建筑施工外文翻译---深基坑施工的安全监测和预警
关于深基坑支护施工安全监测预警要求及实现途径分析

关于深基坑支护施工安全监测预警要求及实现途径分析【摘要】深基坑支护施工是城市建设中常见的工程形式,但在施工过程中存在着诸多安全隐患。
安全监测预警显得尤为重要。
本文从深基坑支护施工背景介绍和安全监测预警的重要性入手,分析了深基坑支护施工安全监测的要求,并介绍了常见的安全监测预警技术。
随后探讨了实现深基坑支护施工安全监测预警的途径和监测预警系统的建设和运行。
提出了应对突发事件的应急预案,强调深基坑支护施工安全监测预警的重要性,并展望了未来的发展方向。
通过本文的研究,可以为深基坑支护施工的安全监测预警提供理论支持和实践指导。
【关键词】关键词: 深基坑支护、施工安全监测、预警、技术、途径、系统建设、运行、应急预案、重要性、发展方向、突发事件。
1. 引言1.1 深基坑支护施工背景介绍深基坑支护施工是指在城市建设过程中,因为地面建筑需求而需要挖掘较深的基坑,为了保证基坑周围建筑物的安全稳定,需要进行支护工程。
随着城市化进程的加快,深基坑支护施工越来越常见。
深基坑支护施工具有施工周期短、效益高、占地面积小等特点。
但是由于基坑工程会对周围环境和地下建筑物产生影响,一旦发生支护工程质量问题或者外界因素干扰,可能会导致意外事件的发生,对周围建筑物和居民的安全造成威胁。
深基坑支护施工的安全监测显得尤为重要。
通过对基坑周围环境和支护结构的监测,及时发现异常情况并预警,可以有效减少事故的发生,保障周围建筑物和居民的安全。
安全监测预警系统是深基坑支护施工中不可或缺的一部分,对于施工工程的顺利进行和周围环境的保护起着至关重要的作用。
1.2 安全监测预警的重要性安全监测预警在深基坑支护施工中具有非常重要的意义。
由于深基坑支护施工所涉及到的施工环境复杂多变,施工过程中存在着各种潜在的安全隐患和风险。
及时有效地进行安全监测预警,可以帮助施工方及时发现和解决问题,确保施工作业的安全进行。
而如果缺乏安全监测预警,可能会导致潜在的安全风险无法及时控制,从而对大楼、人员和周围环境造成严重影响甚至危害。
建筑深基坑项目工程施工安全技术标准规范(JGJ311-2013)

建筑深基坑工程施工安全技术规范(JGJ311-2013)Technical Specification for Safety Construction of Deep Building Foundation Pits1 总则1.0.1 为了在建筑深基坑工程实施的各个环节中贯彻执行国家有关的技术经济政策,做到保障安全、技术先进、经济适用、保护环境,制定本规范。
1.0.2 本规范适用于建筑深基坑工程的现场勘查与环境调查、设计、施工、风险分析及基坑工程安全监测、基坑的安全使用与维护管理。
1.0.3 建筑深基坑工程应综合考虑深基坑及其周边一定范围内的工程地质、水文地质、开挖深度、周边环境保护要求、降排水条件、支护结构类型及使用年限、施工工期条件等因素,并应结合工程经验制定施工安全技术措施。
1.0.4 建筑深基坑工程安全技术除应符合本规范的规定外,尚应符合国家现行有关标准的规定。
2 术语和符号2.1 术语2.1.1 基坑construction pit 为进行建(构)筑物地下部分的施工由地面向下开挖出的空间。
2.1.2 风险控制Risk control 为减少或降低深基坑安全风险损失所采取的处置对策、技术措施及应急方案。
2.1.3 基坑支护retaining of construction pit 为保护地下主体结构施工和基坑周边环境的安全,对基坑采用的临时性支挡、加固、保护与地下水控制的措施。
2.1.4 基坑侧壁side of foundation pit 构成基坑围体的某一侧面。
2.1.5 基坑周边环境surroundings around foundation pit 基坑开挖影响范围内包括既有建(构)筑物、道路、地下设施、地下管线、岩土体及地下水体等的统称。
2.1.6 支护结构retaining structure支挡或加固基坑侧壁的承受荷载的结构。
2.1.7 设计使用年限design service life 设计规定的从基坑开挖到预定深度至完成基坑支护使用功能的时段。
浅析基坑监测在工程施工中的安全预警

浅析基坑监测在工程施工中的安全预警摘要:随着城市建设的发展,城市的建筑越来越密集,为了解决人防工程、车库、交通的需要,地下工程的建设越来越多。
由于地下土体性质、荷载条件、施工环境的复杂性,单单根据地质勘察资料和室内土工试验参数来确定设计和施工方案,往往含有许多不确定因素。
本文结合广州市珠江新城核心区市政交通项目金穗路北区建设项目的实际监测作了探讨,供相关人员参考。
关键词:基坑监测;施工安全;反馈系统;预警措施Abstract: With the development of urban const ruction, the city’s buildings are more intensive in order to solve the construction of civil air defense projects, garage, transportation needs of the underground works of more and more.Due to the nature of the underground soil, loading conditions, the complexity of the construction environment, based solely on geological survey data and indoor soil test parameters to determine the design and construction programs, often with many uncertainties. In this paper, the actual monitoring of construction projects of the Golden Harvest Lubei District of Guangzhou Zhujiang New City, the core area of ​​municipal transportation projects was discussed for the reference of the relevant personnel.Keywords: excavation monitoring; construction safety; feedback system; early warning measures.中图分类号:TV551.4 文献标识码:A 文章编号:1.工程概况广州市珠江新城核心区市政交通项目金穗路北区建设项目位于广州市珠江新城,其北侧为黄埔大道,南侧为金穗路,东侧为珠江东路,西侧为珠江西路,规划占地总面积约6.5万平方米,地下总建筑面积约10万平方米,地下二层,基坑深约13米,周长约为1280米。
深基坑工程施工安全监测与预警

深基坑工程施工安全监测与预警摘要:经济的快速发展带动建筑产业的发展,越来越多的建筑产业开始增加高度,深基坑高层建筑在实际的施工中是极其常见的。
深基坑的快速发展与高层建筑技术水平的发展有关系。
在深基坑建筑工程施工中需要对各种技术要点进行安全监测和分析,对可能产生的威胁进行及时预警。
本文将针对深基坑的施工安全要点进行分析,研究深基坑施工安全监测的技术要点,对监测安全问题进行调整,及时确定施工相关参数,优化施工设计标准,完善施工安全管理水平。
关键词:深基坑;安全监测;预警引言在城市中往往需要建筑高的建筑物,需要深基坑进行开挖。
建筑物以及周围的地下管线受深基坑作业的影响容易出现变形,特别对于深基坑作业施工,变形量过大就会造成建筑的破坏。
因此在深基坑建筑施工中需要严格的监测施工进展,对深基坑周围的地下情况进行准确的判断,及时监测和预警,确保施工工程的顺利开展。
一、安全监理工作1 维护监测点的管理维护监测点,需要在深基坑开挖前,对周围进行支护处理,防止深基坑作业造成位移或下沉。
对周围的护桩进行稳定测试。
按照维护监测的标准,采用有效的桩顶部测试方法,采用有效的钻孔灌注方法,将孔洞钻好后,将其中的桩砂浆、钢筋灌入其中,确保顶部中线位置的标准钉扣。
然后进行浇筑和打浆处理,确定测试的标准点。
围护桩的变形监测需要控制实际的监测要点,在深基坑作业开挖的过程中,需要对每一个点的位置、深度进行分析,对相关数据的不同进行判断,确定其中可能存在的问题。
按照规定的集成标准进行倾斜或拉伸。
倾斜量不同可能产生的效果有所不同。
必须要对围护桩的内部倾斜量进行监测分析,确定不同的倾斜量标准。
依照围护桩内部的倾斜量进行监测分析,确定整个围护桩在不同时刻、不同深度、不同位置的位移标准,逐步确定测量点的基本中心,按照重心点进行分析,尽可能的设定深基坑的边条中心位置。
按照中心位置的深度,使用泥沙进行填实加固处理,使用PVC管作为监测标志。
2 维护结构监测标准位置2.1 对轴力的监测按照围护结构的轴力对围护桩进行承担处理,使用挡土墙的倾斜力进行传递。
深基坑工程施工安全监测与预警

深基坑工程施工安全监测与预警作者:刘铎来源:《建筑建材装饰》2016年第12期摘要:近年来,随着经济的发展,在现代城市建设中,地铁工程、高层建筑等工程中大量存在深基坑工程。
深基坑工程是国家规定的具有较大危险性的工程之一,其事故的原因是多方面的,其中比例最大的是支护原因。
基坑工程实践中既要考虑支护结构的强度和变形,也要考虑基坑变形影响所及的周边环境。
基坑支护系统通常为临时设施,安全储备小,风险较大,工作状态和工作条件较复杂。
不确定因素很多。
因此,在施工过程中进行动态监测和控制是一个不容忽视的重要环节。
深基坑工程现场监测的内容一般包括支护结构的水平位移、邻近建筑物的倾斜位移和邻近道路的沉降等。
监测人员应及时对反馈的信息进行分析,及时发现问题并进行预警,以减少事故的发生。
关键词:深基坑;变形监测;安全预警引言由于土地资源有限。
城市建筑开始大量向高空和地下两个方向发展。
深基坑工程也随之越来越多。
且表现出多开挖越来越深的特点局部地质条件相对较好的地区已经开挖深度达到30米。
然而,在发展过程中基坑事故不断发生。
1.工程概况某大厦工程位于**大街南侧。
总建筑面积约28000m2。
地下3层。
地上11层。
为单体建筑。
主要功能地下为停车库(含六级人防物资库)、餐饮。
地上为商业用房与办公用房。
建筑总高度45m,地下室底板埋深约13.2m,基坑开挖深度达14m。
项目周边关系详件表1。
1.1工程地质条件场地地形较平坦。
场区内无不良地质现象:地下室埋深范围内土层为人工填土层、粉质粘土层。
基础持力层为中粗砂层。
土质密实,无软弱下卧层。
地基承载力为270Kpa。
1.2水文地质条件勘察期间实测第一次层静止水位标高21.67~22.33m(水位埋深22.0~22.8m之间)。
地下水对混凝土结构无腐蚀性。
地面以下20m深度范围内饱和粉土与砂土不发生液化。
近3-5年最高稳定水位标高26.00m。
基坑不需降水。
2.基坑支护结构设计采用钻孔灌注桩加2道钢支撑加锚杆的支护形式。
关于深基坑支护施工安全监测预警要求及实现途径分析

关于深基坑支护施工安全监测预警要求及实现途径分析深基坑支护施工是指在建筑、地铁、桥梁等工程中,由于土质或地下水位等因素,需要进行大规模挖掘和支护处理的区域。
由于深基坑支护施工涉及到地下空间的开挖与支护,工程风险较大。
为了确保深基坑支护施工的安全性,必须进行安全监测和预警。
本文将就深基坑支护施工安全监测预警的要求及实现途径进行分析。
一、深基坑支护施工安全监测预警的要求1.定位准确:深基坑支护施工安全监测预警系统需要对工程进行准确的定位,便于监测和分析工程变形情况。
2.实时性:监测预警系统需要具备实时性,能够随时监测工程变形情况,并进行及时预警。
3.灵敏度高:监测预警系统需要具备高灵敏度,能够捕捉到工程变形的微小变化,避免因监测盲区而导致安全事故。
4.准确性:监测预警系统需要具备高准确性,能够对工程变形情况进行准确分析,提供科学的预警信息。
5.多参数监测:监测预警系统需要能够同时监测多个参数,如土体变形、地下水位、支护结构变形等,全面掌握工程变形情况。
二、深基坑支护施工安全监测预警的实现途径1.应用监测技术:利用先进的监测技术,如全站仪、GPS定位、激光测距仪等,对深基坑支护工程进行准确定位和实时监测。
2.建立监测网络:在施工现场周边布设监测点,建立完善的监测网络,实现对工程变形情况的全方位监测。
3.利用传感器:在深基坑支护工程中布设变形传感器、压力传感器、位移传感器等监测装置,实现多参数的实时监测。
4.数据分析与处理:利用专业的监测数据分析软件,对监测数据进行科学的分析和处理,提取出工程变形的规律性信息,为预警做好准备。
5.实施预警措施:在监测系统发现工程变形异常时,及时启动预警机制,采取相应的应急措施,确保施工安全。
三、深基坑支护施工安全监测预警的实践案例1.上海地铁11号线深基坑支护工程上海地铁11号线工程涉及多处深基坑支护工程,对深基坑支护施工安全进行了严格监测与预警,取得了良好的效果。
利用先进的监测技术和设备,对地下空间的变形情况进行了快速准确的监测,及时发现并处理了潜在的安全风险。
深基坑工程施工安全监测与预警

深基坑工程施工安全监测与预警【摘要】深基坑的施工具有很大的危险性,如果施工方法选择不好,对于施工工期、成本和安全都有直接影响。
在施工过程中要重视安全监测和预警,保证施工安全。
【关键词】深基坑;施工安全;监测;预警一、前言深基坑的施工系统通常是临时性的设备,安全储备小,具有很大的风险性。
因此,在进行深基坑作业过程中,安全监测和预警是必不可少的重要环节,更是施工安全的重要保障。
二、导致深基坑工程出现事故的主要原因分析1、工程勘察不到位在深基坑工程施工的过程中,导致出现安全事故的原因之一就是工程勘察的不到位。
在深基坑工程施工之前,由于勘察的不到位,出现了很多安全事故。
其主要体现在以下几个方面。
一是,由于勘察资料是工程施工的重要基础。
但是在勘察的过程中,很多的工程单位出现了勘察资料不详、不准的问题,为基坑工程的顺利施工埋下了安全隐患。
二是,没进行复察。
在实际的深基坑工程中,需要对首次勘察的资料进行实地考证,进行二次复察,这样才能够更进一步确保工程的安全。
但是,很多的工程单位,由于觉得麻烦,进而没有对首次勘察资料进行复察,不利于深基坑工程的顺利施工。
2、设计的安全储备小在深基坑工程的建设过程中,需要考虑到很多的因素,像,经济因素,社会因素等等,很多的基坑工程单位为了进一步扩大利益,使利益最大化,进而在进行设计的时候安全储备比较小,很多的施工项目无法达到最低的安全标准,这也是造成深基坑工程出现安全事故的一个非常重要的原因,不利于建设项目的长远发展。
3、支护方案选择不当在深基坑工程施工的过程中,有很多的支护方案,如果支护方案的选择不当,容易导致工程出现严重的安全事故,严重者容易造成重大的人员伤亡。
由于深基坑工程有很多的因素影响着其安全性,像基坑的深度,基坑的地下水位,基坑的周围环境等等,在进行支护方案的选择上,应该全面的考虑上述的因素,才能够进一步提高深基坑工程施工的安全系数,避免安全事故的发生。
4、防排水措施不当地面防排水措施不完善,大量雨水渗入或地下水管渗漏,从而导致土体C 值下降。
2020《建筑深基坑工程施工安全技术规范》JGJ311-2013

2020《建筑深基坑工程施工安全技术规范》JGJ311-2013Technical Specification for Safety Construction of Deep Building Foundation Pits1 总则1.0.1 为了在建筑深基坑工程实施的各个环节中贯彻执行国家有关的技术经济政策,做到保障安全、技术先进、经济适用、保护环境,制定本规范。
1.0.2 本规范适用于建筑深基坑工程的现场勘查与环境调查、设计、施工、风险分析及基坑工程安全监测、基坑的安全使用与维护管理。
1.0.3 建筑深基坑工程应综合考虑深基坑及其周边一定范围内的工程地质、水文地质、开挖深度、周边环境保护要求、降排水条件、支护结构类型及使用年限、施工工期条件等因素,并应结合工程经验制定施工安全技术措施。
1.0.4 建筑深基坑工程安全技术除应符合本规范的规定外,尚应符合国家现行有关标准的规定。
2 术语和符号2.1 术语2.1.1 基坑construction pit 为进行建(构)筑物地下部分的施工由地面向下开挖出的空间。
2.1.2 风险控制Risk control 为减少或降低深基坑安全风险损失所采取的处置对策、技术措施及应急方案。
2.1.3 基坑支护retaining of construction pit 为保护地下主体结构施工和基坑周边环境的安全,对基坑采用的临时性支挡、加固、保护与地下水控制的措施。
2.1.4 基坑侧壁side of foundation pit 构成基坑围体的某一侧面。
2.1.5 基坑周边环境surroundings around foundation pit 基坑开挖影响范围内包括既有建(构)筑物、道路、地下设施、地下管线、岩土体及地下水体等的统称。
2.1.6 支护结构retaining structure支挡或加固基坑侧壁的承受荷载的结构。
2.1.7 设计使用年限design service life 设计规定的从基坑开挖到预定深度至完成基坑支护使用功能的时段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中文4068字附录1. 外文资料原件及译文(1)外文资料原件Safety Monitoring and Early Warning for Deep Foundation Pit Construction Haibiao WANG【1】,Haixu YANG 【2】, Xibin DONG 【3】, and Songyuan NI【4】1.School of Engineering Technique, Northeast Forestry University,Harbin,Heilongjiang 150040, China; PH (086) 451-82191771; email:whbcumt@2.School of Civil Engineering , Northeast Forestry University, Harbin, Heilongjiang150040, China; PH (086) 451-82190402; email: yhxcumt@16 3.School of Engineering Technique, Northeast Forestry University,Harbin,Heilongjiang 150040, China; PH (086) 451-82190392; email:yhxcumt@4.School of Engineering Technique, Northeast Forestry University,Harbin,Heilongjiang 150040, China; PH (086) 451-82190335; email:sdrznsy@ABSTRACTBased on an engineering project, this paper initially establishes an observation point for foundation pit and then determines monitor warning value. During project construction, we carried out an experiment on the horizontal movement and settlement and inclination of adjacent buildings and promptly monitored the foundation pit., Scientific analysis of the data is presented. This work is designed to provide for effective measures to implement security alerts for foundation construction.Detailed analysis examines the causes of deformation of foundation pit and offers a reasonable treatment measure. Results offer some scientific basis and technical measures to guarantee deep foundation project construction security and more knowledgeable engineering construction.With the rapid development of urbanization in China, the deep excavation works require have been put forward strict demand regulations concerning due to the requirements of the spatial location, structural stability and using function. Deep excavation engineering is mostly carried out in areas of heavy traffic and dense construction. The complexity associated with deep excavation depth and difficult construction creates environments where serious accidents can occur. The deep excavation work is a wide-ranging and integrated engineering process.Previous research on accidents in national deep foundation pit engineering found the general accident ratio was about 20% of that of the deep excavations work (Tang, 1997).Most accidents in urban areas were caused by foundation pit support. In deep excavation engineering, both the strength and deformation of the supporting structure and the surrounding environment affected by pit deformation should be considered (Sun, 2006).The pit support systems are always temporary facilities with fewer safety considerations and more hazards. Working status and conditions are more complicated and uncertain. Thus, during the construction process, dynamic monitoring and control is very important. The content of deep excavation-site monitoring generally includes the horizontal displacement of supporting structure,tilt displacement of neighboring buildings, sedimentation of adjacent roads and so on.A monitoring crew should provide timely feedback information (Liu, 2006) to detect any problems and provide early warnings for reducing disasters. A monitoring program that provides critical information and manages deep excavation construction scientifically and effectively is the key to successful deep excavation construction (Liu et al., 2007).1.ENGINEERING BACKGROUNDThe deep foundation pit engineering was located at the city center. The ground form type of geological investigation works is the tectonic denudation and the slow hillock at slope base, which was equal to the forefront of third terrace of the Yangtze River and the southwest bordered on the first terrace of the Chengdu plain.Soil conditions.Through the field investigation by the Geological Survey Department, the soil conditions at the engineering site are shown as Table 1.Table 1. Physical-mechanics index of foundation soil.Hydrological geology conditions of underground.Surface water of the proposed site is not present-development, and the underground water was dominated by the bedrock fracture water. and the small amount of the upper perched water filled in the 1-1 layer of soil-with-filled.They mainly were supplied by the precipitation and infiltration of surface runoff.The water level of the upper perched water is discontinuous and had smaller water volume. The bedrock fracture water grew well nearby the contact face between the bedrock and the overburden layer,and formed the passageway of underground water along the penetration crevasse partly.Thus, the underground water seeped out from the surface along the slope when the side slope was excavated. The results of the analysis of environmental conditions and water quality of groundwater samples indicated that the groundwater in the site did not corrode a concrete structure, but had weak corrosiveness to the steel structure. 2.DESIGN OF FOUNDATION PIT SUPPORT STRUCTUREThe pit supporting scheme generally is classified to is of two kinds: one is the earth nail wall, and anther one the second is an anchor-retaining pile. The earth nail wall is made up of the reinforced soil, and the earth nail and the board which was placed in the soil. Given the strengthen of the earth nail in situ and the combination with the spraying-up surface, the natural soil body forms the earth bulkhead. This which is similar to a gravity retaining wall that resists the earth pressure coming from the wall and the other external forces and enhances the stability of the entire side slope (foundation pit). Anchor-retaining pile takes the drill hole filling pile as the retaining wall, and the pile and the anchor rod affects commonly to achieve the stability of slope. Mechanism of anchor-retaining pile is that the dense slope protection piles have high Bending Resistance and shear capability, simultaneously the anchor section of the anchor rod and the soil body take the pretension strength together to the dense slope protection piles, and prevent deformation of foundation pit supporting system. Combined effect of anchor rod and slope protection piles enhances the stability of entire supports and protection system. Anchor-retaining pile is suitable to all kinds of clay, sandy soil and the earth layer with higher groundwater level, especially the cohesive soil peripheral with big centralized loads or varying loads (Lu, 2003).For the deeper excavation of foundation pit, based on the principle ofguaranteed safety, this project proposed to use anchor-retaining pile for supporting the foundation in the project.(1)In AD section of foundation pit, the following parameters were set up: 900mm of guard stake pile diameter, 1300mm of piles interval, 14 meters length of filling pile with man-power dig hole, 15°inclination angle and 15m length for pile of non-prestressed anchor rod which was established 3m under the natural ground.(2) In AB axis section of foundation pit, the following parameters were set up: 900mm of guard stake pile diameter, 1300mm of piles interval, 13.4 meters length of filling pile with man-power dig hole, 15°inclination angle and 15m length for pile of non-prestressed anchor rod which was established 3m under the natural ground.(3)In BC section of foundation pit, the following parameters were set up: 1000mm of guard stake pile diameter, 1300mm of piles interval, 7 meters length of filling pile with man-power dig hole, 15°inclination angle and 15m length for pile of non-pre-stressed anchor rod.(4) In AB axis section of foundation pit, the following parameters were set up: 1000mm of guard stake pile diameter, 1300mm of piles interval, 7 meters length of filling pile with man-power dig hole, 15°inclination angle and 16m length for pile of non prestressed anchor rod.3.FOUNDATION PIT MONITORINGThis foundation pit engineering monitoring rests on《the Engineering survey Standard 》(GB50026-93) and 《Construction Distortion Survey Regulations 》(JGJ/T8-97).The total length of the foundation pit is 176 meters, the biggest digging depth is 9.8 meters, and the smallest digging depth is 4.2 meters. According to the standard, the security rating of this foundation pit engineering is first-level. Before project construction of the foundation pit engineering, reference points B1 and B2 were established in advance. The coordinate system of the horizontal displacement monitoring was set up according to the reference points. The horizontal displacements observed were one time every 5 days during the progress of project construction.3.1 Observation Point ArrangementTotal 15 observation points were set up separately around the foundation pit for monitoring the horizontal displacement of the supporting and protecting structure top. This project installed the observation points underground during 5 days. The arrangement of observation points were shown in figure 1:3.2 Foundation Pit Monitoring FacilitiesAccording to《Engineering survey Standard》,to satisfy the building safety fortification requirement, the horizontal displacement monitoring in the project construction of foundation pit engineering uses total station TOPCOM GTS-701. The settlement observation used level browser TOPCOM AT-G2. The elevation probable error in the settlement monitoring points should not be bigger than ±0.2mm, and the elevation difference error in the adjacent deformation monitoring points should not be bigger than 0.13mm (Long et al., 2005).3.3 Monitoring Security ValueAccording to the project standard and the determination principle of security value, the security value of the foundation pit engineering was determined as follows: the horizontal displacement around the foundation pit did not surpass 40mm, and the displacement speed did not be bigger than 5mm/d; for the road settlement, the settlement value did not surpass 30mm and the settlement speed did not be bigger than 2mm/d; for the settlement and inclination rate of adjacent buildings, the biggest settlement differences of two nearby test poin ts did not surpass 3‰.Fig.1 Arrangement of horizontal displacement observation points.3.3 Monitoring Security ValueAccording to the project standard and the determination principle of security value, the security value of the foundation pit engineering was determined as follows: the horizontal displacement around the foundation pit did not surpass 40mm, and the displacement speed did not be bigger than 5mm/d; for the road settlement, the settlement value did not surpass 30mm and the settlement speed did not be biggerthan 2mm/d; for the settlement and inclination rate of adjacent buildings, the biggest settlement di fferences of two nearby test points did not surpass 3‰. 4.MONITORING RESULTS AND ANALYSIS OF THE FOUNDATION PIT After the excavation and the foundation construction, the monitoring results were recorded and arranged and analyzed for early warning timely for foundation pit. The time-history curves(fig.2~fig.9) corresponds to the initial period at four stages which include that the first layer excavation (the excavation depth was about 4m) and the second layer excavation(the excavation depth was about 6m) and the third layer was full-depth excavation and demolishing supporting and protecting system.4.1 Monitoring and Analysis of Horizontal DisplacementIn the horizontal displacement monitoring for the sealing beams of the supporting and protecting structure of foundation pit, the horizontal displacement monitoring results of supporting and protecting structure around the foundation pit are shown in Fig. 2 to Fig. 5. The horizontal displacement time-history curve showed that the horizontal displacement of the peripheral supporting and protecting system increases fast in short-term and then becomes gradually steady.The horizontal displacement time-history curve also indicated that the horizontal displacement of the AB section is bigger, with 40.8mm at spot S5, 33.0mm at spot S6, 27.5mm at spot S4, 25.6mm at spot S3, 32.6mm at spot S13 of the CD section. Among these, the displacement of spot S5 achieves the security value, and that of S6, S13 approach the security value. The test group gave the warning when submitting test results timely, made the risk prompt, and proposed the supporting and protecting structure processing scheme finally.Fig.2 Time-history chart of horizontal Fig.3 Time-history chart of horizontaldisplacement monitoring of the displacement monitoring of the supports and protections in AD section supports and protections in AB sectionFig.4 Time-history chart of horizontal Fig.5. Time-history chart of horizontaldisplacement monitoring of the displacement monitoring of thesupports and protections in BC section.supports and protections in CD section.4.2 Inclination Monitoring and Analysis of Foundation PitDuring each early stage from foundation excavation to demolishing supporting and protecting system, inclination rate increases fast at the short-term, then becomes steady gradually. The inclination observed value of the Q2, Q3 and Q4 is 1.18 ‰, 1.05 ‰, 0.86 ‰ respectively, and other observed value are smaller; and the observed value develops quickly when demolishing the supports, as shown in fig.6 and fig.7. For guaranteeing the scene construction safety, the measurement results were submitted to Construction Organization.Fig.6. The time-history chart of Fig.7. The time-history chart inclination of adjacent building of inclination of adjacent buildingmonitoring in AB section. monitoring in BC、CD section.4.3 Monitoring and analysis about settlement of the foundation pitDuring each early stage from foundation excavation to demolishing supporting and protecting system, the settlement increases fast at the short-term, and then becomes steady gradually, and the settlement increases fast after demolishing the supports. Settlement observed value of the C2, C3 and C4 is 16.5m, 15.5m, 13.2mrespective, other observed value is small, as shown in fig.8 and fig.9. For safety, the measurement results were submitted to Construction Organization.Fig.8. The time-history chart of settlement Fig.9. The time-history chart of settlementof roads monitoring in AB、AD section. of roads monitoring in BC、CD section.4.4 Forewarning Management and Safety ControlIn the course of safety monitoring of the foundation pit, it is an important work before safety supervision to determine monitor warning value reasonably according to pit bracing calculation. It can bring disadvantageous influence to the foundation pit management if the monitor warning value is over sized or too small. When the monitor value achieves or approaches the security value, it will implement the safe early warning plan promptly. The monitoring personnel should send the forewarning document to development organization and the overseeing unit promptly, and inform the Construction Unit and the Designing Department. The Construction Unit calls the related personnel to carry on the scene investigation, coordinate organization promptly, formulate scientific effective technical measures and control the security of the foundation pit. On the one hand it should monitor its forewarning spot strictly, on the other hand it also requests the construction unit to carry on the foundation pit work according to the provisions in the construction process and execute reinforcement processing deferring to the technical program .In the course of safety monitoring of the foundation pit, settlement of roads and inclination of adjacent building monitoring value was smaller than the warning value. In the horizontal displacement observation of the foundation pit, displacement increased fast when excavating (depth was 4.2m) the first layer, and the development speed was rapid. For the increasing tendency is obvious, the observation frequency was increased for partial observation points, so as to the inclination observation.Therefore, the risk warning of the foundation pit was given. In the proposed plan, strengthen measure was adopted to the supporting and protecting system, not only the knee bracing but also two braces in the broadside were increased. All these had the very good effects for the stability to the foundation pit. Then second excavating and comprehensive excavating were carried on, after strengthening the supports, the movement is stable. But after demolishing the supports, the horizontal displacement of the foundation pit increases rapidly once more, which shows the validity of strengthened supports , and confirms the necessity and the scientific nature of safety monitoring of the foundation pit.5.CONCLUSIONSThrough the horizontal displacement and settlement and inclination of adjacent building monitoring for foundation pit promptly, safety control can be carried on scientifically and effectively for the project construction of the foundation pit becomes true (Zhu et al., 2006). According to progress of the project construction and analysis of the monitor data, it can timely and effectively obtain the safety forewarning, and realize the information construction with scientific idea. And adopting effective technique means to treat supporting and protecting structure of the foundation pit according to the monitor data, it could avoid the personal injuries and the property damage effectively creating by the landslide of the deep foundation pit, and prevent inclination of adjacent buildings and settlement of roads, guarantee the project working smoothly (Li et al., 1999).At the same time, effective monitoring for the foundation pit and validity test for the supporting and protecting structure of the foundation could reduce the foundation pit jitter caused by the design errors. For example the supporting and protecting structure design of the foundation pit in S5 section may increase the anchor rod quantity in this project or use the pre-stressed anchor rod. Therefore, monitoring of the foundation pit that is a safety control method for the construction of the foundation pit effectively is worth to be popularized and applied.In the safety monitoring work for the deep foundation pit, because of the monitoring for long time and high requirement of the instrument precision and betimes character of the data analysis and the risk forewarning, thus, the safety monitor work has great difficulty.Along with enhancing the safety consciousness for the project construction of the deep foundation pit and the deep scientific research, it is possible to further systemize and standardize the safely monitor work. In the monitoring, test data should be provided accurately, the safe warning and the dataanalysis work are completed in time, the level and effect of monitor should be increased, all of above is for purpose to guarantee security of the engineering construction.REFERENCES[1]Tang Yeqing (1997). Prevention and processing of accidents of the deep foundation pit. Construction Technique, (1),4-5.[2]Sun Zhibin (2006). The influence of the deep foundation pit to environment . Ground Engineering, (5), 24-26.[3]Liu Rong (2006). The research about early warning system of project construction of the deep foundation pit based on risk management . Southeast University, Nanjing.[4]Liu Yuyi, and An Qingjun, and Wang Xudong (2007). Distortion monitor and analysis of the foundation pit in hard soil location. Nanjing Industrial University Journal (natural sciences version) , (2), 46-50.[5]Lu Sanhe (2003) . Design and research about distortion control of support and protection of the deep foundation pit. China Oceanography University, Qingdao.[6]Long Sichun, and Yang Minchun, and Deng Lianjun (2005) . Two kind of practical method of horizontal displacements observation and the precision analysis[J]. Survey and Spatial Geography Information, (5), 57-59.[7]Zhu Jianmin, Li Guoguang (2006). The application of information monitor technology in the management of project construction of the foundation pit [J]. Today Science and Technology, (10), 37-39.[8]Li Qimin, Kong Yongan (1999). Generalized analysis about project accidents of the deep foundation pit in China. Scientific and Technical Information Development and Economy, (2),21-24.(2)译文深基坑施工的安全监测和预警摘要:基于工程项目之上,本文最初对基坑建立了一个观察点,其功能为确定基坑监测的预警值。