机械手总体设计方案

合集下载

平面关节型机械手设计_毕业设计精品

平面关节型机械手设计_毕业设计精品

平⾯关节型机械⼿设计_毕业设计精品平⾯关节型机械⼿设计⽬录第1章绪论 (1)第2章机械⼿总体⽅案设计 (2)2.1总体⽅案分析 (2)2.2总体结构分析 (3)第3章机械⼿总体结构设计 (6)3.1 机械⼿⼿部设计 (6)3.2 移动关节的设计 (9)3.3 ⼩臂的设计 (11)3.4 ⼤臂的设计 (16)3.5 机⾝的设计 (18)结束语 (21)参考⽂献 (22)平⾯关节型机械⼿设计第⼀章绪论随着我国⼯业⽣产的飞跃发展,⾃动化程度的迅速提⾼,实现⼯件的装卸、转向、输送或操持焊枪、喷枪、扳⼿等⼯具进⾏加⼯、装配等作业的⾃动化,已愈来愈引起⼈们的重视。

机械⼿是模仿着⼈⼿的部分动作,给定程序、轨迹和要求实现⾃动抓取、搬运或操作的⾃动机械装置。

在⼯业⽣产中应⽤的机械⼿被称为“⼯业机械⼿”。

⽣产中应⽤实现安全⽣产;尤其在⾼温、⾼压、低温、低压、粉尘、易爆、有毒⽓体和放射性等恶劣环境中,它代替⼈进⾏正常的⼯作,意义更为重⼤。

因此,在机械加⼯、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻⼯业、交通运输业等⽅⾯得到越来越⼴泛的应⽤。

机械⼿的结构形式开始⽐较简单,专业性较强,仅为某台机床的上下料装置,是附属于该机床的专⽤机械⼿。

随着⼯业技术的发展,制成了能够独⽴的按程序控制实现重复操作,使⽤范围⽐较⼴的“程序控制通⽤机械⼿”,简称通⽤机械⼿。

由于通⽤机械⼿能很快地改变⼯作程序,适应性较强,所以它不断变换⽣产品种的中⼩批量⽣产中获得⼴泛的应⽤。

本次课程设计的平⾯关节型机械⼿是应⽤于上下料、搬运环类零件,从内孔夹持⼯件,代替⼈⼿的繁重劳动,减轻⼯⼈的劳动强度,改善劳动条件,提⾼劳动⽣产率。

本次课程设计是通过设计平⾯关节型机械⼿,培养综合运⽤所学知识,分析问题和解决问题的能⼒。

第⼆章平⾯关节型机械⼿总体⽅案设计平⾯关节型机器⼿⼜称SCARA型装配机器⼿,是Selective Compliance Assembly Robot Arm的缩写,意思是具有选择柔顺性的装配机器⼈⼿臂。

机械手设计

机械手设计

一、总体方案设计1.1设计任务基本要求:设计一个多自由度机械手(至少要有三个自由度)将最大重量为40Kg的工件,由车间的一条流水线搬到别一条线上;二条流水线的距离为:1000mm;工作节拍为:70s;工件:最大直径为160mm 的棒料;1.2总体方案确定1.2.1自由度自由度是指机器人所具有的独立坐标轴运动的数目,但是一般不包括手部(末端操作器)的开合自由度。

自由度表示了机器人灵活的尺度,在三维空间中描述一个物体的位置和姿态需要六个自由度。

机械手的自由度越多,越接近人手的动作机能,其通用性就越好,但是结构也越复杂,自由度的增加也意味着机械手整体重量的增加。

轻型化与灵活性和抓取能力是一对矛盾,,此外还要考虑到由此带来的整体结构刚性的降低,在灵活性和轻量化之间必须做出选择。

工业机器人基于对定位精度和重复定位精度以及结构刚性的考虑,往往体积庞大,负荷能力与其自重相比往往非常小。

一般通用机械手有5~6个自由度即可满足使用要求(其中臂部有3个自由度,腕部和行走装置有2~3个自由度),专用机械手有1~2个自由度即可满足使用要求。

在控制器的作用下,它执行将工件从一条流水线拿到另一条流水线这一动作。

在满足前提条件上尽量使结构简单,所以我们这次选择5自由度机械手。

1.2.2机械手基本形式的选择常见的工业机械手根据手臂的动作形态,按坐标形式大致可以分为以下4种: (1)直角坐标型机械手:特点:操作机的手臂具有三个移动关节,其关节轴线按直角坐标配置。

优缺点:结构刚度较好,控制系统的设计最为简单,但其占空间较大,且运动轨迹单一,使用过程中效率较低。

结构图:(2)圆柱坐标型机械手:特点:操作机的手臂至少有一个移动关节和一个回转关节,其关节轴线按圆柱坐标系配置。

优缺点:结构刚度较好,运动所需功率较小,控制难度较小,但运动轨迹简单,使用过程中效率不高。

结构图:( 3)球坐标(极坐标)型机械手:特点:操作机的手臂具有两个回转关节和一个移动关节,其轴线按极坐标系配置。

夹持式机械手方案设计

夹持式机械手方案设计

夹持式机械手方案设计一、需求背景夹持式机械手在工业自动化领域中发挥着重要的作用。

为满足客户对于夹持式机械手的需求,本文将设计一种夹持式机械手的方案,旨在提高生产效率、降低劳动成本,并同时满足安全可靠的要求。

二、方案设计1. 机械结构设计夹持式机械手的机械结构设计是关键的一环。

我们将采用三段式结构设计,分别为底座、臂和夹具。

底座用于提供机械手的稳定性和支撑力,臂用于实现机械手的柔性运动,夹具用于夹持工件。

机械结构的设计应充分考虑负载能力、运动轨迹和工作范围等因素,以提高机械手的工作效率和稳定性。

2. 控制系统设计控制系统设计是实现夹持式机械手自动化的关键。

我们将采用PLC (可编程逻辑控制器)作为控制核心,通过输入输出模块和传感器实现对机械手的控制与监测。

控制系统设计需要考虑机械手的运动控制、夹持力控制和安全保护等功能,以确保机械手的正常操作和工作安全。

3. 电气系统设计电气系统设计是机械手运行的动力保障。

我们将采用三相交流电作为机械手的供电方式,通过电气控制柜实现对电气元件的控制和保护。

电气系统设计应考虑机械手的供电要求、电源稳定性和电气安全等因素,以确保机械手的稳定运行和安全使用。

4. 软件系统设计软件系统设计是实现机械手智能化的核心。

我们将采用基于编程的方法,编写适应夹持式机械手功能的软件程序,实现机械手的自动化控制和操作。

软件系统设计应充分考虑机械手的运动规划、路径控制和异常处理等功能,以提高机械手的灵活性和智能化水平。

三、方案实施在方案实施过程中,我们将按照以下步骤进行:1. 机械结构的制造和组装:根据设计方案,制造并组装机械手的底座、臂和夹具等组成部分,在此过程中,要确保机械结构的质量和精度,以确保机械手的正常运行。

2. 控制系统的搭建和调试:根据设计方案,搭建PLC控制系统,并通过输入输出模块和传感器与机械手进行连接。

在此过程中,需要进行各个功能模块的调试与联调,确保控制系统的正常工作。

机械手设计方案

机械手设计方案

机械手设计方案机械手设计方案引言:机械手是一种能模拟人手动作、完成复杂而重复的工作的机械装置。

本方案旨在设计一种功能全面、结构合理、操作简便的机械手。

一、功能设计:该机械手主要用于工业生产中的自动化操作。

设计中考虑到以下几个方面的功能需求:1.抓取能力:机械手需要具备稳定的抓取能力,能够根据需要抓取各种形状的物体。

2.运动自由度:机械手需要具备足够多的运动自由度,能够在空间中灵活操作。

3.力度控制:机械手需要根据不同任务的要求,能够对抓取力度进行精确控制。

4.操作平稳性:机械手的运动应平稳、精确,以实现高效的生产操作。

5.可编程性:机械手应具备可编程功能,可以根据不同任务需求进行多样化的操作。

二、结构设计:机械手主要分为下列几个部分:1.机械臂:机械臂是机械手的核心部分,应具备足够多的关节,以实现多自由度的运动。

同时,机械臂需要采用轻量化设计,以减小自身质量,提高运动效率。

2.末端执行器:末端执行器是机械手抓取物体的部分,应设计可自由伸缩的抓取夹具,以适应不同尺寸的物体。

3.传动系统:传动系统是机械手的动力系统,应选择高效可靠的传动装置,如电机和减速器组合,以保证机械手运动的精确性和稳定性。

4.控制系统:控制系统是机械手的智能核心,应具备高速、高精度、可编程的控制器,以实现机械手的自动化操作。

同时,控制系统应提供友好的人机界面,方便操作者使用。

三、操作流程:机械手的操作流程可分为如下几个步骤:1.输入任务指令:操作者通过控制系统输入任务指令,包括抓取位置、力度等参数。

2.开机准备:机械手启动后,进行预热和校准动作,以确保机械手处于正常工作状态。

3.感应物体:机械手的传感器感应物体位置和大小,确定抓取位置和姿态。

4.抓取物体:机械手根据输入的指令和感应到的物体信息,进行相应的运动和力度控制,将物体抓取起来。

5.完成任务:机械手将抓取的物体移动到指定位置,完成任务,并将完成情况通过控制系统反馈给操作者。

机械手总体方案毕业设计

机械手总体方案毕业设计

机械手总体方案毕业设计引言:机械手是一种能够模拟人手动作的自动化装置,广泛应用于工业生产、医疗领域、科研实验等。

本总体方案旨在设计一台能够实现多自由度运动、具备灵活性和精确性的机械手。

一、设计目标:1.实现多自由度运动:机械手设计应具备足够的关节自由度,能够在不同方向和角度进行运动,适应不同工作场景的需求。

2.提高操作灵活性:机械手应具备灵活的手指和手腕,能够适应各种尺寸和形状的物体抓取,而不会因为形变而导致抓取失败。

3.实现精确控制:机械手的运动应具备高精度,并能够实现准确定位和精确操控。

4.提高安全性:机械手设计应考虑安全性,具备防护装置和自动停机等功能,确保操作人员的安全。

二、机械结构设计:1.关节设计:机械手应由多个关节组成,每个关节由电动机驱动,实现灵活的运动。

关节设计应具备足够的承载能力和稳定性,以确保机械手长时间运行的可靠性。

2.手指设计:机械手手指应具备可调节的灵活性,能够适应不同尺寸和形状的物体抓取。

手指可以采用弹性材料或具有可伸缩性的结构,以增加抓取的稳定性。

3.手腕设计:机械手腕部分应具备多自由度运动,既能够实现水平方向的旋转,又能够实现垂直方向的上下移动,以适应不同工作场景的需求。

4.传动系统设计:机械手的传动系统应选择合适的传动方式,如齿轮传动、链条传动等,以确保精确的位置控制和运动控制。

三、控制系统设计:1.电路设计:机械手的控制系统应包括电源、电机驱动器和数据传输装置。

电路设计应考虑供电稳定性、电磁干扰等因素,以确保机械手的正常运行。

2.传感器设计:机械手应搭载合适的传感器,用于感知物体的位置、形状和力度等参数,以实现对物体的准确抓取和操控。

3.控制算法设计:机械手的控制算法应具备实时性和精确性,能够根据传感器信息实现对机械手的准确控制。

常见的控制算法包括PID控制、模糊控制等。

4.用户界面设计:机械手的控制系统应提供友好的用户界面,使操作人员能够方便地操作机械手,并获取相关信息。

自动搬运机械手总体机构设计 毕业设计

自动搬运机械手总体机构设计 毕业设计

摘要本文对自动搬运机械手进行了总体机构设计,能够完成机械手整体的旋转,机械手手臂的升降和伸缩,根据机械手的技术参数分别设计了机械手的夹持式手部结构计算出了夹持物料时手抓气缸缩需要的驱动力,设计了手臂伸缩、升降用的气缸的所需驱动力和机械手回转时电机的功率选择。

设计出了机械手的气动系统,绘制了机械手气压系统工作原理图。

利用PLC对机械手进行控制,选取了合适的PLC的型号,根据机械手的工作流程制定了可编程序控制器的控制方案,画出了机械手的工作时序图和梯形图,并编制了可编程序控制器的控制程序。

关键词:机身回转机构,机身升降机构,手臂伸缩机构,气动,可编程序控制器(PLC)ABSTRACTThis article conducted the overall institution design of mandrel handling robot, the robot is able to complete the robot overall rotation, the robotic arm can move and stretch, according to the manipulator specifications, I designed the manipulator gripping type hand structure ,and calculated out of the driving force when the clutch cylinder shrink clamping mandrel material, also designed a telescopic arm, the required driving force of the lift cylinder and the manipulator rotation when the motor power options. I designed the robot's pneumatic system, draw the working schematic of the pressure system of the ing PLC to control the robot, select the PLC model, developed a control program of the programmable logic controller according to the workflow of the robot, to draw the robot work timing diagram and ladder, and prepared a program to control device control program.KEY WORDS:body rotation institutions, body lifting mechanism, featuresair, pressure drive, the Telescopic mechanism of the arm, Programmable Logic Controller目录1 绪论 (3)1.1 选题背景及其意义 (3)1.2 国内外现状及发展历史 (5)1.3 研究内容 (7)2 工业机械手的总体设计方案 (8)2.1机械手基本形式的选择 (8)2.2 驱动机构的选择 (9)2.3 机械手的主要部件及运动 (10)2.4 机械手的技术参数列表 (10)3 机械手结构设计 (11)3.1 手部设计基本要求 (11)3.2 典型的手部结构 (12)4 臂部的设计及有关计算 (16)4.1伸缩手臂的设计要求 (17)4.2 手臂的典型运动机构 (19)4.3手臂直线运动的驱动力计算 (19)5 机身的设计计算 (24)5.1升降缸结构设计 (24)5.2 手臂偏重力矩的计算 (25)5.3手臂做升降运动的液压缸驱动力的计算 (26)5.4 回转结构的设计 (27)6 气压系统设计 (31)6.1 气压系统的组成 (31)6.2拟定气压系统 (32)6.3气压控制原理说明 (33)7 PLC控制系统设计 (33)7.1 控制过程说明 (34)7.2 I/O点数分配表 (34)7.3 PLC控制系统的流程图和梯形图 (35)8 结论 (42)参考文献 (44)致谢 (45)1 绪论在现实生活中,机器人并不是在简单意义上的代替人类工作的机器,而是一个拟人的电子机械设备并且拥有人类的一些专业知识。

机械手总体方案设计

机械手总体方案设计

机械手总体方案设计(总4页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第2章机械手的总体方案设计2.1 机械手基本形式的选择常见的工业机械手根据手臂的动作形态,按坐标形式大致可以分为以下4种: (1)直角坐标型机械手;(2)圆柱坐标型机械手; ( 3)球坐标(极坐标)型机械手;(4)多关节型机机械手。

其中圆柱坐标型机械手结构简单紧凑,定位精度较高,占型。

图2.1 是机械手搬运物品示意图。

地面积小,因此本设计采用圆柱坐标[]11图中机械手的任务是将传送带B上的物品搬运到传送带A。

图2.1 机械手基本形式示意2.2、方案设计(1)、黑箱结构如图2.1所示图2.2 设计方案(2)、机械手动作分析及运动分析如图2.3所示,工件首先被机械手夹持,然后再随之一起运动。

其周期运动可以表现为(按动作顺序):大臂下降—夹紧工件—手腕上翻—大臂上升—大臂回转—手臂延伸—放松工件—手臂收回—手腕下翻—大臂回转—大臂下降。

图2.3 机械手运动图(3)、功能原理如图2.3所示图2.4 机械手功能原理图(4)、方案设计①传动系统如果机械手采用机械传动,则自由度少,难于实现特别复杂的运动。

而对于组合机床自动上下料的机械手,其工件的运动需要多个自由度才能完成,故不宜采用机械传动方案。

如果机械手采取气压传动,由于气控信号比光、电信号慢得多, 且由于空气的可压缩性,工作时容易产生抖动和爬行,造成执行机构运动速度和定位精度不可靠,效率也较低。

电气传动必须有减速装置和将电机回转运动变成直线运动的装置,结构庞大,速度不易控制。

气液联合控制和电液联合控制则使系统和结构上很复杂。

综上所述,我们选择液压传动方式。

②控制系统本机械手是专用自动机械手,选择智能控制方式中的PLC程序控制方式,这样可以使机械手的结构更加紧凑和完美。

③执行系统分析本机械手的执行系统是手部机构。

手部机构形式多样,但综合其总体构型,可分为:气吸式、电磁式和钳爪式3种。

机械手总体设计

机械手总体设计

机械手总体设计机械手类型三自由度圆柱坐标型定位精度±1mm工件尺寸直径约2~3cm,圆柱形,材料是铁质自由度3个(Y轴手臂升降,X轴手臂伸缩,机身旋转)X轴小臂伸缩范围25cm(最大速度10cm/s),步进电机驱动,单片机控制Y轴小臂升降范围10cm(最大速度10cm/s),步进电机驱动,单片机控制Y轴大臂升降范围20cm(最大速度10cm/s),步进电机驱动,单片机控制末端执行器开合角度60(最大速度60度每秒),液压缸驱动基座旋转范围180°,步进电机驱动,单片机控制机构简图机械手机械部分设计1执行机构设计机械手的手部,一般称为末端执行器,主要分为,夹钳式取料手、吸附式取料手以及专用操作器和转换器等。

在本次的设计中采用的手部结构为夹钳式取料手,手部由手指和驱动机构、传动机构及连接与支承元件组成。

其中,传动机构有多种,常见的几种分别是斜楔杠杆式、滑槽式杠杆回转型、齿条齿轮杠杆式、四连杆机构平移型等。

在本课题中采用齿条齿轮杠杆式,其机构图所示:齿条齿轮杠杆式手抓2手部结构设计及计算机械手的手爪采用小型气压缸驱动手爪的驱动力计算如下:图:手爪V 形手指的角度,摩擦系数10.0=f根据工业机器人设计,可得工件的加紧力计算公式为:式中 ——安全系数,通常取1.2~2.0,此次设计中取; ——工作情况系数,主要考虑惯性力的影响。

可近似估算为ga 21 K += (4-3)式中 a---运载工件时重力方向的最大上升加速度; g---重力加速度,g ≈2取a=g 时,因此k 2=1+1=2;K 3---方位系数,根据手指与工件形状以及手指与工件位置不同选取在此设计中手爪为水平放置,夹取垂直放置的物体根据工业机器人设计表2-2,即所以,取根据工业机器人设计手册表2-1,齿轮齿条手爪的驱动力与加紧力满足下式:变换可得驱动力即考虑到机械手的实际工作情况,选取手爪的机械效率则气缸内径即活塞杆直径由《液压传动与气压传动》表4-2取气缸工作压力气压负载常用的工作压力在本次的设计要求中,由于并未对末端执行器抓取工件的速度做出明确的要求,同时也是出于降低末端执行器重量及设计难度的考虑,选用单作用气缸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 机械手基本形式的选择
常见的工业机械手根据手臂的动作形态,按坐标形式大致可以分为以下4种: (1)直角坐标型机械手;(2)圆柱坐标型机械手; ( 3)球坐标(极坐标)型机械手; (4)多关节型机机械手。

其中圆柱坐标型机械手结构简单紧凑,定位精度较高,占地面积小,因此本设计采用圆柱坐标型。

下图是机械手搬运物品示意图。

图中机械手的任务是将传送带A上的物品搬运到传送带B。

机械手基本形式示意图
2 机械手的主要部件及运动
在圆柱坐在圆柱坐标式机械手的基本方案选定后,根据设计任务,为了满足设计要求,本设计关于机械手具有5个自由度既:手抓张合;手部回转;手臂伸缩;手臂回转;手臂升降5个主要运动。

本设计机械手主要由4个大部件和5个液压缸组成:(1)手部,采用一个直线液压缸,通过机构运动实现手抓的张合。

(2)腕部,采用一个回转液压缸实现手部回转180°。

(3)臂部,采用直线缸来实现手臂平动1.2m。

(4)机身,采用一个直线缸和一个回转缸来实现手臂升降和回转。

3 驱动机构的选择
驱动机构是工业机械手的重要组成部分, 工业机械手的性能价格比在很大程度上取决于驱动方案及其装置。

根据动力源的不同, 工业机械手的驱动机构大致可分为液压、气动、电动和机械驱动等四类。

采用液压机构驱动机械手,结构简单、尺寸紧凑、重量轻、控制方便,驱动力大等优点。

因此,机械手的驱动方案选择液压驱动。

4 机械手的技术参数列表
一、用途:搬运:用于车间搬运
二、设计技术参数:
1、抓重:60Kg (夹持式手部)
2、自由度数:5个自由度
3、座标型式:圆柱座标
4、最大工作半径:1600mm
5、手臂最大中心高:1248mm
6、手臂运动参数
伸缩行程:1200mm
伸缩速度:83mm/s
升降行程:300mm
升降速度:67mm/s
回转范围: 0~180°
7、手腕运动参数
回转范围: 0~180°。

相关文档
最新文档