牵引供电发展及方式
高速铁路牵引供电方式

高速铁路牵引供电方式1.直接供电方式电方式是指牵引变电所通过接触网直接向动车组供电,回流经钢轨及大地直接返回牵引变电所。
这种供电方式的电路构成简单、设备少,施工及运营维修都较方便,造价也低。
但由于接触网在空中产生的强大磁场得不到平衡,对邻近的广播、通信干扰较大,因此一般不采用。
2.BT供电方式BT供电方式就是在牵引供电系统中加装吸流变压器(3~4 km安装一台)和回流线。
这种供电方式由于在接触网同高度的外侧增设了一条回流线,回流线上的电流与接触网上的电流方向相反,因此大大减轻了接触网对邻近通信线路的干扰。
采用BT供电方式的电路是由牵引变电所、接触悬挂、回流线、轨道及吸上线等组成。
牵引变电所作为电源向接触网供电;动车组列车运行于接触网与轨道之间;吸流变压器的原边串接在接触网中,副边串接在回流线中。
吸流变压器是变比为1∶1的特殊变压器。
它使流过原、副边线圈的电流相等,即接触网上的电流和回流线上的电流相等。
因此,可以说是吸流变压器把经钢轨、大地回路返回变电所的电流吸引到回流线上,经回流线返回牵引变电所。
这样,回流线上的电流与接触网上的电流大小基本相等、方向相反,故能抵消接触网产生的电磁场,从而起到防干扰作用。
理论上的理想情况是这样的,但实际上由于吸流变压器线圈中总需要励磁电流,经回流线的电流总小于接触网上的电流,因此不能完全抵消接触网对通信线路电磁感应的影响。
另外,当机车位于吸流变压器附近时,回流还是从轨道中流过一段距离,至吸上线处才流向回流线,该段回流线上的电流会小于接触网上的电流,这种情况称为半段效应。
此外,吸流变压器的原边线圈串接在接触网中,所以在每个吸流变压器安装处,接触网必须安装电分段,这样就增加了接触网的维修工作量和事故率。
当高速大功率机车通过该电分段时会产生很大的电弧,极易烧损机车受电弓和接触线。
BT供电方式的牵引网阻抗较大,造成较大的电压和电能损失,故已很少采用。
3.AT供电方式随着铁路电气化技术的发展及动车组的投入运行,传统的供电方式已不能适应铁路发展的需要,各国开始采用AT供电方式。
牵引供电-供电方式

牵引网供电方式的比较
AT供电方式特点 1) AT供电方式特点 25kV系统,供电电压比直供方式高一倍, kV系统 ① 2×25kV系统,供电电压比直供方式高一倍,电压 损失降为1/4 , 牵引网单位阻抗约为直供方式的1/4 损失降为 1 牵引网单位阻抗约为直供方式的 1 实际略高) 电能损失小,显示了良好的供电特性; (实际略高),电能损失小,显示了良好的供电特性; 牵引变电所的间距大,易选址, ② 牵引变电所的间距大 ,易选址 ,减少了外部电源 的工程数量和投资; 的工程数量和投资; 减少了电分相数量,有利于列车的高速运行; ③ 减少了电分相数量,有利于列车的高速运行; 牵引网回路是平衡回路,防干扰效果, ④牵引网回路是平衡回路,防干扰效果,可改善电磁 环境,并减少防干扰费用; 环境,并减少防干扰费用;
• •
IC 1
•
•
•
IC 2
I
•
•
•
C
I1
AC
U1
55kV
•
•
I2
T
IT 1
•
IT 2
U2
I1
′ U1
•
IF
′ U2
•
•
I2
F C
T
F
复线末端并联AT网络 复线末端并联 网络
电流分配关系
•
• •
I1
•
IC 1
•
IC 2
•
•
U1
•
I
•
IT 1
•
IT 2
U2
I2
′ U1
•
•
IF
′ U2
•
•
I2
I1
x
D
单线短回路中的电流分配
(完整版)牵引供电方式

—轨道大地回路,改变为距离相对很小的接触网—回流线线路。而且,
方向相反,它们
这样就达到了牵引供电回路比较对称的目的,显著的消
使牵引电流在邻近的通信线路中的电
方式牵引网结构复杂,造价较高,由于吸流变压器串入接触网,使得牵
BT分段(火花间隙),不利于高速、
BT方式的钢轨电位低,抑制通信干扰的效果很好。
接触网对机车的供电方式
1) 直接供电方式
牵引网结构最简,投资最小,但钢轨电位较高,的直接供电方式
DN供电方式:在钢轨上并联架空回流线(又
。
原来流经轨道、大地的回流,一部分改由架空回流线流回牵
其方向与接触网中馈线电流方向相反,架空回流线与接触网距离较近,
G入地。在钢轨对地泄漏电阻和机车取流较
AT区段中部加横向连接线CPW,将钢
并联于牵引网中,克服了BT串入网中BT分段的缺陷,使供电电压成倍
170%-200%),网上压
5) CC供电方式
同轴电缆内外导体间的互感系数很大,吸流效果和抑制通信干扰的效果均
BT和AT供电方式。CC供电牵引网阻抗和供电距离与AT方式相近,钢轨
以加长带有不同电位的两段钢轨之间的距离,此外,当
--回方式比吸--轨方式抑制通信干扰的效果好。我国采用的BT方式均为
-回方式,日本东海道新干线也如此,而英国、法国、瑞典两种方式都有应用,
BT-钢轨方式。
1:1的特殊变压器,其特点是要求励磁电流小。吸
1.5-4km 设置
在两个吸流变压器中间,把轨道和回流线连接起来,这个连接
AF与T架设在同一支柱上。牵引变压器的次边以55kV,在供电臂上并接
。AT两半线圈匝数n1=n2,即原、次边变比为2:1,使供给接触网上的电
高速铁路牵引供电概述

1.1 牵引供电方式
2.BT供电方式
BT供电方式就是在牵引供电系统中加 装吸流变压器(3~4 km安装一台)和 回流线。这种供电方式由于在接触网 同高度的外侧增设了一条回流线,回 流线上的电流与接触网上的电流方向 相反,因此大大减轻了接触网对邻近 通信线路的干扰。采用BT供电方式的 电路是由牵引变电所、接触悬挂、回 流线、轨道及吸上线等组成。牵引变 电所作为电源向接触网供电;动车组 列车运行于接触网与轨道之间;吸
正馈线与轨道之间的电压也是25 kV。自 耦变压器是并联在接触悬挂和正馈线之间 的,其中性点与钢轨(保护线)相连接。 彼此相隔一定距离(一般间距为10~16 km)的自耦变压器将整个供电区段分成 若干个小的区段,叫作AT区段,从而形 成了一个多网孔的复杂供电网络。接触悬 挂是去路,正馈线是回路。接触悬挂上的 电流与正馈线上的电流大小相等、方向相 反,因此其电磁感应影响可以互相抵消, 故对邻近的通信线有很好的防护作用。
高
速 铁
项目
高速铁路牵引供电概述
路
高速铁路牵引供电概述
高速铁路的牵引供电系统,其本身没有发电设备,而是从电力系统获取电能。 目前,牵引供电系统的供电方式有直接供电方式、BT供电方式、AT供电方式、 同轴电力电缆(coaxial cable,CC)供电方式、直供加回流线供电方式、单 边供电方式和双边供电方式等。
1.1 牵引供电方式
3.AT供电方式
随着铁路电气化技术的发展及动车组的投 入运行,传统的供电方式已不能适应铁路 发展的需要,各国开始采用AT供电方式。 AT供电方式就是在牵引供电系统中并联 自耦变压器的供电方式。实践证明,AT 供电方式是一种既能有效地减弱接触网对 邻近通信线的电磁感应影响,又能适应高
1-1 电力牵引的发展过程和趋势

电气化铁路牵引供电方式
• 自耦变压器供电方式(AT供电方式) • 优点:因此电压损失小,电能损耗低, 供电能力大,供电距离长。对邻近的通 信线路干扰很小,其防干扰效果与BT供 电方式相当。 • 缺点:牵引变电所和牵引网比较复杂。 • 应用:一般用在重载、高速等负荷大的 电气化铁路上。
电气化铁路牵引供电方式
这台“极其奇形怪状的二轴蒸汽机车”是由矿用机 械 零部件拼装而成的,是真正的“中国火箭”号。
●1952年我国研制出具有世界先进水平的前进系列蒸汽机车并且出 口到世界很多国家。以后逐步制造了解放型和建设型(1-4-1式),胜利 型和人民型(2-3-1式),FD型和前进型(1-5-1式)等六种主型蒸汽机车。 ● 同年日本、美国宣布蒸汽机车停产。于是中国成为全球最後一个 制造大型蒸汽机车的国家,大同机车厂一直生产蒸汽机车至1988年。 ● 我国在鼎盛时期达到蒸汽机车8000台左右。
电气化铁路牵引供电方式
• • • • • 直接供电方式(TR供电方式) 吸流变压器供电方式(BT供电方式) 带回流线的直接供电方式 自耦变压器供电方式(AT供电方式) 同轴电缆供电方式(CC供电方式)
电气化铁路牵引供电方式
• 直接供电方式(TR供电方式) • 是在牵引网中不加特殊防护措施的一种供电方 式。电气化铁路最早大都采用这种供电方式, 它一根馈线接在接触网(Touch)上,另一根 馈线接在钢轨(Rail)上:
乔治· 斯蒂芬森制造蒸汽机 车“旅行”号 “№1” (现陈列于达林顿车站)
◇
发展时期(1831~1920年)
● 1830年:美国以及其他一些国家先后开始制造蒸汽机车。这个时期最早
使用二轴引导转向架是美国于1832年制造的 2-1-0式“乔纳森兄弟”号机车。 1884年:瑞士人A.马利特发明关节式机车,能顺利通过曲线。整备重量为543吨, 锅炉压力为2.068兆帕(21.1千克力/厘米2),在时速120公里条件下,发挥出功 率6000马力以上。 ● 1875~1900年:广泛应用蒸汽两次膨胀原理,创造了复胀式机车,提高了 机车热效率。 ● 1900~1920年:由于采用蒸汽过热和给水加热等装置,机车的热效率、牵 引力和功率有大幅提高。
(完整版)牵引供电方式

接触网对机车的供电方式(1)直接供电方式牵引网结构最简,投资最小,但钢轨电位较高,对通信线的干扰感应最大, 主要适用于通信线路(主要是明线)较少或很易将受扰通信线迁改径路的场合。
基本型直接供电方式在法国、英国、原苏联都广泛应用。
牽引变电所 K(2)带回流线的直接供电方式带回流线的直接供电方式简称 DN 供电方式:在钢轨上并联架空回流线(又 称为负馈线)。
增加回流线后,原来流经轨道、大地的回流,一部分改由架空回流线流回牵 引变电所,其方向与接触网中馈线电流方向相反,架空回流线与接触网距离较近, 因此相当于对邻近通信线路增加了屏蔽效果; 另外,钢轨电位大为降低,对通信线的干扰得到较好抑制。
还能降低牵引网阻抗,使供电臂延长30%以上。
牵引变电所 Z\l(3) BT 供电方式在牵引供电系统中加装吸流变压器-回流线装置的供电方式,称为吸流变压 器供电方式,简称BT (Booster Transforme )供电方式。
它是在牵引网中,每相 距1.5-4km ,设置一台变比为1: 1的吸流变压器,其一次线圈串接入接触网, 二次线圈串接在回流线中,(即吸流变压器-回流线方式,简称吸-回方式),或串吸流变压器-轨道方方式)。
吸轨方式需要自吸流变压器处作绝缘轨缝,将轨道进行绝缘分段,依靠吸流变压器的作用,使绝大部分回归电流流经由轨道和吸流变压器二次线圈流回牵引变电所。
与吸--回方式相比,吸轨方式造价要低得多,对接触网的运行维护也比较有利,对于地形比较困难,或穿越长大隧道的的电气化区段是有意义的。
但是, 对邻近线路的防护效果要差一些。
而且,在绝缘轨缝两侧的轨端之间可能出现数百伏的电压,对线路维修人员的安全是个威胁,为了解决这个矛盾,可在吸流变压器出做两个绝缘轨缝,以加长带有不同电位的两段钢轨之间的距离,此外,当列车通过绝缘轨缝的整段时间内,吸流变压器由于副边线路被短路而失去作用。
吸--回方式比吸--轨方式抑制通信干扰的效果好。
牵引供电的供电方式

接触网的供电方式我国电气化铁路均采用单边供电方式,即牵引变电所向接触网供电时,每一个供电臂的接触网只从一端的牵引变电所获得电能(从两边获得电能则为双边供电,可提高接触网末端网压,但由于其故障范围大、继电保护装置复杂等原因尚未有采用)。
复线区段可通过分区亭将上下行接触网联接,实现“并联供电”,可适当提高末端网压。
当牵引变电所发生故障时,相邻变电所通过分区亭实现“越区供电”,此时供电范围扩大,网压降低,通常应减少列车对数或牵引定数,以维持运行。
1、直接供电方式如前所述,电气化铁路采用工频单相交流电力牵引制,单相交流负荷在接触网周围空间产生交变电磁场,从而对附近通信设施和无线电装置产生一定的电磁干扰。
我国早期电气化铁路(如宝成线、阳安线)建设时,处于山区,地方通信技术不发达,铁路通信采用高屏蔽性能的同轴电缆,接触网产生的电磁干扰影响极小,不用采取特殊防护措施,因此上述单边供电方式亦称为直接供电方式(简称TR供电方式)。
随着电气化铁路向平原和大城市发展,电磁干扰矛盾日显突出,于是在接触网供电方式上采取不同的防护措施,便产生不同的供电方式。
目前有所谓的BT、AT和DN供电方式。
从以下的介绍中可以看出这些供电方式有一个共同特点,即在接触网支柱田野侧,与接触悬挂同等高度处都挂有一条附加导线。
电力牵引时,附加导线中通过的电流与接触网中通过的牵引电流,理论上讲(或理想中)大小相等、方向相反,从而两者产生的电磁干扰相互抵消。
但实际上是做不到的,所以不同的供电方式有不同的防护效果。
2、吸流变压器(BT)供电方式这种供电方式,在接触网上每隔一段距离装一台吸流变压器(变比为1:1),其原边串入接触网,次边串入回流线(简称NF线,架在接触网支柱田野侧,与接触悬挂等高),每两台吸流变压器之间有一根吸上线,将回流线与钢轨连接,其作用是将钢轨中的回流“吸上”去,经回流线返回牵引变电所,起到防干扰效果。
由于大地回流及所谓的“半段效应”,BT供电方式的防护效果并不理想,加之“吸——回”装置造成接触网结构复杂,机车受流条件恶化,近年来已很少采用。
牵引变电所的几种供电方式

电气化铁道牵引供电装置,又称为牵引供电系统,其系统本身没有发电设备,而就是从电力系统取得电能。
目前我国一般由110kV以上得高压电力系统向牵引变电所供电。
目前牵引供电系统得供电方式有直接供电方式、BT供电方式、AT供电方式、同轴电缆与直供加回流线供电方式四种,京沪、沪杭、浙赣都就是采用得直供加回流线方式。
一、直接供电方式直接供电方式(T—R供电)就是指牵引变电所通过接触网直接向电力机车供电,及回流经钢轨及大地直接返回牵引变电所得供电方式。
这种供电方式得电路构成及结构简单,设备少,施工及运营维修都较方便,因此造价也低。
但由于接触网在空中产生得强大磁场得不到平衡,对邻近得广播、通信干扰较大,所以一般不采用。
我国现在多采用加回流线得直接供电方式。
二、BT供电方式所谓BT供电方式就就是在牵引供电系统中加装吸流变压器(约3~4km 安装一台)与回流线得供电方式。
这种供电方式由于在接触网同高度得外侧增设了一条回流线,回流线上得电流与接触网上得电流方向相反,这样大大减轻了接触网对邻近通信线路得干扰、BT供电得电路就是由牵引变电所、接触悬挂、回流线、轨道以及吸上线等组成。
由图可知,牵引变电所作为电源向接触网供电;电力机车(EL)运行于接触网与轨道之间;吸流变压器得原边串接在接触网中,副边串接在回流线中。
吸流变压器就是变比为1:1得特殊变压器、它使流过原、副边线圈得电流相等,即接触网上得电流与回流线上得电流相等。
因此可以说就是吸流变压器把经钢轨、大地回路返回变电所得电流吸引到回流线上,经回流线返回牵引变电所。
这样,回流线上得电流与接触网上得电流大小基本相等,方向却相反,故能抵消接触网产生得电磁场,从而起到防干扰作用。
以上就是从理论上分析得理想情况,但实际上由于吸流变压器线圈中总需要励磁电流,所以经回流线得电流总小于接触网上得电流,因此不能完全抵消接触网对通信线路得电磁感应影响。
另外,当机车位于吸流变压器附近时回流还就是从轨道中流过一段距离,至吸上线处才流向回流线,则该段回流线上得电流会小于接触网上得电流,这种情况称为“半段效应”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牵引供电牵引供电绪论1879年5月,德国西门子和哈尔斯公司建造了世界上第一条电气化铁路。
100多年来,随着电机电器制造工业、电子工业和电力工业的发展,电气化铁路运输以其巨大的经济效益受到世界各国的普遍重视,得到飞速发展。
我国铁路电气化事业起始于1956年。
1961年8月宝成铁路(宝鸡至成都)宝鸡至凤州段电气化通车;1975年6月宝成铁路全线电气化通车,成为我国第一条电气化铁路。
宝成铁路电气化后,该铁路的运能、运量大幅度的增长,推动了我国铁路电气化事业的发展。
目前,电气化铁路已经占据了我国铁路发展的绝对主导地位。
我国的电气化铁路正逐步向高速铁路发展,以2007年动车组的运行为标志,我国的电气化铁路将迈入世界先进行列。
自1961年8月15日,我国第一条电气化铁路-宝成铁路铁路建成通车,到1980年底,共建成电气化铁路1679.6km,平均每年修建电气化铁路还不到100km,十一届三中全会确定了以经济建设为中心的基本路线。
随着我国改革开放的不断向前推进,我国的电气化铁路建设有了较快的发展,在“六五”、“七五”期间共修建了电气化铁路5294.63km,平均每年修建已超过500km,到2005年,中国电气化铁路总里程达20000公里,截至到2008年10月,中国电气化铁路总里程已达26000公里。
牵引供电系统概述牵引供电是指拖动车辆运输所需电能的供电方式。
牵引供电系统是指铁路从地方引入220(110)KV电源,通过牵引变电所降压到27.5KV送至电力机车的整个供电系统。
例如城市电车,地铁等,我们主要研究的内容是电气化铁道牵引供电系统。
在我们这里简称牵引供电系统。
牵引供电优缺点牵引供电的优越性电气化铁路运输电力牵引的优越性主要体现在如下几个方面:1、电力牵引可节约能源,综合利用能源2、电力牵引可提高列车的牵引重量,提高列车的运行速度3、电力牵引制动功率大,运行时安全性高强4、电气化铁路运输的成本费用低5、电力牵引易于实现自动化,利用采用先进科学技术,利于改善劳动条件,利于环境保护牵引供电的缺点电气化铁路运输电力牵引的缺点主要体现在如下几个方面:1、基本建设投资较大。
2、对电力系统存在某些不利因素。
因为牵引供电用电是单相负荷,将会在电力系统中产生较大的负序电流和负序电压,而且电力机车的功率因数较低,高次谐波含量较大等都会给电力系统造成不良影响。
3、对铁路沿线附近的通讯线路造成一定的电磁干扰。
4、接触网需要停电检修,要求在列车运行图中留有一定的天窗时间,在此时间内列车要停止运行。
牵引供电电流制电力牵引采用的电流、电压制式。
根据各国的国情不同,主要有如下几种形式:一、直流制世界上最早采用的电流制。
截至目前,世界上仍占43%左右。
这种电气化铁路采用0.75KV(我国城市地铁)、1.5KV、3KV或6KV的直流电,向直流电力机车供电。
其主要优点是:可以简化机车设备。
其主要缺点是:1、供电电压低(通常只有1500v);2、线路损耗大,供电距离短(≤20-30km)。
主要运用于矿山1500v;城市电车650-800v;地铁720-820v。
二、低频单相交流制20世纪初,西欧一些国家采用,发展很好。
这种电气化铁路采用11KV、25Hz;15KV、50/3Hz的单相交流电向电力机车供电。
低频单相交流制频率:16又2/3,电压11-15kv。
低频单相交流制采用原因及优点:1、有低频的工业电力;2、整流简单;电抗较小;3、和直流制相比,导线截面小送电距离长(50~70km)。
缺点:供电频率与工业供电频率不同,故须有变频装置或由铁路专用的低频发电厂供电。
三、三相交流制个别国家,如瑞士、法国等采用3.6kv的三相交流制,电力机车采用三相交流异步电动机。
其主要优点是:1、三相对称,不影响电力系统稳定性;2、牵引变电所和电力机车结构相对简化;3、三相异步电动机运行可靠、维护方便;机车功率大、速度高、功率因数高(接近于1);4、能将无功功率、通讯干扰减到最小。
缺点:机车供电线路复杂,异步电动机调速比较困难。
四、工频单相交流制是电气化铁道发展中的一项先进供电制,最早出现在匈牙利,电压16kv,1950年法国试建了一条25kv的单相工频交流电气化铁道,随后日本、前苏联等相继采用(20kv)目前该种电流制已占到40%以上。
这种电气化铁路采用25KV工频单相交流电向电力机车供电。
这是一种比较先进的电流、电压制,它引起了世界各国的重视。
我国的电气化铁路从开始就采用了这种工频单相交流牵引制,为我国电气化铁路的发展奠定了良好的基础。
其主要优点是:1、供电系统结构简单。
牵引变电所从电力系统获得电能,经过电压变换后直接供给牵引网;2、供电电压增高,既可保证大功率机车的供电,提高机车牵引定数和运行速度,又可使变电所之间的距离延长,导线面积减小,建设投资和运营费用显著降低;3、交流电力机车的粘着性和牵引性能良好,牵引电动机可在全并联状态下运行,防止轮对空转的恶性发展。
从而提高了运用粘着系数;4、和直流制比,减小了地中电流对地下金属的腐蚀作用,一般可不设专门的防护装置。
一、直接供电方式(TR)直接供电方式较为简单,是将牵引变电所输出的电能直接供给电力机车的一种供电方式,主要设备有牵引变压器、断路器、隔离开关、所用变、电压互感器、电流互感器、母线、接地系统、交流盘、直流盘、硅整流盘、控制盘、保护盘等设备。
直供方式的优点:结构简单、投资省缺点:由于牵引供电系统为单相负荷,该供电方式的牵引回流为钢轨,是不平衡的供电方式,对通信线路产生感应影响大。
回路电阻大,供电距离短(十几公里)。
二、BT(吸流变压器)供电方式这种供电方式,在接触网上每隔一段距离装一台吸流变压器(变比为1:1),其原边串入接触网,次边串入回流线(简称NF线,架在接触网支柱田野侧,与接触悬挂等高),每两台吸流变压器之间有一根吸上线,将回流线与钢轨连接,其作用是将钢轨中的回流“吸上”去,经回流线返回牵引变电所,起到防干扰效果。
由于大地回流及所谓的“半段效应”,BT供电方式的防护效果并不理想,加之“吸——回”装置造成接触网结构复杂,机车受流条件恶化,近年来已很少采用。
三、AT(自偶变压器)供电方式采用AT供电方式时,牵引变电所主变输出电压为55kV,经AT(自耦变压器,变比2:1)向接触网供电,一端接接触网,另一端接正馈线(简称AF线,亦架在田野侧,与接触悬挂等高),其中点抽头则与钢轨相连。
AF 线的作用同BT供电方式中的NF线一样,起到防干扰功能,但效果较前者为好。
此外,在AF线下方还架有一条保护(PW)线,当接触网绝缘破坏时起到保护跳闸作用,同时亦兼有防干扰及防雷效果。
显然,AT供电方式接触网结构也比较复杂,田野侧挂有两组附加导线,AF线电压与接触网电压相等,PW线也有一定电位(约几百伏),增加故障几率。
当接触网发生故障,尤其是断杆事故时,更是麻烦,抢修恢复困难,对运输干扰极大。
但由于牵引变电所馈出电压高,所间距可增加一倍,并可适当提高末端网压,在电力系统网络比较薄弱的地区有其优越性。
四、直供+回流(DN)供电方式(TRNF)带回流线的直接供电方式取消BT供电方式中的吸流变压器,保留了回流线,利用接触网与回流线之间的互感作用,使钢轨中的回流尽可能地由回流线流回牵引变电所,因而部分抵消接触网对临近通信线路的干扰,其防干扰效果不如BT供电方式,通常在对通信线防干扰要求不高的区段采用。
这种供电方式设备简单,因此供电设备的可靠性得到了提高;由于取消了吸流变压器,只保留了回流线,因此牵引网阻抗比直供方式低一些,供电性能好一些,造价也不太高,所以这种供电方式在我国电气化铁路上得到了广泛应用。
这种供电方式实际上就是带回流线的直接供电方式,NF线每隔一定距离与钢轨相连,既起到防干扰作用,又兼有PW线特性。
由于没有吸流变压器,改善了网压,接触网结构简单可靠。
近年来得到广泛应用。
五、同轴电力电缆供电方式同轴电力电缆供电方式是在牵引网中沿铁路埋设同轴电力电缆,其内部导体作为馈电线与接触网并联,外部导体作为回流线与钢轨并联的供电方式。
这种供电方式由于投资大,一般不采用。
主要由牵引变电所和牵引网两部分组成。
主要作用是从电力系统取得电能,并送给沿铁路线运行的机车。
牵引变电系统组成部分:一、高压架空输电线路二、牵引变电所三、接触网四、馈电线五、轨道六、回流线七、分区所(亭)一、一次供电网络指直接向牵引变电所供电的地区变电所(或发电厂)及高压输电线路。
以牵引变电所进线门型架为分界点。
二、牵引变电所牵引变电所的功能是将三相的110KV(或220KV)高压交流电变换为两个单相的27.5KV的交流电,然后向铁路上、下行两个方向的接触网(额定电压为25KV)供电。
牵引变电所的作用:1、变换电压。
2、集中、分配电能。
3、调整电压。
三、牵引网由馈电线、接触网、钢轨、回流线组成的双导线供电系统。
馈电线是连接变电所和接触网之间的架空铝导线。
接触网直接把从牵引变电所获得的电能供给电力机车,其质量和工作状态直接影响着电气化铁路运输能力。
由于接触网是露天设置,没有备用,线路上的负荷又随电力机车的运行而沿接触线移动和变化,对接触网提出以下要求:1、在高速运行和恶劣的气候条件下,能保证电力机车正常取流,要求接触网在机械结构上有良好的稳定性和弹性。
2 、接触网设备对地绝缘要符合技术要求,安全可靠。
3 、要求接触网的设备.零件具有足够的耐磨性和抗腐浊能力,以期延长使用年限。
4 、要求接触网结构.设备尽量简单,零件互换性好,便于施工,维修。
在事故情况下便于抢修和迅速恢复送电。
5、尽可能降低成本,特别要注意节约有色金属及钢材。
四、分区所为了增加供电的灵活性,提高运行可靠性,在相邻变电所供电的接触网区段通常加设分区所。
分区所的作用:1、使同一供电分区的上、下行接触网并联工作或单独工作。
当并联工作时,分区所(亭)内的断路器闭合以提高接触网的末端电压;单独工作时,断路器打开。
2、单边供电的同一供电分区上、下行接触网(并联工作)内发生短路事故时,由牵引变电所中的馈线断路器和分区所(亭)中的断路器配合动作,切除事故区段,缩小事故范围。
非事故区段仍可照常工作。
3、当某牵引变电所全所停电时,可闭合分区所(亭)中与分相绝缘器并联的隔离开关(或断路器),由相邻牵引变电所向停电牵引变电所的供电分区临时越区供电。
五、开闭所枢纽站场(如编组场、客场、机车整备线等),为提高供电可靠性和灵活性,通常将其分组独立供电,为此增设了开闭所。
如果是复线区段,通过开闭所的断路器可将接触网上下行并联起来,兼分区所运行。
开闭所的作用:1、开闭所不进行电压变换,只起扩大馈线回路数的作用,相当于配电所;2、将供电臂分段,事故时缩小事故范围,提高供电可靠性;3、保证枢纽站,场装卸作业和接触网分组检修的灵活性,安全性;4、降低牵引变电所的复杂程度。