全等三角形的识别

合集下载

判定全等三角形的五种方法

判定全等三角形的五种方法

判定全等三角形的五种方法全等三角形是指具有相同形状和相等边长的三角形。

判定两个三角形是否全等是数学中的一个重要问题。

下面将介绍判定全等三角形的五种方法。

方法一:SSS判定法(边边边)SSS判定法是指通过比较两个三角形的三条边是否相等来判定其是否全等。

如果两个三角形的三条边长度相等,则可以判断它们是全等三角形。

方法二:SAS判定法(边角边)SAS判定法是指通过比较两个三角形的两条边和夹角是否相等来判定其是否全等。

如果两个三角形的一边和夹角分别相等,则可以判断它们是全等三角形。

方法三:ASA判定法(角边角)ASA判定法是指通过比较两个三角形的两个角和夹边是否相等来判定其是否全等。

如果两个三角形的两个角和夹边分别相等,则可以判断它们是全等三角形。

方法四:AAS判定法(角角边)AAS判定法是指通过比较两个三角形的两个角和非夹边的对应边是否相等来判定其是否全等。

如果两个三角形的两个角和非夹边的对应边分别相等,则可以判断它们是全等三角形。

方法五:HL判定法(斜边和直角边)HL判定法是指通过比较两个直角三角形的斜边和直角边是否相等来判定其是否全等。

如果两个直角三角形的斜边和直角边分别相等,则可以判断它们是全等三角形。

通过以上五种方法,我们可以准确地判定两个三角形是否全等。

这些方法都是基于几何学中的一些定理和公理推导而来,经过严谨的数学证明,可以确保判定结果的准确性。

需要注意的是,在判定全等三角形时,我们需要确保给定的条件足够,即要求已知的边长、角度等信息能够满足相应的判定条件。

如果给定的信息不足够,或者不满足判定条件,那么就无法准确地判定两个三角形是否全等。

判定全等三角形的方法还可以用于解决一些实际问题,例如在建筑设计、图形测量等领域。

通过判定三角形是否全等,可以确保设计和测量的准确性,提高工作效率。

总结起来,判定全等三角形的五种方法分别是SSS判定法、SAS判定法、ASA判定法、AAS判定法和HL判定法。

这些方法都是基于几何学中的定理和公理推导而来,通过比较边长、角度等信息,可以准确地判定两个三角形是否全等。

直角三角形全等的判定

直角三角形全等的判定

直角三角形全等的判定
直角三角形同余的判断:1。

对应边相等的两个三角形的三组同余。

2.两条边和它们的夹角相等的两个三角形。

3.两个三角形有两个角,它们的夹紧边全等。

判定方法
方法一:SSS(边边边),即三边对应相等的两个三角形全等。

方法二:SAS(边角边),即三角形的其中两条边对应相等,且两条边的夹角也对应相等的两个三角形全等。

方法三:ASA(角边角),即三角形的其中两个角对应相等,且两个角夹的的边也对应相等的两个三角形全等。

方法四:AAS(角角边),即三角形的其中两个角对应相等,且对应相等的角所对应的边也对应相等的两个三角形全等。

方法五:HL(斜边、直角边),即在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等。

性质
1.全等三角形的对应角相等。

2.全等三角形的对应边相等。

3.。

能够完全重合的顶点称为对应顶点。

4.全等三角形的对应边上的高对应相等。

5.全等三角形的对应角的角平分线相等。

6.全等三角形的对应边上的中线相等。

7.全等三角形面积和周长相等。

8.全等三角形的对应角的三角函数值相等。

全等直角三角形的判定

全等直角三角形的判定

全等直角三角形的判定要点一:判定直角三角形全等的一般方法;由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理.要点二:判定直角三角形全等的特殊方法——斜边,直角边定理。

在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.【典型例题】类型一、直角三角形全等的判定——“HL”例1. 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和斜边对应相等;()(3)两直角边对应相等;()(4)一条直角边和斜边对应相等.()【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SAS”;(4)全等,“HL”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【总结升华】直角三角形全等可用的判定方法有5种:SAS、ASA、AAS、SSS、HL.举一反三:【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()【答案】(1)√;(2)×;在△ABC和△DBC中,AB=DB,AE和DF 是其中一边上的高,AE=DF(3)×. 在△ABC和△ABD中,AB=AB,AD=AC,AE为第三边上的高,例2.如图AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.【思路点拨】若能证得AD=AE,由于∠ADB、∠AEC 都是直角,可证得Rt△ADF≌Rt△AEF,而要证AD=AE,就应先考虑Rt△ABD与Rt△AEC,由题意已知AB=AC,∠BAC是公共角,可证得Rt△ABD≌Rt△ACE.【答案与解析】证明:在Rt△ABD与Rt△ACE中∴Rt△ABD≌Rt△ACE(AAS)∴AD=AE(全等三角形对应边相等)在Rt△ADF与Rt△AEF中∴Rt△ADF≌Rt△AEF(HL)∴∠DAF=∠EAF(全等三角形对应角相等)∴AF平分∠BAC(角平分线的定义)【总结升华】条件和结论相互转化,有时需要通过多次三角形全等得出待求的结论.例3、如图,△ABC中,∠ACB=90°,AC=BC,AE 是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD ⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12图片,求BD的长.【答案与解析】(1)证明:∵DB⊥BC,CF⊥AE,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC.又∵∠DBC =∠ECA =90°,且BC =CA ,∴△DBC ≌△ECA (AAS ).∴AE =CD .(2)解:由(1)得AE =CD ,AC =BC ,∴△CDB ≌△AEC (HL )∴BD =EC =21BC =21AC ,且AC =12. ∴BD =6cm .【总结升华】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件。

全等三角形的性质及判定(经典讲义)

全等三角形的性质及判定(经典讲义)

全等三角形的性质及判定知识要点1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等, 对应角的平分线相等.(3)全等三角形的周长、面积相等.3、全等三角形判定方法:(1)全等判定一:三条边对应相等的两个三角形全等(SSS )(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA ) (3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS) (4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS )专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等例题1:下列说法,正确的是( )A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形 例题2:如图1,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD=7cm ,DM=5cm ,∠DAM=39°,则AN =____cm ,NM =____cm ,NAB ∠= .【仿练1】如图2,已知ABC ADE ∆≅∆,AB AD =,BC DE =,那么与BAE ∠相等的角是 . 【仿练2】如图3,ABC ADE ∆≅∆,则AB= ,∠E= _.若∠BAE=120°,∠BAD=40°,则∠BAC= .、图4EDCB A图2 图3M DA NBC 图1三角形全等的判定一(SSS )相关几何语言考点∵AE=CF ∵CM 是△的中线∴_____________( )∴____________________∴__________( ) 或 ∵AC=EF∴____________________∴__________( )AB=AB ( )在△ABC 和△DEF 中∵⎪⎩⎪⎨⎧___________________________ ∴△ABC ≌△DEF ( )例1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?例2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .BFECAFE DCB ACMBA B A例3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.练习1..如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD2、如图所示,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACD B.△BDE≌△CDEC.△ABE≌△ACE D.以上都不对3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSS B.SAS C.AASD.HL4.如图,AB=AC,D为BC的中点,则△ABD≌_________.5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。

第五讲 ASA全等三角形的判定

第五讲  ASA全等三角形的判定

A B C A ’B ’C ’A BC A ’B ’C ’第四讲 全等三角形的判定(三)(一)知识要点1、三角形全等的判定三、四:ASA 及AAS两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”)。

书写格式:、在△ABC 和△A ’B ’C ’中,∵⎪⎩⎪⎨⎧∠=∠=∠=∠''''B B B A AB A A ∴△ABC ≌△A ’B ’C ’(ASA ) 知识延伸:“ASA ”中的“S ”必须是两个“A ”所夹的边。

两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)。

书写格式:在△ABC 和△A ’B ’C ’中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠''''C A AC B B A A ∴△ABC ≌△A ’B ’C ’(AAS ) 知识延伸:“AAS ”可以看成是“ASA ”的推论。

规律方法小结:由“角边角”及“角角边”可知两角及一边对应相等的两个三角形全等。

无论这个一边是“对边”还是“夹边”,只要对应相等即可。

(二)例题讲解:例1.如图所示,D 在AB 上,E 在AC 上,AB=AC, ∠B=∠C. 求证:AD=AE例2.如图,AB ⊥BC, AD ⊥DC, ∠1=∠2. 求证:AB=AD练习:如图所示,点B 、F 、C 、E 在同一条直线上,AB ∥DF ,AC ∥DE ,AC =DE ,FC 与BE 相等吗?请说明理由.A B C D A ’B ’C ’D ’ 例3.已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .例4:如图,已知△ABC ≌△A ’B ’C ’,AD ,A ’D ’分别是△ABC 和△A ’B ’C ’的边BC 和B ’C ’上的高。

求证:AD=A ’D ’例5.如图,点E 在AC 上,∠1=∠2,∠3=∠4.试证明BE= DE.(三)练习1.如图,已知AB= DC ,AD =BC ,E ,F 是DB 上的两点,且BE=DF.若∠AEB=100º,∠ADB= 30º.则∠BCF= 。

判断全等三角形的几种方法

判断全等三角形的几种方法

判断全等三角形的几种方法全等三角形是指两个三角形的所有对应边和对应角都相等的情况。

判断两个三角形是否全等可以使用以下几种方法。

方法一:SSS法(边边边相等法)SSS法指的是如果两个三角形的三边分别相等,则这两个三角形全等。

这个法则基于边的相等关系来判断三角形的全等性。

例如,如果两个三角形的三边分别为AB=DE, AC=DF, BC=EF,则这两个三角形全等。

方法二:SAS法(边角边相等法)SAS法指的是如果两个三角形的两边和夹角分别相等,则这两个三角形全等。

这个法则基于边和角的相等关系来判断三角形的全等性。

例如,如果两个三角形的两边和夹角分别为AB=DE, AC=DF, ∠A=∠D,则这两个三角形全等。

方法三:ASA法(角边角相等法)ASA法指的是如果两个三角形的两角和夹边分别相等,则这两个三角形全等。

这个法则基于角和边的相等关系来判断三角形的全等性。

例如,如果两个三角形的两角和夹边分别为∠A=∠D, ∠B=∠E,AB=DE,则这两个三角形全等。

方法四:HL法(斜边和高相等法)HL法指的是如果两个直角三角形的斜边和高分别相等,则这两个三角形全等。

这个法则基于斜边和高的相等关系来判断直角三角形的全等性。

例如,如果两个直角三角形的斜边和高分别为AB=DE, AH=DH,则这两个直角三角形全等。

除了以上四种方法,还有一些其他的方法可以用来判断三角形的全等性,如RHS法、AAS法等等。

但是无论使用哪种方法,判断三角形的全等性都需要注意以下几点:1. 需要确保三角形的对应边和对应角都相等,否则两个三角形不全等。

2. 需要考虑三角形的排列顺序,例如如果两个三角形的对应边和对应角相等,但是顺序不同,则这两个三角形不全等。

3. 需要注意测量误差,因为即使两个三角形的对应边和对应角相等,测量误差也可能导致判断错误。

判断三角形的全等性需要注意细节和精度,但只要掌握了以上几种方法,就可以轻松判断三角形的全等性。

三角形全等的判定方法(5种)例题+练习(全面)

三角形全等的判定方法(5种)例题+练习(全面)

教学内容全等三角形的判定教学目标掌握全等三角形的判定方法重点全等三角形的判定探索三角形全等的条件(5种)1 边角边(重点)两边及其夹角分别分别相等的两个三角形全等,可以简写成“边角边”或“SAS”. 注:必须是两边及其夹角,不能是两边和其中一边的对角.原因:如图:在∆ABC和∆ABD中,∠A=∠A,AB=AB,BC=BD,显然这两个三角形不全等. 例1 如图,AC=AD,∠CAB=∠DAB,求证:∆ACB≌∆ADB.例2 如图,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF求证:BF=CE.例3.(1)如图①,根据“SAS”,如果BD=CE, = ,那么即可判定△BDC≌△CEB;(2) 如图②,已知BC=EC,∠BCE=ACD,要使△ABC≌△DEC,则应添加的一个条件为例4.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌,理由是;△ABE≌,理由是.例5.如图,在△ABC和△DEF中,如果AB=DE,BC=EF,只要找出∠ =∠或∥,就可得到△ABC≌△DEF.例6.如图,已知AB∥DE,AB=DE,BF=CE,求证:△ABC≌△DEF.例7.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E例8.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.2.角边角两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例1.如图,在△ABC中,点D是BC的中点,作射线AD,线段AD及其延长线上分别取点E,F,连接CE,BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是:.(不添加辅助线)例2.如图,已知AD平分∠BAC,且∠ABD=∠ACD,则由“AAS”可直接判定△≌△.例3.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,那么AE= cm.例4.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.例5.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证:BC=DC.例6.如图,在△ABC中,D是BC边上的点 (不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE.请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1) 你添加的条件是:;(2) 证明:例7.如图,A在DE上,F在AB上,且BC=DC,∠1=∠2=∠3,则DE的长等于 ( ) A.DC B.BCC.AB D.AE+AC【基础训练】1.如图,已知AB=DC,∠ABC=∠DCB,则有△ABC≌_______,理由是_______;且有∠ACB=_______,AC=_______.2.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌_______,理由是_______;△ABF≌_______,理由是_______.3.如图,在△ABC和△BAD中,因为AB=BA,∠ABC=∠BAD,_______=_______,根据“SAS”可以得到△ABC≌△BAD.4.如图,要用“SAS”证△ABC≌△ADE,若AB=AD,AC=AE,则还需条件( ).A.∠B=∠D B∠C=∠EC.∠1=∠2 D.∠3=∠45.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).A.60°B.50°C.45°D.30°6.如图,如果AE=CF,AD∥BC,AD=CB,那么△ADF和ACBE全等吗?请说明理由.7.如图,已知AD与BC相交于点O,∠CAB=∠DBA,AC=BD.求证:(1)∠C=∠D;(2)△AOC≌△BOD.8.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.9.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.10.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.A BC DEF角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“AAS ”. 例1、如图,在△ABC 中,∠ABC =45°,H 是高AD 和高BE 的交点,试说明BH =AC .例2、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,AD=2.5cm ,DE=1.7cm . 求BE 的长.例3、如图, 在△ABC 中, AC ⊥BC, CE ⊥AB 于E, AF 平分∠CAB 交CE 于点F, 过F 作FD ∥BC 交AB 于点D. 求证:AC =AD.例4、如图, 在ABC中, ∠A=90°, BD平分B, DE⊥BC于E, 且BE=EC,(1)求∠ABC与∠C的度数;(2)求证:BC=2AB.边边边三边分别相等的两个三角形全等,可以简写成“边边边”或“SSS”.例1、如图,在四边形ABCD中,AB=CB,AD=CD.你能说明∠C=∠A吗? 试一试.例2、如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中.BE和DE是否相等? 若相等,请写出证明过程;若不相等,请说明理由.例3.如图,AB=CD ,AE=CF ,BO=DO ,EO=FO .求证:OC=OA .斜边、直角边斜边和一条直角边分别相等的两个直角三角形全等,可以简写成“斜边、直角边”或“HL ”。

全等三角形的基础和经典例题含有答案

全等三角形的基础和经典例题含有答案

第十一章:全等三角形一、基础知识1.全等图形的有关概念 (1)全等图形的定义能够完全重合的两个图形就是全等图形。

例如:图13-1和图13-2就是全等图形图13-1图13-2 (2)全等多边形的定义两个多边形是全等图形,则称为全等多边形。

例如:图13-3和图13-4中的两对多边形就是全等多边形。

图13-3 图13-4(3)全等多边形的对应顶点、对应角、对应边两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。

(4)全等多边形的表示例如:图13-5中的两个五边形是全等的,记作五边形ABCDE ≌五边形A ’B ’C ’D ’E ’(这里符号“≌”表示全等,读作“全等于”)。

图13-5表示图形的全等时,要把对应顶点写在对应的位置。

(5)全等多边形的性质全等多边形的对应边、对应角分别相等。

A B DC E B ’A ’ C ’ D ’ E ’(6)全等多边形的识别多边形相等、对应角相等的两个多边形全等。

2.全等三角形的识别(1)根据定义若两个三角形的边、角分别对应相等,则这两个三角形全等。

(2)根据SSS如果两个三角形的三条边分别对应相等,那么这两个三角形全等。

相似三角形的识别法中有一个与(SSS)全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。

(3)根据SAS如果两个三角形有两边机器夹角分别对应相等,那么这两个三角形全等。

相似三角形的识别法中同样有一个是与(SAS)全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。

(4)根据ASA如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。

(5)根据AAS如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。

3.直角三角形全等的识别(1)根据HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形的识别(四)
一、教学内容 华东师大版九年级数学(上)P87——88的内容
二、教学目标 知识与技能目标
1.通过自主探究得到(A.S.A )两个三角形全等的识别方法。

2.能运用(A.S.A)和(A.A.S)来识别两个三角形的全等。

过程与方法目标
通过自读教材,引导学生自学;通过直观感知与操作确认在实践中去学习、领悟。

情感与态度目标
体验在数学学习活动中充满探索与创造;体验成功的快乐。

二、教学重难点
教学重点:运用(A.S.A)和(A.A.S)来识别两个三角形的全等。

教学难点:识别两个三角形全等(A.S.A )的探究过程。

三、教学方法
学法:探究学习,通过直观感知与操作确认在实践中去学习;合作学习,在同桌交流中合作学习;
教法:直观感知,通过多媒体动画演示,使抽象的几何知识直观形象;合作式,在师生的平等交流中评价学习。

四、教学模式
创设情境、设问猜想
带着问题、自读教材 主动探究、深化解疑
回学反馈、递进达标
五、教学过程 1、教学流程
设问猜想 自学新课 当堂训练 创设情境 学生活动 学生活动 引出课题 初步感知
回学反馈 例题分析展示目标 知识小结 学生活动 当堂训练 实际应用 探索(A.S.A )
图24.2.8
(第1题)
(2)如图:O是AB △BOD全等吗?为什么。

相关文档
最新文档