高中数学-集合的运算练习
集合练习题及讲解高中必刷

集合练习题及讲解高中必刷### 高中数学集合练习题及讲解练习题1:已知集合A={x|x<5},B={x|-3≤x<2},求A∩B。
解析:根据集合的交集定义,我们需要找出同时满足A和B条件的元素。
集合A包含所有小于5的实数,而集合B包含所有大于等于-3且小于2的实数。
因此,A∩B将包含所有大于等于-3且小于2的实数。
答案:A∩B={x|-3≤x<2}。
练习题2:集合P={x|x²-1=0},Q={x|x²-4=0},求P∪Q。
解析:首先解方程x²-1=0和x²-4=0。
对于x²-1=0,解得x=±1;对于x²-4=0,解得x=±2。
集合P包含所有解得x²-1=0的实数,即P={-1,1};集合Q包含所有解得x²-4=0的实数,即Q={-2,2}。
根据并集的定义,P∪Q包含P和Q中的所有元素。
答案:P∪Q={-2,-1,1,2}。
练习题3:集合M={x|-2<x<3},N={x|x>1},判断M⊆N。
解析:要判断M是否是N的子集,我们需要验证M中的所有元素是否也属于N。
集合M包含所有大于-2且小于3的实数,而集合N包含所有大于1的实数。
显然,M中的所有元素都大于1,因此M中的元素也属于N。
答案: M⊆N。
练习题4:集合S={x|0<x<10},T={x|x>0},求S∩T。
解析:根据交集的定义,我们需要找出同时满足S和T条件的元素。
集合S包含所有大于0且小于10的实数,而集合T包含所有大于0的实数。
因此,S∩T将包含所有大于0且小于10的实数。
答案:S∩T={x|0<x<10}。
练习题5:集合U={x|x>0},V={x|x<0},求U∩V。
解析:根据交集的定义,我们需要找出同时满足U和V条件的元素。
集合U包含所有大于0的实数,而集合V包含所有小于0的实数。
高三数学集合练习题

高三数学集合练习题1. 设集合A={1,2,3,4,5},集合B={3,4,5,6,7},求:a) A∪Bb) A∩Bc) A-Bd) B-A2. 已知集合A={x | x是三位数},集合B={y | y是偶数},求:a) A∩Bb) A-Bc) A∪B3. 集合A={x | x是正整数,且x ≤ 10},集合B={y | y是奇数},求:a) A∩Bb) A-Bc) A∪B4. 设全集为U={1,2,3,4,5,6,7,8,9,10},集合A={x | x是正整数,且x < 6},集合B={y | y是奇数},求:a) A∩Bb) A∪Bc) A-B5. 设全集为U={-3,-2,-1,0,1,2,3,4,5},集合A={x | x是整数,-2 ≤ x ≤ 2},集合B={y | y是奇数},求:a) A∩Bb) A∪Bc) A-B6. 设全集为U={a,b,c,d,e,f,g,h},集合A={a,b,c},集合B={c,d,e},集合C={b,c,f,g},求:a) (A∩B)∪Cb) (A-B)∩C7. 设全集为U={1,2,3,4,5,6,7,8},集合A={x | x是偶数},集合B={x | x是奇数},集合C={x | x能被3整除},求:a) A∩Bb) A∪Bc) (A∪B)-C8. 设全集为U={a,b,c,d,e,f,g,h,i,j,k,l,m,n},集合A={a,b,c,d,e},集合B={d,e,f,g,h},集合C={a,d,g,j,m},求:a) (A∩B)∪Cb) (A-B)∩Cc) (A∩B)-C9. 设全集为U={x | x是大写英文字母},集合A={x | x是元音字母},集合B={x | x是辅音字母},求:a) A∩Bb) A∪Bc) (A∪B)-U10. 设全集为U={1,2,3,4,5},集合A={1,2,3},集合B={3,4,5},求:a) (A-B)∩(B-A)以上是高三数学集合练习题的内容,请按照题目要求计算并得出答案。
高中数学集合练习题及答案-百度文库

高中数学集合练习题及答案-百度文库一、单选题1.已知集合{}{}0,11,A xx B x x x =≥=-≤≤∈Z ∣∣,则A B =( ) A .[]0,1B .{}1,2C .{}0,1D .[]1,22.设集合{}2A x x a =<,{}23B x x a =>+,若A B =R ,则实数a 的取值范围为( ) A .()1,3- B .()(),13,-∞-⋃+∞ C .[]1,3-D .(][),13,-∞-+∞3.记集合{}22M x x x =><-或,{}2|30N x x x =-≤,则MN =( )A .{|23}x x <≤B .或{}02}x x x ><-或C .{|02}x x ≤<D .{}|23x x -<≤4.设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是( )A .3B .6C .7D .85.已知集合{}13A x N x =∈≤≤,{}2650B x x x =-+<,则A B =( )A .∅B .{}1,2,3C .(]1,3D .{}2,36.已知集合{0A x x =≤或}1≥x ,{}39xB x =<,则A B =( )A .{}12x x ≤<B .{0x x ≤或}12x ≤<C .{}2x x <D .{}02x x ≤<7.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤8.已知集合{|12}A x x =-≤≤,{}0B x x =>,则A B ⋃=( ) A .{|2}x x ≤ B .{|1}x x ≥- C .{}|1x x >D .{}0x x9.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( ) A .{}0,1,2,3 B .{}0,1,2 C .{}1,2,3D .{}1,210.设全集{}{}{}10,2,3,5,0,3,5,9U n N n A B =∈≤==,则()U A B =( ) A .{2,6}B .{0,9}C .{1,9}D .∅11.设全集U =R .集合{A x y ==∣,则UA( )A .()(),12,-∞-+∞ B .[]1,2- C .(][),12,-∞-⋃+∞D .()1,2-12.已知集合{}0,1,2A =,(){},,,,B x y x A y A x y A x y A =∈∈+∈-∈,则集合B 中元素的个数是( ) A .1B .4C .3D .213.已知集合{}1A x x =≥-,{}12B x x =-<,则A B ⋃=( ) A .{}13x x -<< B .{}1x x >- C .{}13x x -≤<D .{}1x x ≥-14.设集合{}123A =,,,{}2|0B x R x x =∈-=,则A B ⋃=( ) A .{}1B .{}01,C .{}123,,D .{}0123,,,15.已知集合{}22280,03x A x x x B xx -⎧⎫=--≤=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}42x x -≤≤ B .{42x x -≤≤且3}x ≠- C .{}34x x -≤≤D .{34}x x -<≤二、填空题16.已知集合{}21A x x =-<<,{}0B x x =<,则A B ⋃= ____________. 17.设集合{1,2,3,4,6}M =,12,,,k S S S 都是M 的含有两个元素的子集,则k =______;若满足:对任意的{,}i i i S a b =,{,}j j j S a b ={}(,,1,2,3,,)i j i j k ≠∈都有,i i j j a b a b <<,且ji i ja ab b ≠,则k 的最大值是__________. 18.若{}31,3,a a ∈-,则实数a 的取值集合为______.19.已知集合{}2,1,0,1A =--,{}|3B x N x =∈<,则A B =_____.20.已知条件:212p k x -≤≤,:53q x -≤≤,p 是q 的充分条件,则实数k 的取值范围是_______.21.集合*83A x NN x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法可以表示为A =_________. 22.已知集合A ={2,log 2m },B ={m ,n }(m ,n ∈R),且{}1A B ⋂=-,则A ∪B =___________. 23.设P ,Q 为两个非空实数集合,P 中含有0,2两个元素,Q 中含有1,6两个元素,定义集合P+Q 中的元素是a+b ,其中aP ,b Q ,则P Q +中元素的个数是_________.24.已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0},则A ∩B 等于________. 25.对于数集M 、N ,定义{},,M N x x a b a M b N +==+∈∈,,,aM N x x a M b N b ⎧⎫÷==∈∈⎨⎬⎩⎭,若集合{}1,2P =,则集合()P P P +÷中所有元素之和为___________.三、解答题26.(1)已知全集{}|510,Z U x x x =-≤≤∈,集合M ={|07,Z x x x ≤≤∈},N ={|24,Z x x x -<∈≤},求()U N M (分别用描述法和列举法表示结果);(2)已知全集{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,若集合{}2,4,6,8UA B =,求集合B ;(3)已知集合2{|210,R,R}P x ax ax a x =++=∈∈,当集合P 只有一个元素时,求实数a 的值,并求出这个元素.27.已知U =R 且{}2|560A x x x =--<,{|3B x x =≥或1}x ≤.求:(1)A B ,A B ; (2)()()U U A B .28.已知{}{15},1,R A x x B x a x a a =-<<=-<<∈ (1)若2,B ∈求实数a 的取值范围 (2)若B A ⊆,求实数a 的取值范围29.已知集合{}1|43280x x A x +=-⋅+,{}|2.B x x a =+<(1)当1a =时,求A B ;(2)若“x B ∈”是“x A ∈”的必要条件,求实数a 的取值范围.30.已知集合A ={}123x m x m -≤≤+, . (1)当m =1时,求A B ,(RA )B ;(2)若A B =A ,求实数m 的取值范围.试从以下两个条件中任选一个补充在上面的问题中,并完成解答.① 函数()f x B ;② 不等式2x ≤的解集为B . 注:如果选择多个条件分别解答,按第一个解答计分.【参考答案】一、单选题 1.C 【解析】 【分析】根据交集的定义和运算直接得出结果. 【详解】 由题意得,{1,0,1}B =-,又{}0A x x =≥,所以{0,1}A B =. 故选:C. 2.B 【解析】 【分析】由于A B =R ,所以223a a +<,解不等式即可. 【详解】由题意,223a a +<得1a <-或3a >, 故选:B . 3.A 【解析】 【分析】先求出集合N ,再由交集的定义即可得出答案. 【详解】{}{}2|30|03N x x x x x =-≤=≤≤,所以MN ={|23}x x <≤.故选:A 4.D 【解析】 【分析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案. 【详解】222x x ≤⇒≤,所以A ⎡=⎣,所以{}1,0,1A ⋂=-Z , 所以A ⋂Z 子集的个数是328=. 故选:D 5.D 【解析】 【分析】本题考查集合的交集,易错点在于集合A 元素是自然数,集合B 的元素是实数. 【详解】∵{}{}131,2,3A x N x =∈≤≤=,{}{}265015B x x x x x =-+<=<<,∴{}2,3A B ⋂=.故选:D . 6.B 【解析】 【分析】解出不等式39x <,然后根据集合的交集运算可得答案. 【详解】因为{0A x x =≤或}1≥x ,{}39xB x =< {}2x x =<,所以A B ={0x x ≤或}12x ≤<,故选:B 7.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1RB x x =≤,所以{}4R A B x x ⋃=≤;故选:D 8.B 【解析】 【分析】进行并集的运算即可. 【详解】{|12}A x x =-≤≤,{}0B x x =>, {|1}A B x x ∴⋃=≥-.故选:B .9.D 【解析】 【分析】先化简集合A ,继而求出A B . 【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2. 故选:D. 10.B 【解析】 【分析】根据集合的交运算和补运算求解即可. 【详解】因为{}{}100,1,2,3,4,5,6,7,8,9,10U n N n =∈≤=,{2,3,5}A , 则{0,1,4,6,7,8,9,10},{0,3,5,9}UA B ==,故(){0,9}U A B =.故选:B .11.D 【解析】 【分析】根据二次根式的性质,结合一元二次不等式的解法、补集的定义进行求解即可. 【详解】因为{[2,)(,1]A x y ===+∞-∞-∣, 所以UA()1,2-,故选:D 12.B 【解析】 【分析】根据所给定义求出集合B ,即可判断; 【详解】解:因为{}0,1,2A =,(){},,,,B x y x A y A x y A x y A =∈∈+∈-∈,所以()()()(){}0,0,1,0,2,0,1,1B =,即集合B 中的元素有()0,0,()1,0,()2,0,()1,1共4个,故选:B . 13.D 【解析】 【分析】求出集合B ,利用并集的定义可求得集合A B . 【详解】因为{}{}{}1221213B x x x x x x =-<=-<-<=-<<,因此,{}1A B x x ⋃=≥-. 故选:D. 14.D 【解析】 【分析】先求出集合B ,再由并集运算得出答案. 【详解】由{}2|0B x R x x =∈-=可得{}0,1B =则{}0,1,2,3A B ⋃= 故选:D 15.D 【解析】 【分析】分别解一元二次不等式以及分式不等式得集合A ,B ,再进行并集运算即可. 【详解】因为{}{}228024A x x x x x =--≤=-≤≤,{}20323x B xx x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭, 所以{}34A B x x ⋃=-<≤, 故选:D.二、填空题16.{}1x x <【解析】 【分析】利用并集概念及运算法则进行计算. 【详解】在数轴上画出两集合,如图:{}{}{}2101A B x x x x x x ⋃=-<<⋃<=<.故答案为:{}1x x < 17. 10 6 【解析】 【分析】列举M 的2个元素子集数个数即可;利用,i i j j a b a b << ,再结合ji i ja ab b ≠进行排除其他的即为答案. 【详解】M 的两元素子集有{1,2}{1,3}{1,4}{1,6}{2,3}{2,4}{2,6}{3,4}{3,6}{4,6}、、、、、、、、、,所以共有10个,因此k =10;因为前面的列举方式已经保证,i i j j a b a b <<,只需要再增加条件ji i ja ab b ≠即可,所以{1,2}{2,4}、、{3,6}保留一个,{1,3}{2,6}、保留一个,{2,3}{4,6}、只能保留一个,所以以上10个子集需要删去4个,还剩下6个,所以则k 的最大值是6.故max 6k .故答案为:10;6.18.{}0,1,3【解析】 【分析】根据元素的确定性和互异性可求实数a 的取值. 【详解】因为{}31,3,a a ∈-,故1a =-或3a =或3a a =,当1a =-时,31a =-,与元素的互异性矛盾,舍; 当3a =时,327a =,符合;当3a a =时,0a =或1a =±,根据元素的互异性,0,1a =符合, 故a 的取值集合为{}0,1,3. 故答案为:{}0,1,319.{}0,1【解析】 【分析】由题知{}0,1,2B =,再根基集合交集运算求解即可. 【详解】解:因为{}{}|30,1,2B x N x =∈<=,{}2,1,0,1A =-- 所以A B ={}0,1 故答案为:{}0,120.[2,)-+∞【解析】 【分析】设{}212A x k x =-≤≤,{}53B x x =-≤≤,则A B ⊆,再对A 分两种情况讨论得解. 【详解】记{}212A x k x =-≤≤,{}53B x x =-≤≤, 因为p 是q 的充分条件,所以A B ⊆. 当A =∅时,212k ->,即32k >,符合题意; 当A ≠∅时,32k ≤,由A B ⊆可得215k -≥-,所以2k ≥-,即322k -≤≤. 综上所述,实数的k 的取值范围是[2,)-+∞. 故答案为:[2,)-+∞. 21.{1,2}##{2,1} 【解析】 【分析】根据集合元素属性特征进行求解即可. 【详解】 因为83N x*∈-,所以31,2,4,8-=x ,可得2,1,1,5=--x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2} 22.1,1,22⎧⎫-⎨⎬⎩⎭【解析】 【分析】根据条件得到2log 1m =-,解出12m =,进而得到1,1,22A B ⎧⎫=-⎨⎬⎩⎭. 【详解】因为{}1A B ⋂=-,所以1A -∈且1B -∈,所以2log 1m =-,解得:12m =,则1n =-,1,12B ⎧⎫=-⎨⎬⎩⎭,所以1,1,22A B ⎧⎫=-⎨⎬⎩⎭. 故答案为:1,1,22⎧⎫-⎨⎬⎩⎭23.4 【解析】 【分析】求得P Q +的元素,由此确定正确答案. 【详解】依题意,011,066,213,268+=+=+=+=, 所以P Q +共有4个元素. 故答案为:4 24.{x |2<x <3} 【解析】【分析】解二次不等式可得集合B ,再求交集即可. 【详解】∵A ={x |2<x <4},B ={x |(x -1)(x -3)<0}={x |1<x <3}, ∴A ∩B ={x |2<x <3}. 故答案为:{x |2<x <3} 25.232##11.5 【解析】 【分析】根据定义分别求出()P P P +÷中对应的集合的元素即可得到结论. 【详解】{1P =,2}, {|P P x x a b ∴+==+,aP ,}{2b P ∈=,3,4},(){|2P P P x x ∴+÷==,3,4,1,3}2,∴元素之和为323234122++++=, 故答案为:232. 三、解答题26.(1){}|47,Z x x x ≤≤∈,{}4,5,6,7;(2){}0,1,3,5,7,9,10;(3)1a =,元素为1-. 【解析】 【分析】(1)根据补集和交集的定义直接计算作答. (2)利用补集的定义直接计算作答. (3)利用元素与集合的关系推理计算作答. 【详解】(1)由{}|510,Z U x x x =-≤≤∈,N ={|24,Z x x x -<∈≤}, 得:{|52U N x x =-≤<-或410,Z}x x ≤≤∈,而{|07,Z}M x x x =≤≤∈, 所以{}()|47,Z U N M x x x =≤≤∈{}4,5,6,7=. (2)由{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,{}2,4,6,8UA B =,得{2,4,6,8}UB =,所以{}()0,1,3,5,7,9,10U U B B ==. (3)当0a =时,P =∅,不符合题意,当0a ≠时,因集合P 只有一个元素,则方程2210ax ax ++=有等根,2440a a ∆=-=, 此时1a =,集合P 中的元素为1-, 所以1a =,这个元素是1-.27.(1){|11A B x x ⋂=-<≤或36}x ≤<;A B R ⋃= (2)∅【解析】【分析】(1)先求解集合A ,再根据交集和并集的概念写出结论即可;(2)先分别求解集合A 和集合B 的补集,再根据交集的概念写出答案.(1)根据{}2|560A x x x =--<可知,{}|16A x x =-<< 又{|3B x x =≥或1}x ≤{|11A B x x ∴⋂=-<≤或36}x ≤<;A B R ⋃=.(2)根据题意,{|1U A x x =≤-或6}x ≥;{|13}U B x x =<<所以()()U U A B ⋂=∅.28.(1)23a <<;(2)05a ≤≤.【解析】【分析】(1)由题可得12a a -<<,即得;(2)根据B A ⊆,结合集合的包含关系,即可求得a 的取值范围.(1)∵2,B ∈{}1B x a x a =-<<,∴12a a -<<,即23a <<,∴实数a 的取值范围为23a <<;(2)∵B A ⊆,{}{15},1,R A x x B x a x a a =-<<=-<<∈,∴115a a -≥-⎧⎨≤⎩,解得05a ≤≤, 故实数a 的取值范围为05a ≤≤.29.(1)(]3,2-(2)()3,0.-【解析】【分析】(1)化简集合A ,B ,再由并集的定义求解即可;(2)列出实数a 的不等式组,解之即可得出实数a 的取值范围.(1)由143280x x +-⋅+,得()()22240x x --,则224x ,则12x ,所以[]1,2A =, 由12x +<,可得31x -<<,则()3,1B =-,所以[]()(]=1,23,13,2A B ⋃⋃-=-(2)()2,2B a a =---,因为“x B ∈”是“x A ∈”的必要条件,所以A B ⊆ ,所以2122a a --<⎧⎨->⎩, 所以()3,0.a ∈-30.(1){}|25=-≤≤A B x x ;(){}|20R A B x x =-≤< (2)1|4,12m m m ⎧⎫<--≤≤-⎨⎬⎩⎭或 【解析】【分析】(1)利用集合的运算求解即可.(2)通过A B =A 得出A B ⊆,计算时注意讨论A 为空集的情况.(1)选条件①:(1)当1m =时,{}|05A x x =≤≤,{}2B x x =|-2≤≤{}|25A B x x ∴=-≤≤{}|0,5R A x x x =<>或(){}|20R A B x x ∴⋂=-≤<选条件②:此时集合{}2B x x =|-2≤≤与①相同,其余答案与①一致;(2)若A B A =,则A B ⊆当A =∅时,123m m ->+,解得4m <-当A ≠∅时,21123232m m m m -≤-⎧⎪-≤+⎨⎪+≤⎩,即1412m m m ⎧⎪≥-⎪≥-⎨⎪⎪≤-⎩,解得112m -≤≤- 综上,实数m 的取值范围为1|412m m m ⎧⎫<--≤≤-⎨⎬⎩⎭或。
高中数学集合精选练习题及答案

B、 丨 m<6
C、 丨 m ≥− 2
D、 丨 m>5
8、下列各式中,正确的个数是( )
① 1∈ 2,4,6 ; ② 2,3,5 ⊆ 5,3,2 ; ③∅⊆ 0 ;
④9= 9 ;
⑤ 0∈ 0 ;
⑥ 8, − 8 ⊆ (8, − 8)
A、5
B、4
C、3
D、2
9、已知集合 A= 丨 2 − 3x ≤ 0, ∈ 若 M=A∪B,则 M 的子集共有( ) A、64 C、48
则集合 B 的子集个数是
。
12、不等式
x2
x2 −
− 3>0 的解集为 5x + 4<0
A,则퐶푅A=
。
13、已知集合 A= 丨 2 − 6x + 8 = 0 ,B= 丨 a 2 − x + 2 = 0 ,且 B⊆A
则 a 的取值范围是
。
14、若集合 A 满足 7,8 ∪A= 7,8,9 ,请用列举法列出集合 A
(2)若 A∪B=A,求 a 的取值范围.
17、已知集合 U= 丨 2 − 13x + 12 ≤ 0,x ∈ Z ,集合 A= 3,6,9 集合 B= 8,10 (1)求 A∪B;
(2)求(퐶푈A)∩B .
18、已知集合 U=R,集合 A= 丨 2 − 11x + 18<0 ,集合 B= 丨 2 − 3x − 10 ≤ 0 . (1)求 A∩B; (2)B∪(퐶푈A) .
,B= 丨x = a2 − 1 , ∈
B、52 D、24
10、设集合 A= 2, A、-6
,B= − ,2 +
,4 − ,若 A⊂B,则 m=( ) B、0
C、4
D、8
高中数学集合练习题及讲解

高中数学集合练习题及讲解## 高中数学集合练习题及讲解集合是数学中描述对象集合的一种基本工具,它在高中数学中占有重要地位。
以下是一些集合的练习题和相应的讲解,帮助学生更好地理解和应用集合的概念。
### 练习题一:集合的基本运算题目:已知集合 A = {1, 2, 3} 和 B = {2, 3, 4},求A ∪ B 和A ∩ B。
解答:- A ∪ B 表示 A 和 B 的并集,即 A 和 B 中所有的元素,不重复地放在一起。
因此,A ∪ B = {1, 2, 3, 4}。
- A ∩ B 表示 A 和 B 的交集,即同时属于 A 和 B 的元素。
因此,A ∩ B = {2, 3}。
### 练习题二:子集与真子集题目:若集合 C = {1, 2},判断 C 是否是 A 的子集。
解答:- 子集的定义是,如果集合 C 中的每一个元素都是集合 A 的元素,那么 C 是 A 的子集。
- 在这个例子中,C 中的所有元素 1 和 2 都在 A = {1, 2, 3} 中,所以 C 是 A 的子集。
### 练习题三:幂集题目:集合 D = {a, b},求 D 的幂集。
解答:- 幂集是包含所有可能子集的集合,包括空集和集合本身。
- 对于 D = {a, b},其幂集 P(D) 包括:- 空集:{}- 只包含 a 的集合:{a}- 只包含 b 的集合:{b}- 包含 a 和 b 的集合:{a, b}- 集合 D 本身:{a, b}### 练习题四:集合的补集题目:已知全集 U = {1, 2, 3, 4, 5},求 A 的补集。
解答:- 补集的定义是全集 U 中不属于集合 A 的所有元素组成的集合。
- 集合 A = {1, 2, 3},所以 A 的补集是 U 中不属于 A 的元素,即A' = {4, 5}。
### 练习题五:集合的笛卡尔积题目:集合 E = {1, 2} 和 F = {x, y},求E × F。
高中集合练习题及答案

高中集合练习题及答案集合是数学中一个非常重要的概念,它在高中数学中占有重要地位。
集合论是研究集合的数学分支,它提供了一种描述和处理数学对象的方式。
在高中数学中,学生需要掌握集合的基本概念、运算以及集合在解决数学问题中的应用。
以下是一些高中集合练习题及答案,供同学们练习和参考。
练习题1:设集合A={x|x<5},B={x|x>3},求A∩B。
答案:集合A表示所有小于5的实数的集合,集合B表示所有大于3的实数的集合。
A与B的交集A∩B就是同时满足小于5且大于3的实数的集合,即A∩B={x|3<x<5}。
练习题2:已知集合M={1,2,3},N={2,3,4},求M∪N。
答案:集合M表示元素为1,2,3的集合,集合N表示元素为2,3,4的集合。
M与N的并集M∪N就是包含M和N所有元素的集合,即M∪N={1,2,3,4}。
练习题3:设A={x|-1≤x≤2},B={x|x>1},求A-B。
答案:集合A表示闭区间[-1,2]中的所有实数的集合,集合B表示大于1的所有实数的集合。
A-B表示A中所有不属于B的元素组成的集合,即A-B={x|-1≤x≤1}。
练习题4:如果A={x|x<0或x>5},B={x|-3≤x≤4},求A∩B。
答案:集合A表示所有小于0或大于5的实数的集合,集合B表示闭区间[-3,4]中的所有实数的集合。
A与B的交集A∩B就是同时满足小于0或大于5且在闭区间[-3,4]中的实数的集合,即A∩B={x|-3≤x<0}。
练习题5:设A={1,2,3},B={x|x∈A且x≠2},求B。
答案:集合A表示元素为1,2,3的集合。
B是A中所有不等于2的元素组成的集合,即B={1,3}。
练习题6:已知A={x|-2<x<3},B={x|-1<x<4},求A∪B。
答案:集合A表示开区间(-2,3)中的所有实数的集合,集合B表示开区间(-1,4)中的所有实数的集合。
高中数学必修一集合练习题

高中数学必修一集合练习题1. 集合的表示法:给定集合A={1, 2, 3},请用描述法表示集合A。
2. 子集与真子集:若集合B={x | x是A的子集},集合A={1, 2, 3},请列出集合B的所有元素,并判断哪些是A的真子集。
3. 集合的并集:已知集合C={1, 2}和集合D={2, 3},请计算C∪D。
4. 集合的交集:若集合E={1, 3, 5}和集合F={2, 3, 5},请找出E∩F。
5. 集合的差集:给定集合G={1, 2, 3, 4}和集合H={3, 4, 5},求G-H。
6. 集合的补集:设全集U={1, 2, 3, 4, 5, 6},集合I={2, 4, 6},请求∁_U I。
7. 幂集:集合J={a, b},请列出J的所有幂集。
8. 集合的包含关系:若集合K={x | x是小于10的正整数},集合L={1, 3, 5, 7, 9},请判断K和L之间的关系。
9. 集合相等:集合M={x | x是偶数}和集合N={2, 4, 6, 8, 10},判断M和N是否相等。
10. 集合的笛卡尔积:若集合O={1, 2}和集合P={a, b},请计算O×P。
解答提示:- 对于第1题,描述法表示集合A可以写作A={x | x是正整数,且1≤x≤3}。
- 第2题中,集合B的所有元素包括空集和所有A的子集,即B={∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}。
其中,A的真子集是不包含A本身的所有子集。
- 第3题,C∪D={1, 2, 3}。
- 第4题,E∩F={3, 5}。
- 第5题,G-H={1, 2}。
- 第6题,∁_U I={1, 3, 5}。
- 第7题,J的幂集包括所有J的子集,即{∅, {a}, {b}, {a, b}}。
- 第8题,K包含L,因为L的所有元素都在K中。
- 第9题,M和N相等,因为它们包含相同的元素。
高中数学-集合习题7

课时作业(七)1.集合P ={x ∈Z |0≤x <3},M ={x ∈R |x 2≤9},则P ∩M =()A .{1,2}B .{0,1,2}C .{x |0≤x <3}D .{x |0≤x ≤3}2.(2019·浙江)已知全集U ={-1,0,1,2,3},集合A ={0,1,2},B ={-1,0,1},则(∁U A )∩B =()A .{-1}B .{0,1}C .{-1,2,3}{-1,0,1,3}3.设集合A ={x ∈Z |0≤x ≤5},B =k 2,k ∈A ∩B =()A .{0,1,2}{0,1,2,3}C .{0,1,3}D .B 4.【多选题】设M ={1,2,m 2-3m -1},P ={1,3},且M ∩P ={1,3},则m 的值可以是()A .1B .-1C .4D .-45.已知集合M ={x |y =x 2-1},N ={y |y =x 2-1},那么M ∩N 等于()A .∅B .NC .MD .R 6.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为()A .1B .2C .3D .47.设集合A ={x |x ∈Z 且-15≤x ≤-2},B ={x |x ∈Z 且|x |<5},则A ∪B 中的元素个数是()A .10B .11C .20D .218.设全集U =Z ,集合P ={x |x =2n ,n ∈Z },Q ={x |x =4m ,m ∈Z },则U 等于()A .P ∪Q B .(∁U P )∪Q C .P ∪(∁U Q )D .(∁U P )∪(∁U Q )9.已知方程x 2-px +15=0与x 2-5x +q =0的解集分别为S 与M ,且S ∩M ={3},则p +q 的值是()A .2B .7C .11D .1410.已知集合A ,B 与集合A @B 的对应关系如下表:A {1,2,3,4,5}{-1,0,1}{-4,8}B {2,4,6,8}{-2,-1,0,1}{-4,-2,0,2}A @B {1,3,6,5,8}{-2}{-2,0,2,8}若A ={-2020,0,2020},B ={-2020,0,2021},试根据图表中的规律写出A @B =________.11.设S ,P 为两个非空集合,且S P ,P S ,令M =S ∩P ,则与S ∪M 相等的集合是()A .S B .P C .∅D .S ∪P 12.已知集合P ={x |-1≤x ≤1},M ={-a ,a },若P ∪M =P ,则a 的取值范围是()A .{a |-1≤a ≤1}B .{a |-1<a <1}C .{a |-1<a <1,且a ≠0}D .{a |-1≤a ≤1,且a ≠0}13.【多选题】若A ,B ,C 为三个集合,且A ∪B =B ∩C ,则一定有()A .A ⊆B B .B ⊆C C .A ≠C D .B ≠C 14.设集合I ={1,2,3},A 是I 的子集,若把满足M ∪A =I 的集合M 叫做集合A 的“配集”,则当A ={1,2}时,A 的配集的个数是()A .1B .2C .3D .415.设集合S={1,2},A与B是S的两个子集,若A∪B=S,则称(A,B)为集合S的一个分拆,当且仅当A=B时,(A,B)与(B,A)是同一个分拆.那么集合S的不同分拆有________个.16.已知集合A={-1,2},B={x|mx+1>0},若A∪B=B,求实数m的取值范围.教师备选作业1.(高考真题·广东卷)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M∩N=()A.{1,4}B.{-1,-4}C.{0}D.∅2.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素的个数为() A.3B.4C.5D.63.若A∪B=∅,则()A.A=∅,B≠∅B.A≠∅,B=∅C.A=∅,B=∅D.A≠∅,B≠∅4.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=()A.{x|0≤x≤1}B.{x|0<x≤1}C.{x|x<0}D.{x|x>1}5.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩(∁N B)=()A.{1,5,7}B.{3,5,7}C.{1,3,9}D.{1,2,3}6.已知全集R,集合A={x|(x-1)(x+2)(x-2)=0},B={y|y≥0},则A∩(∁R B)为()A.{1,2,-2}B.{1,2}C.{-2}D.{-1,-2}7.集合P={1,4,9,16,…},若a∈P,b∈P,则a⊕b∈P,则运算⊕可能是()A.除法B.加法C.乘法D.减法8.如果U={x|x是小于9的正整数},A={1,2,3,4},B={3,4,5,6},那么(∁U A)∩(∁U B)等于() A.{1,2}B.{3,4}C.{5,6}D.{7,8}9.集合M={x|x=5k-2,k∈Z},P={x|x=5n+3,n∈Z},S={x|x=10m+3,m∈Z}之间的关系是()A.S P M B.S=P MC.S P=M D.P=M S13,18,…},P={…,-7,-2,3,8,13,18,…},S={…,-7,3,13,23,…},故S P=M.故选C. 10.已知集合M={x∈N|x<3},N={0,2,4},则集合M∩N的真子集的个数为________.11.【多选题】已知集合U=R,A={1,2,3,4,5},B={x∈R|x≥3},以下选项属于图中阴影部分所表示的集合中元素的为()A.0B.1C.2D.312.若集合A={1,3,x},B={1,x2},且A∪B={1,3,x},则x=________.13.已知S={a,b},A⊆S,则A与∁S A的所有有序组对共有________组.14.已知集合A={x|x2-px+15=0,x∈Z},B={x|x2-5x+q=0,x∈Z},若A∪B={2,3,5},则A=________,B =________.15.定义集合的商集运算为AB={x|x=mn,m∈A,n∈B},已知集合A={2,4,6},B={x|x=k2-1,k∈A},则集合BA∪B中元素的个数为()A.7B.8C.9D.1016.给定数集A,若对于任意a,b∈A,有a+b∈A,且a-b∈A,则称集合A为闭集合.(1)判断集合A={-4,-2,0,2,4},B={x|x=3k,k∈Z}是否为闭集合,并给出证明;(2)若集合A,B为闭集合,则A∪B是否一定为闭集合?请说明理由.设全集U={1,3,5,7,9},集合A={1,|a-5|,9},∁U A={5,7},则a的值是() A.2B.8C.-2或8D.2或81.(2021·新高考Ⅰ卷)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=() A.{2}B.{2,3}C.{3,4}D.,3,2)设集合M={x|0<x<4},x13≤x≤5M∩N=()x0<x≤13x13≤x<4C.|4≤x D.{x|0<x≤5}3.(2021·全国乙卷,文)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M∪N)=() A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}4.(2021·全国乙卷,理)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.SC.T D.Z5.(2020·北京)已知集合A={-1,0,1,2},B={x|0<x<3},则A∩B=()A.{-1,0,1}B.{0,1}C.{-1,1,2}D.{1,2}6.(2020·课标全国Ⅱ,理)已知集合U={-2,-1,0,1,2,3},A={-1,0,1},B={1,2},则∁U(A∪B)=() A.{-2,3}B.{-2,2,3}C.{-2,-1,0,3}D.{-2,-1,0,2,3}7.(2020·课标全国Ⅲ,理)已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为() A.2B.3C.4D.68.(2020·山东新高考Ⅰ)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}9.(2020·天津)设全集U={-3,-2,-1,0,1,2,3},集合A={-1,0,1,2},B={-3,0,2,3},则A∩(∁U B)=()A.{-3,3}B.{0,2}C.{-1,1}D.{-3,-2,-1,1,3}10.(2020·浙江)已知集合P={x|1<x<4},Q={x|2<x<3},则P∩Q=()A.{x|1<x≤2}B.{x|2<x<3}C.{x|3≤x<4}D.{x|1<x<4}11.(2019·课标全国Ⅰ,文)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩(∁U A)=()A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}12.(2019·天津,理)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=() A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}13.(2017·课标全国Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3}B.{1,0}C.{1,3}D.{1,5}14.(2015·课标全国Ⅰ,文)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.215.(2016·天津)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}1.(2014·辽宁)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}2.(2013·山东,文)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩(∁U B)=() A.{3}B.{4}C.{3,4}D.∅3.(2013·课标全国)已知集合A={1,2,3,4},B={x|x=n2,n∈A},A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}4.(2013·山东)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1B.3C.5D.95.(2018·课标全国Ⅰ,文)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}6.(2018·北京,文)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=()A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}7.(2014·重庆,理)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学-集合的运算练习
5分钟训练
1.设全集U={1,2,3,4,5,6,7},P={1,2,3,4,5},Q={3,4,5,6,7},则P∩(Q)等于( )
A.{1,2}
B.{3,4,5}
C.{1,2,6,7}
D.{1,2,3,4,5} 答案:A
2.设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于( )
A.[0,2]
B.[1,2]
C.[0,4]
D.[1,4]
答案:A
提示:在数轴上表示出两个集合,观察公共部分.
3.设A、B、I均为非空集合,且满足A⊆B⊆I,则下列各式中错误的是( )
A.(A)∪B=I
B.(A)∪(B)=I
C.A∩(B)=∅
D.(A)∩(B)= B
答案:B
解析:画出韦恩图,有(A)∪(B)=(A∩B),知B错.
4.设全集为U,用集合A、B、C的交、并、补集符号表示图中的阴影部分.
(1)__________________;(2) __________________.
答案:(1)(A)∩B (2)(C)∩(A∩B)
10分钟训练
1.下列说法:①∅⊆{0};②x∉A,则x∈A的补集;③若C=A∪B,D=A∩B,则C⊇D;④适合{a}⊆A⊆{a,b,c}的集合A的个数为4.其中不正确的有( )
A.0个
B.1个
C.2个
D.3个
答案:B
解析:①空集是任何集合的子集;②没有指明全集,若A=N,全集U=Z,则A负整数集,x=3.5,
则x∉A且x∉ A.故②错;③可用韦恩图验证;④分析至少含有一个元素a,最多含有三个元素a、b、c的集合的个数.
①③④都正确,所以选B.
2.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},且B≠∅,若A∪B=A,则( )
A.-3≤m≤4
B.-3<m<4
C.2<m <4
D.2<m≤4
答案:D
解析:由题意,B ⊆A.又B≠∅,故⎪⎩
⎪⎨⎧-<+≤--≥+,121,712,21m m m m 解得2<m≤4.
3.设全集I=R,M={x|x<-2或x>2}与N={x|1<x≤3}都是I 的子集(如图所示),则阴影部分所表示的集合为
( )
A.{x|-2≤x<1}
B.{x|-2≤x≤2}
C.{x|1<x≤2}
D.{x|x<2}
答案:C
解析:由题图可知,阴影部分表示的集合为(M)∩N.
∵M={x|x<-2或x>2}, ∴M={x|-2≤x≤2}.
观察上图可知(M)∩N={x|1<x≤2}.
4.某运动协会共有成员68人,其中会游泳的57人,会射击的62人,若两项都不会的有3人,则两项都会的有( )
A.55人
B.51人
C.58人
D.54人
答案:D
解析:依据集合的运算性质,可设两项都会的有x 人,则68=(57-x)+x+(62-x)+3.所以x=54.
5.已知集合M={a 2,a+1,-3},N={a-3,2a-1,a 2+1},若M∩N={-3},则a 的值是( )
A.-1
B.0
C.1
D.2
答案:A
解析:依题意,a-3=-3或2a-1=-3,
解得a=0或a=-1.
当a=0时,M={0,1,-3},N={-3,-1,1},这与M∩N={-3}矛盾,故a≠0;
当a=-1时,M={1,0,-3},N={-4,-3,2},符合题意.另外,针对此题的题型还可采用直接代入法求解.
6.已知全集U=N *,集合A={x|x=2n,n∈N *},B={x|x=4n,n∈N *},请使用含有集合A 、B 的集合运
算表示全集U=____________.(只需写出一个即可)
答案:A∪(B)
30分钟训练
1.设集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C 等于( )
A.{1,2,3}
B.{1,2,4}
C.{2,3,4}
D.{1,2,3,4}
答案:D
解析:∵A∩B={1,2},C={2,3,4},
∴(A∩B)∪C={1,2,3,4}.
2.如图所示,阴影部分表示的集合是( )
A.B∩((A∪C))
B.(A∪B)∪(B∪C)
C.(A∪C)∩(B)
D.((A∩C))∪B
答案:A
解析:阴影部分元素x∈B,但x∉A,x∉C,所以阴影部分表示的集合为B∩((A∪C)).
3.在高一(4)班的学生之中,参加语文小组的有20人,参加数学小组的有22人,两个小组都参加的有10人,两个小组都未参加的有15人,则高一(4)班共有学生( )
A.42人
B.57人
C.52人
D.47人
答案:D
解析:依集合的运算性质,画韦恩图可得:共有人数为20+22-10+15=47.故选D.
4.(探究题)已知全集U={0,1,2,3,4,5},集合M={0,3,5},M∩(N)={0,3},则满足条件的集
合N共有( )
A.4个
B.6个
C.8个
D.16个
答案:C
解析:集合N中没有元素0,3,有元素5.故集合N的个数为含元素1,2,4的集合的子集的个数23=8个.
5.集合A、B各有2个元素,A∩B中有一个元素,若集合C同时满足
①C⊆A∪B,②C⊇A∩B,则满足条件的集合C的个数是( )
A.1
B.2
C.3
D.4
答案:D
解析:不妨设A={a,b},B={b,c}.
由①知C⊆{a,b,c},由②知{b}⊆C,所以C中必有元素b.
故C的个数为含有两个元素的集合的子集的个数.
6.(创新题)定义集合M与N的新运算如下:M*N={x|x∈M或x∈N且x∉M∩N}.若M={0,2,4,6,8,10,12},N={0,3,6,9,12,15},则(M*N)*M等于( )
A.M
B.N
C.{2,3,4,8,9,10,15}
D.{0,6,12}
答案:B
解析:方法一:
∵M∩N={0,6,12},
∴M*N={2,3,4,8,9,10,15},
∴(M*N)*M={0,3,6,9,12,15}=N.
方法二:如图所示,由定义可知M*N为图中阴影的区域,
∴(M*N)*M为图中阴影Ⅱ和空白的区域.
∴(M*N)*M=N.
7.设集合A={-3,0,1},B={t2-t+1}.若A∪B=A,则t=_____________.
答案:0或1
解析:由A∪B=A,知B⊆A,
∴t2-t+1=-3①或t2-t+1=0②或t2-t+1=1③.
①无解;
②无解;
③t=0或t=1.
8.设I是全集,非空集合P、Q满足P Q I.若含P、Q的一个运算表达式,使运算结果为空集∅,则这个运算表达式可以是____________(只要求写出一个表达式).
答案:(Q)∩P=∅
解析:方法一:如韦恩图所示:
则(Q)∩P=∅.
方法二:构造满足条件的集合实例论证.
设I={1,2,3},Q={1,2},P={1},则Q={3},
显然(Q)∩P=∅.
9.设二次方程x2+ax+b=0和x2+cx+15=0的解集分别是A和B,又A∪B={3,5},A∩B={3},求a、b、c的值.
解:∵A∩B={3},
∴3一定为方程x2+cx+15=0的根,
于是c=-8,将c=-8代回方程得方程的两根为3、5,
又∵A∪B={3,5},A∩B={3},
∴方程x2+ax+b=0有两个相等的实数根为3.
∴3+3=-a,3×3=b.
∴a=-6,b=9,c=-8.
10.设全集U={2,3,a2+2a-3},A={|2a-1|,2},A={5},求实数a的值.
解:∵A={5},A={|2a-1|,2},U={2,3,a2+2a-3},
∴⎩⎨⎧=-+=-.532,3|12|2a a a 解得⎩⎨⎧-==-==.42,12a a a a 或或
∴a=2.。