等变换得到的新矩阵CB(ij)中每行(列)的最小元素均为“○”,因此求原指派问题C(ij)的最优方案就等于在新矩阵CB(ij)中找出n个分布于不同行不同列的“○”元素(简称为“独立○元素”),这些独立○元素就是CB(ij)的最优解,同时与其对应的原系数矩阵的最优解。

指派问题1


匈牙利指派问题 有 n 项不同的任务,恰好 n 个人可分别承担这些 任务,但由于每人特长不同,完成各项任务的效率等情 况也不同。现假设必须指派每个人去完成一项任务,怎 样把 n 项任务指派给 n 个人,使得完成 n 项任务的 总的效率最高,这就是指派问题。也是一个简单的0—1 整数规划。即:
i 1 这个人做第 件事 xi 0 这个人不做第i件事
(1) 从只有一个0元素的行(列)开始,给这个0元素加圈,记作◎ 。然 后划去◎ 所在列(行)的其它0元素,记作Ø ;这表示这列所代表的任务 已指派完,不必再考虑别人了。 (2) 给只有一个0元素的列(行)中的0元素加圈,记作◎;然后划去◎ 所在行的0元素,记作Ø . (3) 反复进行(1),(2)两步,直到尽可能多的0元素都被圈出和划掉为 止。
第三步:做最少直线覆盖所有0元素
2 1 ◎ 0 2 2
5
◎ 0
5 3 4 2 3 Ø 0 ◎ 0 3

加2
3 3 ◎ 0 0 Ø 6 2 5 2 0 Ø 3
√ 减2
第四步,变换矩阵(bij)
以增加0元素:没有被 直线覆盖的所有元素中
的最小元素为2,然后
√ 减2 打√各行都减去2;打 √各列都加上2,得如 下矩阵,并转第二步进 行试指派:
Global optimal solution found. Objective value: Extended solver steps: Total solver iterations: Variable X11 X12 X13 X14 X15 X21 X22 X23 X24 X25 X31 X32 X33 X34 X35 X41 X42 X43 X44 X45 X51 X52 X53 X54 X55 Row 1 2 3 4 5 6 7 8 9 10 11

指派问题


0 30 0 32
6 17 17 0 0 0 0 0 0 0 45 45
第四步等价于第2、 行减去 行减去5,同时第1列加上 列加上5得到的结果 第四步等价于第 、3行减去 ,同时第 列加上 得到的结果
指派问题 assignment problem
指派问题
Page 10
指派问题
Page 5
解指派问题的匈牙利算法 匈牙利法的条件是:问题求最小值、 匈牙利法的条件是:问题求最小值、人数与工作数相等及效率 非负 定理1】如果从分配问题效率矩阵[c 的每一行元素中分别减 【定理 】如果从分配问题效率矩阵 ij]的每一行元素中分别减 或加上)一个常数u 被称为该行的位势), ),从每一列分 去(或加上)一个常数 i(被称为该行的位势),从每一列分 别减去(或加上)一个常数v 称为该列的位势), ),得到一个 别减去(或加上)一个常数 j(称为该列的位势),得到一个 新的效率矩阵[b ,其中b 的最优解等价于[c 新的效率矩阵 ij],其中 ij=cij-ui-vj,则[bij]的最优解等价于 ij] 则 的最优解等价于 的最优解,这里c 均非负. 的最优解,这里 ij、bij均非负. 【证】
1 【解】设 xij = 0
分配第i人做j工作时 不分配第i人做j工作时
指派问题 assignment problem
指派问题
Page 3
数学模型为: 数学模型为:
max Z = 85 x11 + 92 x12 + 73 x13 + 90 x14 + 95 x 21 + 87 x 22 + + 78 x 23 + 95 x 24 + 82 x31 + 83 x32 + 79 x33 + 90 x34 + + 86 x 41 + 90 x 42 + 80 x 43 + 88 x 44

指派问题详解

第一章绪论1、指派问题的背景及意义指派问题又称分配问题,其用途非常广泛,比如某公司指派n个人去做n 件事,各人做不同的一件事,如何安排人员使得总费用最少?若考虑每个职工对工作的效率(如熟练程度等),怎样安排会使总效率达到最大?这些都是一个企业经营管理者必须考虑的问题,所以该问题有重要的应用价值.虽然指派问题可以用0-1规划问题来解,设X(I,J)是0-1变量, 用X(I,J)=1表示第I个人做第J件事, X(I,J)=0表示第I个人不做第J件事. 设非负矩阵C(I,J)表示第I个人做第J件事的费用,则问题可以写成LINGO程序SETS:PERSON/1..N/;WORK/1..N/;WEIGHT(PERSON, WORK): C, X ;ENDSETSDATA:W=…ENDDATAMIN=@ SUM(WEIGHT: C*X);@FOR(PERSON(I): @SUM(WORK(J):X(I,J))=1);@FOR(WORK(J): @SUM(PERSONM(I):X(I,J))=1);@FOR(WEIGHT: @BIN(X));其中2*N个约束条件是线性相关的, 可以去掉任意一个而得到线性无关条件.但是由于有N^2个0-1变量, 当N很大时,用完全枚举法解题几乎是不可能的. 而已有的0-1规划都是用隐枚举法做的,计算量较大. 对于指派问题这种特殊的0-1规划,有一个有效的方法——匈牙利算法,是1955年W. W. Kuhn利用匈牙利数学家D.König的二部图G的最大匹配的大小等于G的最小顶点覆盖的大小的定理提出的一种算法,这种算法是多项式算法,计算量为O(N3).匈牙利算法的基本原理是基于以下两个定理.定理1设C=(C ij)n×n是指派问题的效益矩阵,若将C中的任一行(或任一列)减去该行(或该列)中的最小元素,得到新的效率矩阵C’,则C’对应的新的指派问题与原指派问题有相同的最优解.证明:设X’是最优解, 即@SUM(WEIGHT: C*X’)<= @SUM(WEIGHT: C*X), 则当C中任一行或任一列减去该行或该列的最小数m时,得到的阵C’还是非负矩阵, 且@SUM(WEIGHT: C’*X’)<=@SUM(WEIGHT: C*X)-m=@SUM(WEIGHT: C’*X)定理2效率矩阵C中独立的0元素的最多个数等于覆盖所有0元素的最少直线数. 当独立零元素的个数等于矩阵的阶数时就得到最优解.3、理论基础定义:图G的一个匹配M是图G中不相交的边的集合. 属于匹配M中的边的所有端点称为被该匹配M饱和, 其他的顶点称为M-未饱和的. 如果一个匹配M 饱和了图G的所有顶点,则称该匹配M是一个完全匹配. 可见顶点数是奇数的图没有完全匹配. 一个匹配M称为是极大匹配, 如果它不能再扩张成更大的一个匹配. 一个匹配称为是最大匹配, 如果不存在比它更大的匹配.定义:对于一个匹配M, 图G的一个M-交替路是图G中的边交替地在M中及不在M中的边组成. 从M-未饱和点出发到M-为饱和点结束的M-交替路称为一条M-增广路. 把M-增广路中不是M中的边改成新的匹配M’中的边, 把M-增广路中M中的边不作为M’中的边, 在M-增广路以外的M中的边仍作为M’中的边, 则M’的大小比M大1. 故名M-增广路. 因此最大匹配M不存在M-增广路.定义:若图G和图H有相同的顶点集V, 我们称G和H的对称差,记为G∆H,是一个以V为顶点集的图, 但其边集是G和H的边集的对称差: E(G∆H)=E(G) ∆E(H)=E(G)⋂E(H)-(E(G)⋃E(H))=(E(G)-E(H)) ⋂ (E(H)-E(G))定理: (Berge, 1957) 图G的一个匹配M是最大匹配,当且仅当G中没有M-增广路.证明: 我们只要证明, G中没有M-增广路时, M是最大匹配. 用反证法, 若有一个比M大的匹配M’. 令G的一个子图F, E(F)=M∆M’, 因M和M’都是匹配, F的顶点的最大度数至多是2, 从而F由不相交的路和环组成, 它们的边交替地来自M和M’, 于是F中的环的长度是偶数. 由于M’比M大, F中存在一个连通分支,其中M’中的边数大于M中的边数. 这个分支只能是起始和终止的边都在M’中. 而这就是一条G中的M-增广路. 与假设矛盾. 证毕.定理(Hall, 1935)设G是一个二部图, X和Y是其二分集, 则存在匹配M 饱和X当且仅当对于X中的任意子集S, Y 中与S中的点相邻的点组成的集合N(S)中元素的个数大于等于集合S中元素的个数.证明:必要性是显然的. 对于充分性, 假设 |N(S)|≥|S|, ∀S⊂X, 考虑G的一个最大匹配M, 我们用反证法,若M没有饱和X, 我们来找一个集合S不满足假设即可. 设u∈X是一个M-未饱和顶点, 令S⊂X和T⊂Y分别是从u出发的M-交替路上相应的点.我们来证明M中的一些边是T到S-u上的一个匹配. 因为不存在M-增广路,T中的每个点是M-饱和的. 这意味着T中的点通过M中的边到达S中的一个顶点. 另外, S-u中的每个顶点是从T中的一个顶点通过M中的一条边到达的. 因此M 中的这些边建立了T与S-u的一个双射, 即|T|=|S-u|. 这就证明了M中的这些边是T到S-u上的一个匹配,从而意味着T⊂N(S), 实际上, 我们可证明T=N(S). 这是因为连接S和Y-T中的点y的边是不属于M的, 因为不然的话, 就有一条到达y的M-增广路, 与y∉T矛盾. 故|N(S)|=|T|=|S-u|=|S|-1<|S|, 与假设矛盾.当X与Y的集合的大小相同时的Hall定理称为婚姻问题,是由Frobenius(1917)证明的.推论: k-正则的二部图(X的每一点和Y的每一点相关联的二部图)(k>0)存在完全匹配.证明: 设二分集是X,Y. 分别计算端点在X和端点在Y的边的个数, 得k|X|=k|Y|, 即|X|=|Y|.因此只要证明Hall的条件成立即可. 使X饱和的匹配就是完全匹配. 考虑∀S⊂X, 设连接S与N(S)有m条边, 由G的正则性, m=k|S|. 因这m条边是与N(S)相关联的, m≤k|N(S)|, 即k|S|≤ k|N(S)|, 即|N(S)|≥|S|. 这就是Hall的条件.用求M-增广路的方法来得到最大匹配是很费时的. 我们来给出一个对偶最优化问题.定义:图G的一个顶点覆盖是集合S⊂V(G), 使得G的每条边至少有一个端点在S中. 我们称S中的一个顶点覆盖一些边, 若这个顶点是这些边的公共端点.因为匹配的任意两条边不能被同一个顶点覆盖, 所以顶点覆盖的大小不小于匹配的大小: |S|≥|M|. 所以当|S|=|M| 时就同时得到了最大的匹配和最小的顶点覆盖.定理(König [1931],Egerváry[1931])二部图G的最大匹配的大小等于G的最小顶点覆盖的大小.证明: 设M是G的任一个匹配, 对应的二分集是X,Y. 设U是一个最小的顶点覆盖, 则|U|≥|M|, 我们只要由顶点覆盖U来构造一个大小等于|U|的匹配即完成证明. 令R=U⋃X, T=U⋃Y, 令H, H’分别是由顶点集R⋂(Y-T)及T⋂(X-R)诱导的G的子图. 我们应用Hall的定理来证明H有一个R到Y-T中的完全匹配,H’有一个从T到X-R中的完全匹配. 再因这两个子图是不相交的, 这两个匹配合起来就是G中的一个大小为|U|的匹配.因为R⋂T是G的一个覆盖, Y-T与X-R之间没有边相联接. 假设S⊂R, 考虑在H中S的邻接顶点集N(S), N(S) ⊂Y-T. 如果|N(S)|<|S|, 因为N(S)覆盖了不被T覆盖的与S相关联所有边, 我们可以把N(S) 代替S作为U中的顶点覆盖而得到一个更小的顶点覆盖. U的最小性意味着H中Hall条件成立. 对H'作类似的讨论得到余下的匹配. 证毕.最大匹配的增广路算法输入: 一个二分集为X,Y的二部图G,一个G中的匹配M, X中的M-未饱和顶点的集合U.思路: 从U出发探求M-交替路,令S⊂X,T⊂Y为这些路到达过的顶点集. 标记S中不能再扩张的顶点. 对于每个x∈(S⋂T)-U, 记录在M-增广路上位于x前的点.初始化: S=U,T=∅.叠代: 若S中没有未标记过的顶点, 结束并报告T⋂(X-S)是最小顶点覆盖而M是最大匹配.不然, 选取S中未标记的点x, 考虑每个y∈N(x)且xy∉M, 若y是M-未饱和的, 则得到一个更大的匹配,它是把xy加入原来的匹配M得到的,将x从S中去除. 不然, y是由M中的一条边wy相连接的, w∈X, 把y加入T(也有可能y本来就在T中), 把w加入S. w未标记, 记录w前的点是y. 对所有关联到x的边进行这样的探索后, 标记x. 再次叠代.定理: 增广路算法可以得到一个相同大小的匹配和顶点覆盖.证明: 考虑这个算法终止的情况, 即标记了S中所有的点. 我们要证明R=T⋂(X-S)是大小为|M|的一个顶点覆盖.从U出发的M-交替路只能通过M中的边进入X中的顶点, 所以S-U中的每个顶点通过M与T中的顶点匹配, 并且没有M中的边连接S和Y-T. 一旦一条M-交替路到达x∈S, 可以继续沿着任何未饱和的边进入T, 由于算法是对于x的所有邻域顶点进行探索才终止的,所以从S 到Y-T 没有未饱和边. 从而S 到Y-T 没有边, 证明了R 是一个顶点覆盖.因为算法是找不到M-增广路时终止, T 的每一个顶点是饱和的. 这意味着每个顶点y ∈T 是通过M 匹配与S 中的一个顶点. 由于U ⊂S, X-S 的每个顶点是饱和的, 故M 中与X-S 相关联的边不和T 中的点相连接. 即它们与是饱和T 的边不同的, 这样我们可见M 至少有|T|+|X-S|条边. 因不存在一个比顶点覆盖更大的匹配, 所以有|M|=|T|+|X-S|=|R|.设二部图G 的二分集X 和Y 都是n 个元素的点集, 在其边j i y x 上带有非负的权ij w , 对于G 的一个匹配M, M 上各边的权和记作w(M).定义: 一个n ×n 矩阵A 的一个横截(transversal)是A 中的n 个位置, 使得在每行每列中有且只有一个位置(有的文献中把横截化为独立零元素的位置来表示).定义: 指派问题就是给定一个图G=n n K ,(完全二部图, 即每个X 中的顶点和Y 中的每个顶点有边相连接的二部图)的边的权矩阵A, 求A 的一个横截, 使得这个横截上位置的权和最大. 这是最大带权匹配问题的矩阵形式.定义: 对于图G=n n K ,,设其二分集是X ,Y ,给定G 的边j i y x 的n ×n 权矩阵W={ij w }.考虑G 的子图v u G ,, 设其二分集是U ⊂X ,V ⊂Y, 边集是E(v u G ,), 对于子图v u G ,的带权覆盖u,v 是一组非负实数{i u },{j v },使得ij j i w v u ≥+,)(,v u j i G E y x ∈∀, v u G ,的带权覆盖的费用是∑∑+j i v u 记为C(u,v), 最小带权覆盖问题就是求一个具有最小费用C(u,v)的带权覆盖u,v.引理: 若M ⊂E(v u G ,)是一个带权二部子图v u G ,的最大匹配, 且u, v 是v u G ,的带权覆盖, 则C(u,v)≥w(M). 而且, C(u,v)=w(M)当且仅当ij j i w v u =+,M y x j i ∈∀. 这时M 是v u G ,最大带权匹配, u,v 是v u G ,的最小带权覆盖, 定义这时的v u G ,为G 的相等子图(equality subgraph ).证明: 因为匹配M 中的边是不相交的, 由带权覆盖的定义就得C(u,v)≥w(M). 而且C(u,v)=w(M)当且仅当ij j i w v u =+,M y x j i ∈∀成立. 因一般地有C(u,v)≥w(M).所以当C(u,v)=w(M)时. 意味着没有一个匹配的权比C(u,v)大, 也没有一个覆盖的费用比w(M)小.Kuhn 得到一个指派问题的算法,命名为匈牙利算法, 为的是将荣耀归于匈牙利数学家König 和Egerv áry.指派问题的匈牙利算法(Kuhn[1955], Munkres[1957]):输入G=n n K ,的边的权矩阵A, 及G 的二分集X,Y.初始化: 任取一个可行的带权覆盖,例如)(max ij ji w u =,0=j v ,建立G 的相等子图v u G ,, 其二分集是X, Y ’⊂Y, 求v u G ,的一个最大匹配M. 这个匹配的权和w(M)=C(u,v), M 的带权覆盖是具有最小费用的.叠代: 如M 是G 的一个完全匹配, 停止叠代, 输出最大带权匹配M. 不然, 令U 是X 中的M-未饱和顶点. 令S ⊂X, T ⊂Y 是从U 中顶点出发的M-交替路到达的顶点的集合.令},:min{T Y y S x w v u j i ij j i -∈∈-+=ε.对于所有的S x i ∈, 将i u 减少ε, 对于所有的T y j ∈,将j v 增加ε,形成新的带权覆盖u ’,v ’及对应的新的相等子图v u G '',.如果这个新的相等子图含有M-增广路, 求它的最大匹配M ’, 不然不改变M 再进行叠代.定理: 匈牙利算法能找到一个最大权匹配和一个最小费用覆盖.证明: 算法由一个覆盖开始,算法的每个叠代产生一个覆盖,仅在相等子图有一个完全的匹配为止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x a a a a x a a D= a a x a a a a x
只要输入:
syms x a; %申明x,a为代量 A=[x,a,a,a; a,x,a,a; a,a,x,a; a,a,ax] ; det(A)
Ans= x^4-6*x^2+8*x*a^3-3*a^4
常用matlab矩阵运算
• • • • • 加减乘除、数乘等 求逆 inv(A) 行列式值 det(A) 最简形 R=rref(A) 特征值,特征向量:[V,D]=eig(A)
第二步:做最少覆盖0元的直线
(1) 对无圈的行打勾 (下面横线无圈)直线就覆盖了所有加圈 的0元所在的行) (2) 在已打勾的行中对有删除标记所在的列打勾;(未被行线覆盖 的作竖线) (3) 在已打勾的列中对有圈标记所在的行打勾;(用列线覆盖过的 就吧要行线了)
(4) 重复 (2), (3), 直到无勾可打为止. (5) 对没有打勾的行画一横线, 对打勾的列画 一竖线. • 这样剩下没有画线的元素中没有零元素. • • •
问题模型
A : a ij 表示第 i 个人做第
n
j 件事所用的时间 j 件事,只取
n
X : x ij 表示第 i 个人是否做第
0 ,1
min( 或 max ) z =
n
∑∑
i =1
j =1
a ij x(工时) ij
) ∑ x ij = 1 ( 每人做一件事 = jn 1 s .t . ∑ x ij = 1 ( 每事由一人做 ) i =1 1 x ij 只取 0 或者 ( i , j = 1 L n )
• [X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = LINPROG(f,A,b,Aeq,beq,LB,UB) • min f‘*x such that • Aeq*x = beq • A*x <= b , x >= 0. • LB <= X <= UB • 用一个分支定界法的代码来说明一下 • 可以求全整型或混合的 • Y=min f*x subject to :G*x<=h Geq*x=heq
2 ) 在没有红圈的右下角如果有 0 5 零,一定是新的独立零元素 3 7 3 3 ) 用直线覆盖红圈所在行
0 5 3 7 3
11 8 0 3 0 4 0 0 4 0 0 2 7 3 0 1 2 1 0 2
11 8 0 3 0 4 0 0 4 0 0 2 7 3 0 1 2 1 0 2
第三步:加0元
• 求出其中的最小元素. 各行都减去这个最小 元素(同一个数), 这时在已被划横线的元 素中的零元素变成负元素, 在它们所在的列 中加上这个最小元素. 还不够所需0元,转 步骤2.
• 在求最优值时,还要回到原来的矩阵去, 除非你每次都记录下了所做的加减的总数。 • 第三步中有点麻烦,可以改为:划去后的 矩阵中全部减去最小数,这样就不麻烦了, 不过就必须回原效率矩阵,对于全矩阵来 说加减已经乱了。为什么可以这么做呢? 因为剩下的部分的最优已经无关于划线部 分了,(自己的想法而已,可不理会)
• 证明:我借的那本书上,是给出了证明,不过我读得好像我的想法不太符合它的思想《运筹学。中 国人民出版社》。所以就不用了。另一种方法就是用数学归纳法,不过一层又一层,挺麻烦的。再 有就是用下面要说的构造直线的过程说明。还有就是利用对换了行或列号是不会改变k,l的值,然 后就变成一个左上角一个矩形中每行每列都有0元,所以最大不同行列的0元个数l和覆盖0元的最小 直线数k都等于这个矩形的行列最小的数目。
end if nargin<4,
• Geq=[];
end upper=inf;c=f;x0=x;A=G;b=h;Aeq=Geq;beq=heq;ID=id; %变量处理,不用管
• ftemp=ILP(lb(:),ub(:));
• x=opt;y=upper;
• • • • • • • •
%下面是子函数 function ftemp=ILP(vlb,vub) global upper opt c x0 A b Aeq beq ID options; [x,ftemp,how]=linprog(c,A,b,Aeq,beq,vlb,vub,x0,options); if how <=0 return; end;%标志<=0 ,则不收敛或达到迭代次数,结束 则不收敛或达到迭代次数, if ftemp-upper>0.00005 %in order to avoid error %得到的解比想象的大
(V的列为特征向量) 求秩:rank(A) 迹(特征值之和)trace(A)
解多项式方程
3x −7x +5x +2x −18= 0
5 4 2
P=[3,-7,0,5,2,-18]; A=compan(p); X1=eig(A) X2=roots(p) %求零点,与上面的结果是一样的。
整数规划matlab指令
aij自然是非负的,如果有这种情况:每件事都有 一个人来做 的时候所需的时间是0,且所有的事分配,可 以找到这样不冲 突的人,这样,总时间 就是0,自然就是最优的。
由此,每行每列减去最小数,总可以得到每行每列至少有一个0
第二个定理
• 覆盖0元的最小直线(行或列)数k,等于 位于不同行且不同列的0元的最大个数l。

If nargin<10,
• • • options=optimset({}); options.Display='off'; rgeScale='off'; end id=ones(size(f));
• • • • • • • • • • • • •
if nargin<9,
4 ) 在直线未覆盖处找零,如果没有零停止,否则 在直线未覆盖处找零,如果没有零停止, 会出现以下两种情况, 会出现以下两种情况,其中黑实圈圈住的是新零
0 5 3 7 3 11 8 0 3 0 4 0 0 4 0 0 2 7 3 0 1 2 1 0 2 0 5 3 7 3 11 8 0 3 0 4 0 0 4 0 0 2 7 3 0 0 2 1 0 2
指派问题的解法
先得出0元: 每行每列减去各自最小数 (1). 将系数矩阵C={Cij}的各行减去本行中的最小元素形成矩阵Cr (2). 将系数矩阵Cr的各列减去本列中的最小元素形成矩阵Cc
• 第一步:试指派
Cc ( ) , , 在Cc 中如果有某行(或列)上只有一个没有标记的零元素, 在这零元素上做圈标记, 同 时把零元素所在的列(或行)上的零元素做删除标记. 如此反复进行, 直到所有的零元素 都被做上标记或划去为止. 如果在以上过程中的所有行和列中没有标记的零元素都不止一个时,可选0元最少的行 (列)开始,且所在列(行)上的0元最少的一个0元做圈标记, 同时对同行同列中的 其他零元素做删除标记. •如果做上圈标记的零元素个数达到 n 个, 则每行每列有且仅有一个画圈的零元素 (显然的). 令(分配)矩阵中的加圈的零元素换为一,其余的元素换为零, 就是指派 问题的最优解矩阵. 如不然, 转下步
情况一
情况二
两 种 情 况 的 处 理 方 法
0 5 3 7 3
11 8 0 3 0 4 0 0 4 0 0 2 7 3 0 1 2 1 0 2

0 5 3 7 3
11 8 0 3 0 4 0 0 4 0 0 2 7 3 0 1 2 1 0 2

4 7 C = 6 6 6
8 7 15 12 9 17 14 10 9 12 8 7 7 14 6 10 9 12 10 6
一、顺序对每行每列减去最小值产生零元素
0 0 0 0 0 4 3 11 8 0 2 10 7 3 0 3 6 2 1 →0 1 8 0 4 0 3 6 4 0 0 3 0 11 8 1 7 7 3 2 3 2 1 = C′ 0 5 0 4 2 3 4 0
第四章 4.3 指派问题(分配问题)
一. 什么是指派问题 二. 两个定理 三. 指派问题的求解
lp-norm support vector machine with CCCP
一 . 什么是指派问题
• • • • • 指派问题就是分配问题: 比如有n个人去做n件事,规定: 每件事只能有且仅有一个人来做 事与人决定时间 求最高的效率的情况
二、对给定矩阵找到最大数目的独立零元素组 1 ) 用红圈标出一些某行或某列仅有的零元素,再 用红圈标出一些某行或某列仅有的零元素, 通过行列交换把这些零换到左上角(后者非必须) 通过行列交换把这些零换到左上角(后者非必须)
0 0 0 0 0 3 0 11 8 0 7 1 7 7 3 2 3 2 1 →3 5 0 5 0 4 2 3 4 0 列 3 交 换 11 8 0 3 0 5 7 3 0 1 2 1 0 2 →3 7 0 4 0 0 4 0 0 2 行 3 交 换 11 8 0 3 0 4 0 0 4 0 0 2 7 3 0 1 2 1 0 2

end if nargin<8,
• x=[];
end if nargin<7 |isempty(ub),
• ub=inf*ones(size(f));
end if nargin<6 |isempty(lb),
• lb=zeros(size];
• return;
end; if max(abs(x.*ID-round(x.*ID)))<0.00005 %得到最优解(如果没错的话),因为用 %linpro 的时候已经吧实数得到最优了,这里判断整数的就好了
相关文档
最新文档