多元函数微积分第二章答案
多元函数微积分第二节

即 z = f ( x x , y y ) f ( x , y )
2、偏增量
如果 y 0,即只给自变量
引起的函数增量
以增量
x
x z f ( x x, y ) f ( x, y )
由此 x
叫做函数
在点 对应的自变量 的增
z f ( x, y )
+ )
(依偏导数的连续性)
= (, ) + 1
且当 x 0, y 0 时, 1 0 .
同理
1 + 2
∵
≤ 1 + 2
当 y 0 时, 2 0 ,
→ 00,
z
f y ( x , y )y 2 y
(0 < 1 < 1)
P ( x x , y y ) P 的某个邻域
z A x B y o( )
总成立,
当 y 0 时,上式仍成立,此时 | x |,
= + + ()
A x o(| x |),
f ( x x , y ) f ( x , y )
2×1+3×2=8,
| = 1=2 =
3×1+2×2=7.
RT
p
RT
证 p
2;
V
V
V
RT
RT
RT
=
⇒
=− 2;
V
p
= ;
=
⇒
pV
微积分第二章详细答案

第二章习题2-11. 证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有n k x a ε+-<由数列极限的定义得 l i m n k x x a +→∞=.2. 证明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 l i m n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。
3. 证明:lim n →∞x n =0的充要条件是lim n →∞∣x n ∣=0.证:必要性由2题已证,下面证明充分性。
即证若lim 0n n x →∞=,则lim 0n n x →∞=,由lim 0n n x →∞=知,0ε∀>,N ∃,设当n N >时,有0 0n n n x x x εεε-<<-<即即由数列极限的定义可得 l i m 0n n x →∞=4. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)nn n ⎛⎫+++ ⎪+⎝⎭ =0; (2) lim n →∞2!n =0. 证:(1)因为222222111112(1)(2)n n n nnn n n nn++≤+++≤≤=+而且 21lim0n n→∞=,2lim0n n→∞=,所以由夹逼定理,得222111lim 0(1)(2)n nn n →∞⎛⎫+++= ⎪+⎝⎭ . (2)因为22222240!1231nn n n n<=<- ,而且4lim 0n n →∞=,所以,由夹逼定理得2lim0!nn n →∞=5. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x 1>0,x n +1=13()2n nx x +,n =1,2,…;(2) x 1x n +1,n =1,2,…;(3) 设x n 单调递增,y n 单调递减,且lim n →∞(x n -y n )=0,证明x n 和y n 的极限均存在.证:(1)由10x >及13()2n n nx x x =+知,有0n x >(1,2,n = )即数列{}n x 有下界。
微积分(大学数学基础教程答案)大学数学基础教程(二)多元函数微积分习题解答

x 1 1 x 1 ,求 f ( x, y ), f ( , ), f ( xy , ), y x y y f ( x, y)
解 f ( x, y ) xy
1 1 1 y x 1 y x ; f( , ) ; f ( xy , ) x 2 y 2 ; 2 x y xy x y f ( x, y) xy x y
z c -a
-b a x
O
b
y
(4) D ( x, y, z ) x 0, y 0, z 0, x 2 y 2 z 2 1
z
1
O x
4.求下列各极限: (1) lim
x 0 y 1
1
y
1
1 xy 1 0 = 1 x2 y2 0 1
ln( x e y ) x2 y2 ln(1 e 0 ) 1 0 ln 2
y x y 1 1 x e , z y e x , dz 2 e x dx e dy ; 2 x x x x
y
y
y
y
5.(1) z x
(2) z
y y x 1 x z dz dx dy ; , , ln( x 2 y 2 ) , z x 2 y 2 x2 y2 x2 y2 x2 y2 x y2
(2) z x a sin 2(ax by), z y b (ax by), z xy 2ab cos 2(ax by), z yy 2b 2 cos 2(ax by) .
3
f x y 2 2 xz , f y 2 xy z 2 , f z 2 yz x 2 , f xx 2 z, f xz 2 x, f yz 2 z,
微积分第二章习题参考答案

f ( x ) f ( x ), f ( x ) f ( x ),
即f ( x )为奇函数;
§2.3隐函数的导数(23-24)
一.1. ey sec 2 ( r ) ; 2. csc 2 ( r ) ; 2 2 y 1 sec ( r )
x 0
1 2 x
1.
二.解1.(1).
y ln( x 1 x 2 ) ln x ,
1 x
1 y (1 ) x x 1 x2 1 x2 1 . x 2 1 x 2 x(1 x 2 )
(2) 1 y 3sec (ln x ) sec(ln x )tan(ln x ) x 3 sec 3 (ln x )tan(ln x ). x
x 1 dy k 2e ,当 0时, , dx 0 y0
切线方程为 y 2e( x 1), 1 法线方程为 y ( x 1). 2e
四.
解 : s ( t ) x ( t ) 9,
2 2
ds dx s( t ) x ( t ) 0, dt dt ds 已知 160, s 5, x 4, dt dx 200, v 200 120 80. dt
(sin 2 x ) f (cos 2 x )]sin 2 x . [f 1 (3) y f ( x ); 2 1 f ( x)
(4) y f (sin x )cos x cos[ f ( x )] f ( x ).
4.解.(一) lim f ( x ) lim
1 1 2( 1)2 2( 1)2 y , y 2 2 , 3 3 ( t 2) ( t 1) ( t 2) ( t 1)
《高等数学》多元函数微分学部分 练习题答案

八、多元函数的微积分: (一)求下列函数的偏导数:(1)33xy y x z -=解:233zx y y x ∂=-∂, 323z x xy y ∂=-∂.(2))ln(xy z =解:()12ln()z xy =,()1211ln()()2z xy y x xy -∂==∂ ()1211ln()()2z xy x y xy -∂==∂.(3)2arcsin()cos ()z xy xy =+,2arcsin()cos ()z xy xy =+;2cos()[sin()]sin(2)z y xy xy x y xy x ∂=+-=-∂,2cos()[sin()]sin(2)z x xy xy x x xy y ∂=+-=-∂.(4)yxy z )1(+=解:关于x 是幂函数故:121(1)(1)y y zy xy y y xy x--∂=+=+∂, 关于y 是幂指函数,将其写成指数函数ln(1)y xy z e+=,故:ln(1)1[ln(1)](1)(ln(1))11y xy y z xy e xy y x xy xy y xy xy+∂=++=+++∂++ 解II: 两边取对数得ln ln(1)z y xy =+,因此11z y y z x xy ∂=∂+ , 1l n (1)1z xxy y z y xy ∂=++∂+, 即21(1)y zy xy x-∂=+∂, 1(1)ln(1)(1)y y z xy xy xy xy y -∂=++++∂. (二)求下列函数的全微分:(1) xz x yy=+ , 因为1z y x y ∂=+∂,2z x x y y ∂=-∂.所以21()d ()d z z xdz dx dy y x x y x y y y ∂∂=+=++-∂∂ . (2)2x yz e -=,因为2x y ze x -∂=∂,22x y z e y -∂=-∂.所以2(d 2d )x y z zdz dx dy e x y x y-∂∂=+=-∂∂. (3)z =因为()()()()13322222222232221[]()22z xyy x y y x y x xy x y x x xy---∂∂-=+=-+⋅=-+=∂∂+,()23222z x yxy∂==∂+所以()()233222222)z zxyx dz dx dy dx dy xdy ydx x yxyxy∂∂-=+=+=-∂∂++(4)yzu x = 因为11()yz yz u yz x yzx x --∂==∂,ln ln yz yz u x x z zx x y ∂=⋅=∂,ln ln yz yz u x x y yx x z ∂=⋅=∂ 所以u u udu dx dy dz x y z∂∂∂=++∂∂∂=1ln ln )yz yz yz yzx dx yx xdy yx xdz -++ (ln ln )yz yzx dx y xdy y xdz x=++(三)求下列函数的偏导数和微分: (1)设2ln ,,32,x z u v u v x y y ===-,求,z z x y∂∂∂∂. 解:212ln 3z f u f v u u v x u x v x y v ∂∂∂∂∂=+=⋅+⋅∂∂∂∂∂()()22223ln 3232x x x y y x y y =-+-, z f u f v y u y v y ∂∂∂∂∂=+∂∂∂∂∂222ln ()(2)x u u v y v =⋅-+⋅-()()223222ln 3232x x x y y x y y=---- (2)设32 ,sin ,t y t x e z y x ===-,求dz ;3222sin 22cos (2)(3)(cos 6)x y x y t t dz z dx z dye t e t e t t dt x dt y dt---∂∂=+=+-=-∂∂ dz 3sin 22(cos 6)d t t e t t t -=-.(四)设下列方程所确定的函数为()y f x =,求dxdy.(1)ln 0xy y -=解: 设(,)ln .F x y xy y =- 则,x F y = 1y F x y=-, x yF dydx F =-1yx y=--21y xy =--21y xy =-.(2) 0sin 2=-+xy e y x解I : 设2(,)sin .xF x y y e xy =+-则2,xx F e xy =- cos 2y F y xy =-,2d d cos 2xx y F y y e x F y xy-=-=-.解II :22cos d d d 2d 0(cos 2)d ()d x xy y e x y x xy y y xy y y e x +--=⇒-=-2d d cos 2xy y e x y xy-⇒=-.(3) ln ln 0xy x y ++= 解: 设(,)ln ln .F x y xy x y =++ 则1,x F y x=+1y F x y =+,x y F dy dx F =-11y x x y+=-+(1)(1)y xy x xy +=-+y x =-.(五)对下列隐函数, 求x z ∂∂,y z ∂∂,xy∂∂及dz .(1)20x y z ++-解:设(,,)2F x y z x y z =++-则1x F =21y z F F =-=,x z F z x F ∂=-====∂y zF z y F ∂=-====∂y xF x y F ∂=-====∂.dz =+解II :(隐函数法)两边关于x求导:10z x ∂+=∂,得xyxyz xyzyz x z --=∂∂两边关于y求导:20z y ∂+=∂得xyxyz xyzxz y z --=∂∂2两边关于y求导:20x y ∂+=∂得x y ∂=∂.dz =+解III:令(),,2F x y z x y z =++-则1x F =,2y F =1z F =故1x z F zx F ∂=-==∂-,1y z F z y F ∂=-==∂1y x F xy F ∂=-===∂.dz =+(2) 0ze xyz -=解: 设(,,).zF x y z e xyz =-则,x F yz =- ,z y z F xz F e xy =-=-,,x z z F z yz x F e xy ∂=-=∂- ,y z z F z xz y F e xy ∂=-=∂-.Fx x yF yy x∂∂∂=-=-∂∂∂ .z z yz xz dz dx dy e xy e xy=+--(3)yz z x ln = (3) 设),(y x z z =是由方程y zz x ln =所确定的隐函数,求x z ∂∂和yz ∂∂. 解I : 用隐函数求导公式(),,ln ln x F x y z z y z=-+,,1z x F =∂∂∴,1y y F =∂∂z z x z F 12--=∂∂ ,112z x z z z x z x z +=---=∂∂∴)(1122z x y z zz x yy z +=---=∂∂,11Fx z y yF yy xz∂∂∂=-=-=-∂∂∂. 2.()z z dz dx dy x z y x z =+++解II : 将z 看作y x ,的函数,两边对x 求导,得:xz z z x zxz ∂∂=∂∂-12 即zx zx z +=∂∂,同理两边对y 求导得)(2z x y z y z +=∂∂ 将x 看作,y z 的函数,两边对y 求导,得:1xyz y∂∂=-即.x z y y∂=-∂ 2.()z z dz dx dy x z y x z =+++解III : 将方程两边求全微分,得:y dyz dz z xdz zdx -=-2,解出dz 得:()dy z x y z dx x z z dz +++=2 zx zx z +=∂∂∴,)(2z x y z y z +=∂∂, 将方程两边求全微分,得:y dy z dz z xdz zdx -=-2,解出dx 得:z x z dx dy dz y z +=-+ .x z y y∂∴=-∂ (六)1、设333,z xyz a -= 求2zx y∂∂∂.解I : 设33(,,)3,.F x y z z xyz a =--则3,x F yz =- 23,33y z F xz F z xy =-=-,2,x z F z yz x F z xy ∂=-=∂- 2.y z F z xzy F z xy∂=-=∂- 2222()()(2)()()z zz yz xy yz z x z z y yx y y x z xy ∂∂+---∂∂∂∂∂==∂∂∂∂- 22222()()(2)()xz xzz y z xy yz z x z xy z xyz xy +-----=-22223[()]()[(2()]()z z xy yxz z xy yz zxz x z xy z xy -+----=- 322253222323()()2()()z z xy yz xz x y z xyz x y z z xy z xy --+--==--.解II :利用隐函数求导 方程两边同时对x 求导23330,z z zyz xy x x ∂∂--=∂∂20,z zz yz xy x x∂∂--=∂∂ 2,z yz x z xy ∂=∂-同理2,z xzy z xy∂=∂-对方程20,z zzyz xy x x∂∂--=∂∂两边同时再对y 求导 22220,z z z z z z z z z y x xy y x x y y x x y∂∂∂∂∂∂+----=∂∂∂∂∂∂∂∂ 22()2z z z z z z xy z x y zx y x y x y ∂∂∂∂∂-=++-∂∂∂∂∂∂22222yz xz yz xzz x y z z xy z xy z xy z xy =++-----33222z 2()z xy xyz z xy z xy +=---522322z 2()z x y xyz z xy --=-, 所以2522323z 2.()z z x y xyz x y z xy ∂--=∂∂-解III :333,z xyz a -=方程两边同时微分,23d 3(d d d )0z z yz x xz y xy z ---=,2()d d d z xy z yz x xz y -=+, 22d d d .yz xzz x y z xy z xy =+--所以 22,z yz z xz x z xy y z xy∂∂==∂-∂-. 222222222()()(2)()()(2)()()z z xz xz z y z xy yz z x z y z xy yz z x z y y z xy z xyx y z xy z xy ∂∂+---+---∂∂∂--==∂∂--22223[()]()[(2()]()z z xy yxz z xy yz zxz x z xy z xy -+----=- 322253222323()()2()()z z xy yz xz x y z xyz x y zz xy z xy --+--==--.2、设0ze xyz -=, 求22zx ∂∂.解: 设(,,).z F x y z e xyz =-则,x F yz =- ,zy z F xz F e xy =-=-,,x z z F z yz x F e xy ∂=-=∂- .y z z F z xzy F e xy∂=-=∂- 2222()()()()()()z z z z z z z z ze xy z e y e ze xy zyz z x x x y y x x x e xy e xy ∂∂∂-----+∂∂∂∂∂∂===∂∂∂-- 2()()z z z z yze ze xy zye xyy e xy --+-=-3()()()z z z z e ze xy yz zy e xy y e xy --+-=-22322()z z z yze yz e xy z y e xy --=-2223322.()z z z y ze y z e xy z e xy --=-十二、计算下列二重积分:1.22()Dx y d σ+⎰⎰其中D 是矩形区域:1,1x y ≤≤; 解: 积分区域可表示为D : -1≤x ≤1, -1≤y ≤1. 于是11222211()()Dx y d dx x y dy σ--+=+⎰⎰⎰⎰1231111[]3x y y dx --=+⎰ 1212(2)3x dx -=+⎰31122[]33x x -=+=8.3= 2.22()Dxy x d σ+-⎰⎰其中D 由直线22y y x y x ===、与所围成;解: 积分区域可表示为1,:202,y x y D y ⎧≤≤⎪⎨⎪≤≤⎩原式()222102yy dy x y x dx =+-⎰⎰132201211()32yyx y x x dx =+-⎰232019313().2486y y dy =-=⎰ 3.2Dxy d σ⎰⎰其中D 2y x y x ==由抛物线和直线所围成; 解: 积分区域可表示为201,:,x D x y x ≤≤⎧⎨≤≤⎩21220xx Dxy d dx xy dy σ=⎰⎰⎰⎰21301[]3x x xy dx =⎰ 14701()3x x dx =-⎰1111[].35840=-= 1题图 2题图 3题图11。
经济数学基础 微积分 第二章习题解答

1 ex x0 15.设有函数f ( x) a x x 0
解: e 0 lim
x 0 1 x x 0
问常数a为何值时, f ( x)存在? lim
x0
lim (a x) a
当a 0时, f ( x)存在. lim
x0
16.求下列极限: tan 2 x 2 arctan 5 x 3x sin 3 x (2) lim (3) lim 5 (1) lim lim 6 x 0 sin 5 x x 0 arcsin x x 0 x 0 x x 5 sin 2 2 1 x2 sin x2 (5) lim 1 lim 4 x 1 x 0 (4) lim x sin lim 2 x x 0 x 2 sin ( ) x ( ) x x 1 2 2 x tan 2 x sin x tan 2 x sin x 2 1 1 (6) lim lim lim x 0 x 0 x 0 x x x
e 4
x x x 1 2 3 lim (17 ) lim ln(1 x x x ) x 0 x 0 x x
2
3
1
1
1 n 2 n 3 n n n n n n (18) lim(1 2 3 4 ) lim 4 [1 ( ) ( ) ( ) ] 4 x x 4 4 4 17.求下列极限:
x 1 x 1
1 或 lim 2 0 n x
y
解:lim f ( x) lim f ( x) 2 f (1)
x 2是第一类可去间断点
0
x
若f (1) 2, 则为连续 .
(2) x 0第二类无穷间断点 (3) x 0第一类跳跃间断点 (4) x 0第一类可去间断点 x 1第二类无穷间断点 (5) x 0第一类跳跃间断点 (6) x 0第一类可去间断点
微积分(大学数学基础教程答案)大学数学基础教程(二)多元函数微积分王宝富 钮海第二章习题解答(下)
习题2-1 1、解:在任意一个面积微元σd 上的压力微元σρg x d dF =,所以,该平面薄片一侧所受的水压力⎰⎰=Dgxd F σρ2、解:在任意一个面积微元σd 上的电荷微元σμd y x dF ),(=,所以,该平面薄片的电荷总量⎰⎰=Dd y x Q σμ),(3、解:因为10,10≤≤≤≤y x ,所以1122++≤++y x y x ,又u ln 为单调递增函数,所以()()1ln 1ln 22++≤++y x y x ,由二重积分的保序性得()()⎰⎰⎰⎰≤≤≤≤≤≤≤≤++≤++10101010221ln 1ln y x y x d y x d y x σσ4、解:积分区域D 如图2-1-1所示,所以该物体的质量34)384438()()(1032122222=-+-=+=+=⎰⎰⎰⎰⎰-dy y y y dx y x dy d y x M y yDσ 5、解:(1)积分区域如图2-1-2所示,所以⎰⎰⎰⎰=1101),(),(xy dy y x f dx dx y x f dy(2)积分区域如图2-1-3所示,所以⎰⎰⎰⎰=xx y ydy y x f dx dx y x f dy 2/4022),(),(2(3)积分区域如图2-1-4所示,所以⎰⎰⎰⎰+----=1121222122),(),(y yx x xdx y x f dy dy y x f dx(4)积分区域如图2-1-5所示,所以⎰⎰⎰⎰=eexey dx y x f dy dy y x f dx ),(),(10ln 06、解:(1)积分区域如图2-1-6所示,所以()⎰⎰⎰⎰⎰=⎪⎭⎫ ⎝⎛-=-==101054/1134/3105565111432322x x dx x x x dy y x dx d y xxxDσ (2)积分区域如图2-1-7所示,所以1564)4(2122224022222=-==⎰⎰⎰⎰⎰--dy y y dx xy dy d xy y Dσ (3)积分区域如图2-1-8所示,所以11021011211011111101101)()()()(----+-----+-+-++--+-+-=-+-=-+-=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰e e dx e e e dx e ee dxe e e dx e e e dy e dx dy e dx d e x x x x x x x x xxy x x xy x Dyx σ(4)积分区域如图2-1-9所示,所以613832419)()(20232/22222=⎪⎭⎫ ⎝⎛-=-+=-+⎰⎰⎰⎰⎰dy y y dx x y x dy d x y x yy Dσ 7、解:(1)积分区域如图2-1-10所示,令θθsin ,cos r y r x ==,所以ar ≤≤≤≤-0,22πθπ,故()⎰⎰⎰⎰⋅=-aDdr r r f r d d y x f 022sin)cos,(,ππθσ(2)积分区域如图2-1-11所示,令θθsin ,cos r y r x ==,所以θπθsin 20,0≤≤≤≤r ,故⎰⎰⎰⎰⋅=θπθθθσsin 20)sin ,cos (),(dr r r f r d d y x f D8、解:(1)积分区域如图2-1-12所示,令θθsin ,cos r y r x ==,所以θθπθ2cos sin 0,40≤≤≤≤r ,故[]12sec tan sec )(4040cos sin 014021221022-===⋅=+⎰⎰⎰⎰⎰--ππθθπθθθθθd dr r r d dy y x dx xx(2)积分区域如图2-1-13所示,令θθsin ,cos r y r x ==,所以θπθsin 20,0≤≤≤≤r ,故8)(432022022a dr r d dx y x dy ay a aπθπ==+⎰⎰⎰⎰-9、解:(1)积分区域如图2-1-14所示,故49)(12131221222=+-==⎰⎰⎰⎰⎰dx x x dy y dx x d yx x x D σ (2)积分区域如图2-1-15所示,令θθsin ,cos r y r x ==,所以10,20≤≤≤≤r πθ,故()28)1(21a r c2121)1(41121211211************21010444210143410421022202222-=⎥⎥⎦⎤⎢⎢⎣⎡-+=⎪⎪⎭⎫⎝⎛--+-=⎪⎪⎭⎫⎝⎛---=--=⋅+-=++--⎰⎰⎰⎰⎰⎰⎰⎰⎰ππππππθσπr rr r d r dr dr r r dr r rrdr rr rdr r r d d y x y x D(3)积分区域如图2-1-16所示, 故433222232214)32()()(a dy a y a ay dx y x dy d y xaayay a aD=+-=+=+⎰⎰⎰⎰⎰-σ(4)积分区域如图2-1-17所示,令θθsin ,cos r y r x ==,所以b r a ≤≤≤≤,20πθ,故()33220212232)(a b dr r d d y xbaD-==+⎰⎰⎰⎰πθσπ10、解:积分区域如图2-1-18所示,由图形的对称性得:⎰⎰==1441D d S S σ,所以24024022sin 0402cos 2sin 24a a d a rdr d S a =-===⎰⎰⎰ππθπθθθθ图2-1-1 图2-1-2 图2-1-3 图2-1-4图2-1-5 图2-1-6 图2-1-7 图2-1-8图2-1-9 图2-1-10 图2-1-11 图2-1-12图2-1-13 图2-1-14 图2-1-15 图2-1-16图2-1-17 图2-1-18习题2-21、解:⎰⎰⎰Ω=dv z y x Q ),,(μ2、化三重积分为直角坐标中的累次积分解:(1)因为积分区域Ω的上曲面为开口向上的旋转抛物面22y x z +=,下曲面为0=z ,积分区域Ω在xoy 坐标面上的投影区域x y x D xy -≤≤≤≤10;10:,所以()()⎰⎰⎰⎰⎰⎰-+Ω=101022,,,,xy x dz z y x f dy dx dv z y x f(2)因为积分区域Ω的上曲面为开口向下的抛物柱面22x z -=与下曲面为开口向上的旋转抛物面222y x z +=围成,二曲面的交线在x o y平面上的投影为圆122=+y x ,即⎪⎩⎪⎨⎧-≤≤+-≤≤--≤≤-Ω22222221111:x z y x x y x x ,所以()()⎰⎰⎰⎰⎰⎰-----+Ω=11112222222,,,,x x x y x dz z y x f dy dx dv z y x f(3)因为积分区域Ω的上曲面为开口向上的旋转抛物面22y x z +=,下曲面为0=z ,积分区域Ω在xoy 坐标面上的投影区域1;11:2≤≤≤≤-y x x D xy ,所以()()⎰⎰⎰⎰⎰⎰-+Ω=111222,,,,xy x dz z y x f dy dx dv z y x f3、解:积分区域Ω如图2-2-1所示0)1(61211161211111022=-===⎰⎰⎰⎰⎰⎰⎰⎰⎰--Ω-dx x x dy y xdx zdz dy xdx xzdxdydz xxy 另解:因为积分区域Ω关于坐标面yoz 对称,又xz z y x f =),,(关于第一坐标是奇函数,所以0=⎰⎰⎰Ωxzdxdydz 。
微积分II(甲)多元函数积分学练习解答
微积分II (甲)多元函数积分学练习题解答1.计算二重积分22d D x yσ⎰⎰,其中D 是由1,,2y x y x x ===所围成的闭区域. 解:222121x xDx xyd dx dy y σ=⎰⎰⎰⎰ ()231124x x dx =-=⎰ 2.计算二重积分Dxyd σ⎰⎰,其中D 是由直线2y y x ==、和2y x =所围成的闭区域.解:202yy Dxyd dy xydx σ=⎰⎰⎰⎰2234003338322y dy y ⎛⎫=== ⎪⎝⎭⎰ 3. 作出积分区域的图形,交换积分次序,计算10dy ⎰.解:21021)9x I dx ==⎰⎰4.计算二重积分2,{(,)Dy xd D x y x σ-=≤⎰⎰ 解: 12D D D =⋃(1D 是所有阴影部分面积)12222DD D y x d y x d y x d σσσ-=-+-⎰⎰⎰⎰⎰⎰()()2211222101x xdx x y dy dx y x dy --=-+-⎰⎰⎰⎰11424111146(22)2215x dx x x dx --=+-+=⎰⎰. 5.用极坐标计算Dσ⎰⎰,其中D 为{22(,)|4,0,0x y x y x y +≤≥≥.解:32233220cos cos =cos cos =4DDDr r rdrd r drd d r dr d r dr ππσθθθθθθθθ=⋅⋅==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰6. 设D 为闭区域22{(,)|2}x y x y y +≤,将二重积分(,)Df x y d σ⎰⎰化为极坐标下的累次积分.2解:I=2sin 0(cos ,sin )d f r r rdr πθθθθ⎰⎰.7. 设D 为闭区域22{(,)|2,}x y x y x y x +≤≤,将二重积分(,)Df x y d σ⎰⎰化为极坐标下的累次积分.解:I=2cos 402(cos ,sin )d f r r rdr πθπθθθ-⎰⎰.8. 利用二重积分计算由曲面22z x y =+和平面1z =所围成的立体的体积. 解 设所求体积为V ,则有=V ()221Dxy d σ--⎰⎰,其中 (){}22,1D x y xy =+≤,于是=V ()()22211D Dxy d r rdrd σθ--=-⎰⎰⎰⎰=()212012d r rdr ππθ-=⎰⎰.9.求由三个坐标面和平面1=+y x 及抛物面z y x -=+622所围立体的体积. 解 设所求体积为V ,则有=V ()⎰⎰--Dd y xσ226,其中 (){}x y x y x D -≤≤≤≤=10,10,,于是=V ()⎰⎰--Dd y xσ226=()112206x dx xy dy ---⎰⎰()1323011766136x x x x dx ⎡⎤=--+--=⎢⎥⎣⎦⎰10.求由()π≤≤=x x y 0sin 与0=y 所围的均质薄板的质量中心. 解 设该薄板所在区域为D ,则 该均质薄板的面积为 0sin 2S xdx π==⎰,又有 sin 00x Dxd dx xdy πσπ==⎰⎰⎰⎰, 及sin 04x Dyd dx y dy ππσ==⎰⎰⎰⎰,由均质平面薄片的质量中心公式可得所求质量中心坐标为⎪⎭⎫⎝⎛8,2ππ.二、三重积分11. 求xydV Ω⎰⎰⎰,其中Ω为1x y +=,1z =与三个坐标面所围成的三棱柱体.解xydV Ω⎰⎰⎰111x dx dy xydz -=⎰⎰⎰=1100x dx xydy -⎰⎰()120111224x x dx =-=⎰. 12. 求()⎰⎰⎰Ω+++dV z y x 311,其中Ω为三个坐标面与平面1=++z y x 所围成的四面体.解 ()⎰⎰⎰Ω+++dV z y x 311()111300011x x y dx dy dz x y z ---=+++⎰⎰⎰ =()1121318821x dx x dy x y -⎡⎤-+⎢⎥++⎢⎥⎣⎦⎰⎰()1013115ln 2218828x dx x ⎡⎤⎛⎫=-+=-⎢⎥ ⎪+⎝⎭⎣⎦⎰. 13.计算下列三重积分⎰⎰⎰Ω+dV y x z 22 ,其中Ω由22z x y =+及平面1z =围成. 解 Ω在z xoy =平面上的投影区域为22{(,)1}x y x y +≤ 可用柱面坐标计算:221211122200012401224(1).21r r d r dr zdz r dr z r r dr πθπππΩ⎛⎫== ⎪⎝⎭=-=⎰⎰⎰⎰⎰⎰⎰⎰ 14. 计算,⎰⎰⎰ΩzdV 其中Ω是由球面4222=++z y x 与抛物面z y x 322=+所围成(在抛物面内的那一部分)的闭区域.解 球面4222=++z y x 与抛物面z y x 322=+的交线为2222243x y z x y z⎧++=⎪⎨+=⎪⎩ 从中解得两曲面交线为,1=z 223x y +=,Ω在xOy 面上的投影区域为:D ,30≤≤r πθ20≤≤,利用柱面坐标,对投影区域D 内任一点),,(θr 有2243r z r -≤≤, 所以I 23r DzdV rdrd θΩ==⎰⎰⎰⎰⎰⎰2203r d zdz πθ=⋅⎰⎰⎰π413=. 15.计算()d V z y x⎰⎰⎰Ω++222,其中Ω是球体1222≤++z y x .解()⎰⎰⎰⎰⎰⎰ΩΩ=++θϕρϕρd d d dV z y xsin 42222140004sin 5d d d ππθϕϕρρπ==⎰⎰⎰16. 计算球体22222a z y x ≤++在锥面22y x z +=上方部分Ω的体积.解 在球面坐标系中, :Ω,20a r ≤≤,40πϕ≤≤πθ20≤≤,故所求体积V ⎰⎰⎰Ω=dV 224sin d d d ππθϕρϕρ=⎰⎰⎰340)2sin 3d ππϕϕ=⋅⎰.)12(343a -=π 17.求由曲面)0(2222>=++a az z y x 及222z y x =+(含有z 轴部分)所围成空间的体积.解 在球面坐标下计算⎰⎰⎰⎰⎰⎰ΩΩ==θϕρϕρd d d dV V sin 222cos 24sin a d d d ππϕθϕϕρρ=⎰⎰⎰3334082cos sin 3a d a ππϕϕϕπ==⎰.18. 立体Ω是圆柱面122=+y x 内部, 平面2=z 下方, 抛物面221y x z --=上方部分, 其上任一点的密度与它到z 轴之距离成正比(比例系数为K ), 求Ω的质量m .解 据题意得,密度函数为,),,(22y x K z y x +=ρ所以.),,(22⎰⎰⎰⎰⎰⎰ΩΩ+==dV y x K dV z y x m ρ利用柱面坐标,先对z 积分,Ω在xOy 平面上投影域D 为},1),({22≤+=y x y x D故222212122001()r Dr m Kr rdrd dz K r drd dzK d r dr dzπθθθ-Ω-===⎰⎰⎰⎰⎰⎰⎰⎰⎰1220162(1)15KK r r dr ππ=+=⎰. 三、曲线积分19. 计算⎰Γxdl ,其中 Γ是由x y =和2x y = 围成的区域的整个边界。
微积分(曹定华)(修订版)课后题答案第二章习题详解
第二章习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有n k x a ε+-<由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若li m n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。
3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!nn =0.证:(1)因为222222111112(1)(2)n n nn n n n n nn++≤+++≤≤=+而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得2lim 0!nn n →∞= 4. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x n =11ne +,n =1,2,…;(2) x 1,x n +1n =1,2,…. 证:(1)略。
专升本高等数学(一)-多元函数微积分学(二)
专升本高等数学(一)-多元函数微积分学(二)(总分:99.98,做题时间:90分钟)一、{{B}}选择题{{/B}}(总题数:9,分数:18.00)1.设z=ln(x2+y),则等于A. B. C. D(分数:2.00)A.B. √C.D.解析:[解析] 本题主要考查简单二元函数偏导数的计算. [*](答案为B)2.设z=(lny)xy∙ A.xy(lny)xy-1∙ B.(lny)xy lnlny∙ C.y(lny)xy lnlny∙ D.x(lny)xy lnlny(分数:2.00)A.B.C. √D.解析:[解析] 本题主要考查简单二元函数偏导数的计算. [*](答案为C)3.设z=sin(xy2)∙ A.-2xycos(xy2)∙ B.-y2cos(xy2)∙ C.2xycos(xy2)∙ D.y2cos(xy2)(分数:2.00)A.B.C. √D.解析:[解析] 本题主要考查简单二元函数偏导数的计算. [*].(答案为C)4.已知f(xy,x-y)=x2+y2∙ A.2+2y∙ B.2-2y∙ C.2x+2y∙ D.2x-2y(分数:2.00)A. √B.C.D.解析:[解析] 本题主要考查简单二元函数偏导数的计算.f(xy,x-y)=x2+y2=(x-y)2+2xy,f(x,y)=2x+y2,[*],[*].(答案为A)5.函数z=3x2y+2xy3在点(1,1)处的全微分dz|(1,1)等于∙ A.4dx-3dy∙ B.4dx+3dy∙ C.8dx+9dy∙ D.8dx-9dy(分数:2.00)A.B.C. √D.解析:[解析] [*],[*],dz|(1,1)8dx+9dy.(答案为C)6.______∙ A.{(x,y)|x2+y2≤4}∙ B.{(x,y)|x2+y2≤4且x≠0}∙ C.{(x,y)|x2+y2≤4且x≠0,y≠0}∙ D.{(x,y)|x2+y2≤4且y≠0}(分数:2.00)A.B.C. √D.解析:7.______∙ A.{(x,y)|0<x2+y2≤2}∙ B.{(x,y)|0≤x2+y2≤2}∙ C.{(x,y)|0<x2+y2<2}∙ D.{(x,y)|0≤x2+y2<2}(分数:2.00)A. √B.C.D.解析:8.设f(x,y)=,则=______ A. B. C. D(分数:2.00)A.B.C. √D.解析:9.设,则f(x,y)=______A. B. C D.xe x(分数:2.00)A. √B.C.D.解析:二、{{B}}填空题{{/B}}(总题数:13,分数:26.00)10.,则.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[解析] 根据二元函数的定义,函数关系只取决于定义域与对应法则,而与变量所选用的记号无关,如果函数表达式中的第一自变量用记号u表示,第二自变量用记号v表示,则给定的函数对应法则为[*].如果将第一自变量u用[*]替换,第二自变量v用[*]替换,则有 [*]11.f(x,y)=2x2+y2,则f(xy,x2-y2)= 1.(分数:2.00)填空项1:__________________ (正确答案:x4+y4)解析:[解析] f(xy,x2-y2)=2(xy)2+(x2-y2)2=x4+y4.12.f(x+y,x-y)=x2-y2,则f(x,y)=______.(分数:2.00)填空项1:__________________ (正确答案:xy)解析:[解析] 解法Ⅰ (置换法)令[*]解得[*]代入给定函数,则有 [*],因为函数关系与变量所选用的记号无关,再用字母x,y代换字母u,v,则有f(x,y)=xy 解法Ⅱ (拼凑法)由于f(x+y,x-y)=(x+y)(x-y),则有f(x,y)=xy13.f(xy,x-y)=x2+y2+xy,则f(x,y)=______.(分数:2.00)填空项1:__________________ (正确答案:3x+y2)解析:[解析] 由于f(xy,x-y)=x2+y2+xy=(x-y)2+3xy,则有f(x,y)=3x+y2.14.设函数z=x2+ye x.(分数:2.00)填空项1:__________________ (正确答案:2x+ye x)解析:[解析] 本题主要考查计算二元函数的一阶偏导数.[*]=2x+ye x.15.设z=sin(x2y).(分数:2.00)填空项1:__________________ (正确答案:x2cos(x2y))解析:[解析] 本题主要考查计算二元函数的一阶偏导数. [*].16.设z=,则.(分数:2.00)填空项1:__________________ (正确答案:1)解析:[解析] 本题主要考查计算二元函数的一阶偏导数.解法Ⅰ [*],[*].解法Ⅱ 由于是求函数[*]在点(1,0)处对x的偏导数,可先求出z(x,0),即将y=0代入函数[*],可得到关于x的一元函数,然后再求其在x=1处的导数.[*],[*].17.函数z=ln(1+x2-y2)的全微分dz=______.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[解析] [*], [*].18.设z=ln(x+y2).(分数:2.00)填空项1:__________________ (正确答案:dx)解析:[解析] 本题主要考查计算二元函数的一阶全微分.解法Ⅰ [*],[*],[*].解法Ⅱ [*],[*].19.设z=x2y+siny.(分数:2.00)填空项1:__________________ (正确答案:2x)解析:[解析] 本题主要考查计算二元函数的二阶混合偏导数. [*].20.函数z=z(x,y)是由方程x2z+2y2z2+y=0确定,则dz=______.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[解析] 两种解法如下.解法Ⅰ (公式法)令F(x,y,z)=x2z+2y2z2+y,分别求出三元函数F(x,y,z)对x,y,z的导数,对其中一个变量求导时,其他两个变量视为常数.[*],[*]解法Ⅱ (直接微分法)将方程两边同时求微分d(x2z)+d(2y2z2)+dy=0,2xdxz+x2dz+4ydy2+4y2zdz+dy=0,经整理,得(x2+4y2z)dz=-2xzdx-(4yz2+1)dy,即[*].21.函数f(x,y)=4(x-y)-x2-y2的极大值点是______.(分数:2.00)填空项1:__________________ (正确答案:8)解析:[解析] 解方程组[*]得驻点(2,-2),计算[*],B2-AC=-4<0,A=-2<0,所以函数的极大值点为(2,-2),极大值为f(2,-2)=8.22. 1.(分数:2.00)填空项1:__________________ (正确答案:{(x,y)|1<x2+y2≤2})解析:三、{{B}}解答题{{/B}}(总题数:1,分数:56.00)求下列二元函数的定义域.(分数:55.98)3.11)__________________________________________________________________________________________ 正确答案:(由于分式函数,要求分式的分母不为零,而对于根式函数,要求偶次方根号下的被开方式必须大于或等于零,则有[*]所以D={(x,y)|0<x2+y2≤4},此函数的定义域是以点(0,0)为圆心,以2为半径的圆周及圆周所围成的不含圆心、不含圆周上及圆周内的y轴部分的有界半开半闭区域(如下图).[*])解析:(2).z=ln(y2-2x+1).(分数:3.11)__________________________________________________________________________________________ 正确答案:(由于对数函数,要求真数式必须大于零,则有y2-2x+1>0,即y2>2x-1.所以D={(x,y)|y2>2x-1},此函数的定义域是以点([*],0)为顶点,以x为对称轴,开口向右的抛物线所围成的左侧无界开区域(如下图).[*])解析:3.11)正确答案:(对于函数arcsinf(x,y),arccosf(x,y),要求|f(x,y)|≤1,则有 [*]即[*] 所以D={(x,y)|-2≤x≤2,-3≤y≤3},此函数的定义域是直线x=-2,x=2,y=-3,y=3所围成的有界闭区域(如下图).[*]) 解析:3.11)__________________________________________________________________________________________正确答案:(要使函数解析式有意义,自变量x,y应同时满足[*]即[*]亦即[*]所以D={(x,y)|y2≤4x,x2+y2<1且x≠0,y≠0},此函数的定义域是抛物线y2=4x和圆x2+y2=1所围成的,但不含原点及抛物线间劣弧段的有界半开半闭区域(如下图).[*])解析:(5).,求 3.11)__________________________________________________________________________________________正确答案:([*], [*].)解析:(6).设z=e u sinv,u=xy,v=x+y 3.11)__________________________________________________________________________________________正确答案:(根据二元复合函数求导的链式法则,有[*]=e xy sin(x+y)y+e xy cos(x+y)=e xy[ysin(x+y)+cos(x+y)],[*]=e xy sin(x+y)x+e xy cos(x+y)=e xy[xsin(x+y)+cos(x+y)].)解析:(7).设z=f(u,v),而u=x2y,,其中f(u,v) 3.11)__________________________________________________________________________________________正确答案:(本题主要考查用二元复合函数的链式法则求偏导数. [*])解析:(8).设z=f(xy,x2+y2),且f 3.11)__________________________________________________________________________________________正确答案:(本题主要考查用二元复合函数的链式法则求偏导数.设z=f(u,v),u=xy,v=x2+y2,[*])解析:(9).设函数z=arctan(xy)+2x2+y,求dz.(分数:3.11)__________________________________________________________________________________________正确答案:(本题主要考查计算二元函数的全微分. [*])解析:(10).dz.(分数:3.11)正确答案:([*])解析:(11).设函数f(u,v)dz.(分数:3.11)__________________________________________________________________________________________ 正确答案:(本题主要考查计算二元复合函数的全微分. [*], [*])解析:(12).设函数z=ln(2-x+y) 3.11)__________________________________________________________________________________________ 正确答案:([*].)解析:(13).设函数z=ln(1-x+y)+x2y 3.11)__________________________________________________________________________________________ 正确答案:([*].)解析:(14).设函数,求 3.11)__________________________________________________________________________________________ 正确答案:([*])解析:(15).设函数z=z(x,y)是由方程x2+y2-xyz2=0 3.11)__________________________________________________________________________________________ 正确答案:(令F(x,y,z)=x2+y3-xyz2,分别求出三元函数F(x,y,z)对x,y,z的导数,对其中一个变量求导时,其他两个变量视为常数.[*])解析:(16).设z=f(x,y)是由方程F(x+mz,y+nz)=0所确定,其中m、n为常数,F(u,v)为可微分函数,数:3.11)__________________________________________________________________________________________ 正确答案:(本题主要考查计算二元函数的偏导数.设 F(u,v)=0,u=x+mz,v=y+nz, [*] [*])解析:(17).设z=z(x,y)是由方程yz+x2+z=0所确定,求dz.(分数:3.11)__________________________________________________________________________________________ 正确答案:(令F(x,y,z)=yz+x2+z,分别求出三元函数F(x,y,z)对x,y,z的导数,对其中一个变量求导时,其他两个变量视为常数.[*])解析:(18).设函数z=z(x,y)是由方程z=x+ye z 3.11)__________________________________________________________________________________________ 正确答案:(令F(x,y,z)=x+ye z-z,[*])解析:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、解: (1)积分区域如图 2-1-2 所示,所以 (2)积分区域如图 2-1-3 所示,所以 (3)积分区域如图 2-1-4 所示,所以 (4)积分区域如图 2-1-5 所示,所以
∫
2
0
dy ∫ f ( x, y )dx = ∫ dx ∫ f ( x, y )dy
0 0
y
1
1
x
∫ dy ∫
0
2
2y
习题 2-1
1、解:在任意一个面积微元 dσ 上的压力微元 dF = ρgxdσ ,所以,
该平面薄片一侧所受的水压力 F =
∫∫ ρgxdσ
D
2、解:在任意一个面积微元 dσ 上的电荷微元 dF = µ ( x, y ) dσ ,所以,该平面薄片的电荷 总量 Q =
∫∫ µ ( x, y)dσ
D
2 2
1
1
x2 + y2
x
0
f (x, y, z )dz
3、解:积分区域 Ω 如图 2-2-1 所示
∫∫∫ xzdxdydz = ∫
Ω
1
−1
xdx ∫ 2 dy ∫ zdz = ∫ xdx ∫ 2
x
0 −1
1
y
1
1
x
1 2 1 1 y dy = ∫ x(1 − x 6 )dx = 0 2 6 −1
另解:因为积分区域 Ω 关于坐标面 yoz 对称,又 f ( x, y, z ) = xz 关于第一坐标是奇函数, 所以
a
y −a
( x 2 + y 2 )dx = ∫ (2ay 2 − a 2 y +
a
3a
a3 )dy = 14a 4 3
(4)积分区域如图 2-1-17 所示,令 x = r cos θ , y = r sin θ ,所以 0 ≤ θ ≤ 2π , a ≤ r ≤ b ,
1 2π
故
2 2 2 ∫∫ ( x + y ) 2 dσ =∫ dθ ∫ r dr =
0 Ω
1
1− x
0
dy ∫
x2 + y2
0
f (x, y, z )dz
2
(2)因为积分区域 Ω 的上曲面为开口向下的抛物柱面 z = 2 − x 与下曲面为开口向上的旋 转抛物面 z = x + 2 y 围成,二曲面的交线在 xoy 平面上的投影为圆 x + y = 1 ,即
2 2 2 2
−1 ≤ x ≤ 1 ⎧ 1 1− x 2 2− x 2 ⎪ dy ∫ 2 2 f (x, y, z )dz Ω : ⎨− 1 − x 2 ≤ y ≤ 1 − x 2 ,所以 ∫∫∫ f ( x, y, z )dv = ∫ dx ∫ 2 −1 − 1− x x +2 y Ω ⎪ x2 + 2y2 ≤ z ≤ 2 − x2 ⎩
−1
0
= ∫ (ee2 x − e −1 )dx + ∫ (e − e −1e 2 x )dx = e − e −1
−1
(4)积分区域如图 2-1-9 所示,所以
∫∫ ( x
D
2
+ y 2 − x)dσ = ∫ dy ∫
0
2
2 ⎛ 19 3 ⎞ 13 ( x 2 + y 2 − x)dx = ∫ ⎜ y 3 − y 2 ⎟dy = y/2 0 24 8 ⎠ 6 ⎝
0 0 Ω
2π
1
2−r 2
r
zrdz = 2π ∫
1
0
1 7π 。 r 2 − r 2 − r 4 dr = 2 12
(
)
(2 ) 因为积分区域 Ω 的上曲面为平面 z = 2 , 下曲面为开口向上的旋转抛物面 2z = x + y , 将 z = 2 代入 2 z = x + y 得 x + y = 4 ,所以积分区域 Ω 在 xoy 坐标面上的投影区域
Ω 2 2
2、化三重积分为直角坐标中的累次积分 解: (1)因为积分区域 Ω 的上曲面为开口向上的旋转抛物面 z = x + y ,下曲面为 z = 0 , 积分区域 Ω 在 xoy 坐标面上的投影区域 D xy : 0 ≤ x ≤ 1;0 ≤ y ≤ 1 − x ,所以
∫∫∫ f (x, y, z )dv = ∫ dx ∫
2 1 1− r 1− x2 − y 2 π 1 1− r2 2 dθ d σ = ⋅ rdr = rdr ∫0 ∫0 1 + r 2 2 ∫0 1 − r 4 1+ x2 + y2 1 ⎞ π⎛ 1 r r3 ⎜∫ ⎟ dr − dr ∫ ⎟ 0 0 4 4 2⎜ 1 − r 1 − r ⎝ ⎠ 2 4 π ⎛ 1 1 dr 1 1 d (1 − r ) ⎞ ⎟ = ⎜ + ∫ ∫ 0 0 4 4 ⎟ 2⎜ 2 4 1 − r 1 − r ⎝ ⎠
2
V = ∫∫∫ dv = ∫ dy ∫ 2 dx ∫
−1 Ω
1
1
1− x
y
0
1 1 1⎛ 1 1 ⎞ 8 dz = ∫ dy ∫ 2 (1 − x)dx = 2∫ ⎜ − y 2 + y 4 ⎟dy = −1 y 0 2 2 ⎠ 15 ⎝
6、利用柱面坐标计算下列三重积分 解: (1)因为积分区域 Ω 的上曲面为开口向上的上半球面 z = 口向上的旋转抛物面 z = x 2 + y 2 ,将 z = x 2 + y 2 代入 z =
图 2-1-2
图 2-1-3
图 2-1-4
图 2-1-5
图 2-1-6
图 2-1-7
图 2-1-8
图 2-1-9
图 2-1-10
图 2-1-11
图 2-1-12
图 2-1-13
图 2-1-14
图 2-1-15
图 2-1- 2-2 1、解: Q =
∫∫∫ µ ( x, y, z )dv
∫∫∫ xzdxdydz = 0 。
Ω
4、解:积分区域 Ω 如图 2-2-2 所示,当 0 ≤ z ≤ h 时,过 (0,0, z ) 作平行与 xoy 面的平面,
2 ⎧ 2 R ⎞ ⎛ 2 R πR 2 2 ⎪x + y ≤ ⎜ z ⎟ 与立体 Ω 的截面为圆 D z : ⎨ ,因而 D 的半径为 z ,面积为 z , z 2 ⎝h ⎠ h h ⎪z = z ⎩
x+ y ∫∫e dσ = ∫ dx∫
−1 0 0 1+ x −1− x
2 ∫∫ xy dσ =∫ dy∫
2
4− y 2
D
−2
0
xy2dx = 2∫
1 2 64 y (4 − y 2 )dy = 0 2 15
2
D
e x+ y dy + ∫ dx∫
0 1 0
1
1− x
−1+ x
e x+ y dy = ∫ e x (e1+ x − e −1− x )dx + ∫ e x (e1− x − e −1+ x )dx
b
D
0
a
2π 3 b − a3 3
(
)
10、解:积分区域如图 2-1-18 所示,由图形的对称性得: S = 4 S1 = 4
∫∫ dσ ,所以
D1
S = 4∫ dθ ∫
π 4 0
a sin 2θ
0
rdr = 2∫ a 2 sin 2θdθ = −a 2 cos 2θ
π 4 0
π 4 0
= a2
图 2-1-1
)
0 ≤ x ≤1 0 ≤ y ≤1
∫∫ ln(x + y + 1)dσ
4、解:积分区域 D 如图 2-1-1 所示,所以该物体的质量
M = ∫∫ ( x 2 + y 2 )dσ = ∫ dy ∫
D
0
1
2− y
y
1 8 8 4 ( x 2 + y 2 )dx = ∫ ( − 4 y + 4 y 2 − y 3 )dy = 0 3 3 3 1
故
∫∫∫ zdxdydz = ∫ zdz ∫∫ dxdy =
0 Ω
h
Dz
πR 2 h2
∫
h
0
z 3 dz =
πR 2 h 2 4
5、求下列立体 Ω 的体积 解(1)曲面所围立体是球体与旋转抛物面的一部分(如图 2-2-3 所示) ,用柱面坐标计算:
V = ∫∫∫ dv = ∫∫∫ rdrdθdz = = ∫ dθ ∫ dr ∫r 2
0
e
e
6、解: (1)积分区域如图 2-1-6 所示,所以
∫∫ x
D
y dσ = ∫ dx ∫ 2
0
1
x
x
2 2⎛ 4 1 ⎞ 6 x y dy = ∫ x x 3 / 4 − x 3 dx = ⎜ x 11 / 4 − x 5 ⎟ = 0 3 3 ⎝ 11 5 ⎠ 0 55
1
1
(
)
(2)积分区域如图 2-1-7 所示,所以 (3)积分区域如图 2-1-8 所示,所以
2 − x 2 − y 2 ,下曲面为开
2 − x2 − y2 得 z = 2 − z ,
2 2
解此方程得 z = 1 积分区域 Ω 在 xoy 坐标面上的投影区域 D xy : x + y ≤ 1 ,由柱坐标公式 得: D xy : 0 ≤ θ ≤ 2π ,0 ≤ r ≤ 1
∫∫∫ zdv = ∫ dθ ∫ dr ∫ 2
2 2 2 2
2
2
D xy : x 2 + y 2 ≤ 4 ,由柱坐标公式得: D xy : 0 ≤ θ ≤ 2π ,0 ≤ r ≤ 2