2001年浙江大学436数学分析考研真题【圣才出品】

合集下载

2001年考研数学一试题答案与解析

2001年考研数学一试题答案与解析

2001年考研数学一试题答案与解析一、(1)【分析】 由通解的形式可知特征方程的两个根是12,1r r i =±,从而得知特征方程为22121212()()()220r r r r r r r r r r r r --=-++=-+=.由此,所求微分方程为'''220y y y -+=.(2)【分析】 grad r=,,,,r r r x y z x y z r r r ∂∂∂⎧⎫⎧⎫=⎨⎬⎨⎬∂∂∂⎩⎭⎩⎭.再求 div grad r=()()()x y z x r y r z r ∂∂∂++∂∂∂=222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=.于是div grad r|(1,2,2)-=(1,2,2)22|3r -=. (3)【分析】 这个二次积分不是二重积分的累次积分,因为10y -≤≤时12y -≤.由此看出二次积分0211(,)ydy f x y dx --⎰⎰是二重积分的一个累次积分,它与原式只差一个符号.先把此累次积分表为0211(,)(,)yDdy f x y dx f x y dxdy --=⎰⎰⎰⎰.由累次积分的内外层积分限可确定积分区域D :10,12y y x -≤≤-≤≤.见图.现可交换积分次序原式=02202111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=⎰⎰⎰⎰⎰⎰.(4)【分析】 矩阵A 的元素没有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞.应当考虑用定义法.因为2()(2)240A E A E E A A E -+-=+-=,故()(2)2A E A E E -+=,即2()2A E A E E +-⋅=.按定义知11()(2)2A E A E --=+. (5)【分析】 根据切比雪夫不等式2(){()}D x P X E X εε-≥≤, 于是2()1{()2}22D x P XE X -≥≤=. 二、(1)【分析】 当0x <时,()f x 单调增'()0f x ⇒≥,(A ),(C )不对;当0x >时,()f x :增——减——增'()f x ⇒:正——负——正,(B )不对,(D )对.应选(D ). (2)关于(A ),涉及可微与可偏导的关系.由(,)f x y 在(0,0)存在两个偏导数⇒(,)f x y 在(0,0)处可微.因此(A )不一定成立.关于(B )只能假设(,)f x y 在(0,0)存在偏导数(0,0)(0,0),f f x y∂∂∂∂,不保证曲面(,)z f x y =在(0,0,(0,0))f 存在切平面.若存在时,法向量n=(0,0)(0,0)1f f x y ⎫∂∂⎧±-=±⎨⎬∂∂⎩⎭,,{3,1,-1}与{3,1,1}不共线,因而(B )不成立.关于(C ),该曲线的参数方程为,0,(,0),x t y z f t =⎧⎪=⎨⎪=⎩它在点(0,0,(0,0))f 处的切向量为'0{',0,(,0)}|{1,0,(0,0)}{1,0,3}t x dt f t f dt===.因此,(C )成立. (3)【分析】 当(0)0f =时,'0()(0)lim x f x f x →=∃00()()lim lim x x f x f x x x→+→-⇔=∃.关于(A ):220001(1cos )1cos 1()lim (1cos )lim 1cos lim1cos 2h h t f h h f t f h t h h h h t→→→+---=⋅=--, 由此可知 201lim (1cos )h f h h →-∃ ⇔ '(0)f + ∃.若()f x 在0x =可导⇒(A )成立,反之若(A )成立⇒'(0)f +∃⇒'(0)f ∃.如()||f x x =满足(A ),但'(0)f 不∃.关于(D ):若()f x 在0x =可导,⇒''001(2)()lim [(2)()]lim[2]2(0)(0)2h h f h f h f h f h f f h h h→→-=-=-. ⇒(D )成立.反之(D )成立0lim((2)())0h f h f h →⇒-=⇒()f x 在0x =连续,⇒()f x 在0x =可导.如21,0()0,0x x f x x +≠⎧=⎨=⎩ 满足(D ),但()f x 在0x =处不连续,因而'(0)f 也不∃.再看(C ):2220001sin (sin )sin ()lim(sin )lim lim sin h h h h h f h h h h f t f h h h h h h h t→→→----=⋅=⋅-(当它们都∃时). 注意,易求得20sin lim 0h h h h →-=.因而,若'(0)f ∃⇒(C )成立.反之若(C )成立⇒0()lim t f t t→(即 '(0)f ∃).因为只要()f t t 有界,任有(C )成立,如()||f x x =满足(C ),但'(0)f 不∃.因此,只能选(B ).(4)【分析】 由 43||40E A λλλ-=-=,知矩阵A 的特征值是4,0,0,0.又因A 是实对称矩阵,A 必能相似对角化,所以A 与对角矩阵B 相似.作为实对称矩阵,当A B 时,知A 与B 有相同的特征值,从而二次型Tx Ax 与Tx Bx 有相同的正负惯性指数,因此A 与B 合同.所以本题应当选(A ).注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如1002A ⎡⎤=⎢⎥⎣⎦与1003B ⎡⎤=⎢⎥⎣⎦,它们的特征值不同,故A 与B 不相似,但它们的正惯性指数均为2,负惯性指数均为0.所以A 与B 合同.(5)【分析】 解本题的关键是明确X 和Y 的关系:X Y n +=,即Y n X =-,在此基础上利用性质:相关系数XY ρ的绝对值等于1的充要条件是随机变量X 与Y 之间存在线性关系,即Y aX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A ).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系数的定义式有1XY ρ===-.三、【解】原式=222211arctan ()[arctan ]22(1)x x x x xxx de e d e e e e e ---=--+⎰⎰=2221(arctan )21x x x xx xde de e e e e ---++⎰⎰=21(arctan arctan )2x x x x e e e e C ---+++. 四、【解】先求(1)(1,(1,1))(1,1)1f f f ϕ===.求 32''1()|3(1)(1)3(1)x d x dxϕϕϕϕ===,归结为求'(1)ϕ.由复合函数求导法'''12()(,(,))(,(,))(,)dx f x f x x f x f x x f x x dxϕ=+,'''''1212(1)(1,1)(1,1)[(1,1)(1,1)]f f f f ϕ=++.注意 '1(1,1)(1,1)2f f x∂==∂,'2(1,1)(1,1)3f f y∂==∂.因此'(1)23(23)17ϕ=++=,31()|31751x d x dxϕ==⨯=. 五、【分析与求解】关键是将arctan x 展成幂级数,然后约去因子x ,再乘上21x +并化简即可. 直接将arctan x展开办不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n nn x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑⎰⎰,[1,1]x ∈-. ② 因为右端积分在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在收敛区间端点1x =±成立.现将②式两边同乘以21x x+得2222220001(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞∞∞===+---=+=++++∑∑∑ =12200(1)(1)2121n n n nn n x x n n -∞∞==--++-∑∑ =21111(1)()2121nnn x n n ∞=+--+-∑221(1)2114n nn x n∞=-=+-∑,[1,1]x ∈-,0x ≠上式右端当0x =时取值为1,于是221(1)2()1,[1,1]14n nn f x x x n∞=-=+∈--∑.上式中令1x =21(1)111[(1)1](21)1422442n n f n ππ∞=-⇒=-=⨯-=--∑. 六、【解】用斯托克斯公式来计算.记S 为平面2x y z ++=上L 所为围部分.由L 的定向,按右手法则S 取上侧,S 的单位法向量(cos ,cos ,cos )3n αβγ==.于是由斯托克斯公式得 222222cos cos cos 23SI dSx y z y z z x x y αβγ∂∂∂=∂∂∂---⎰⎰=[(24(26(22333Sy z z x x y dS --+----⎰⎰ =(423)(2)(6)33S Sx y z dS x y z x y dS ++++=+-⎰⎰利用.于是'2'211113x y Z Z ++=++=.按第一类曲面积分化为二重积分得(6)32(6)3D DI x y dxdy x y dxdy =+-=-+-⎰⎰⎰⎰,其中D 围S 在xy 平面上的投影区域||||1x y +≤(图).由D 关于,x y 轴的对称性及被积函数的奇偶性得()0Dx y dxdy -=⎰⎰⇒21224DI dxdy =-=-=-⎰⎰.七、【证明】 (1)由拉格朗日中值定理,(1,1)x ∀∈-,0,(0,1)x θ≠∃∈,使'()(0)()f x f xf x θ=+(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一.(2)对'()f x θ使用''(0)f 的定义.由题(1)中的式子先解出'()f x θ,则有'()(0)()f x f f x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f x θ---=.'''2()(0)()(0)(0)f x f f x f xf x x θθθ---⋅=,解出θ,令x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===. 八、【解】(1)设t 时刻雪堆的体积为()V t ,侧面积为()S t .t 时刻雪堆形状如图所示,先求()S t 与()V t .侧面方程是222222()()()((,):)()2xy x y h t z h t x y D x y h t +=-∈+≤.⇒44,()()z x z yx h t y h t ∂∂=-=-∂∂. ⇒()xyxyD D S t dxdy ==⎰⎰⎰⎰.作极坐标变换:cos ,sin x r y r θθ==,则:02,0()xy D r h t θπ≤≤≤≤. ⇒2(003()22221()()2113[()16]().()4812t t S t d h t h t r h t h t πθππ==⋅+=⎰用先二后一的积分顺序求三重积分()0()()h t D x V t dzdxdy=⎰⎰⎰,其中222()():()()()x y D z h t z t h t +≤-,即2221[()()]2x y h t h t z +≤-.⇒()233301()[()()][()()]()2224h t V t h t h t z dz h t h t h t πππ=-=-=⎰. (2)按题意列出微分方程与初始条件. (3)体积减少的速度是dV dt -,它与侧面积成正比(比例系数0.9),即0.9dVS dt =-将()V t 与()S t 的表达式代入得22133()0.9()412dh h t h t dt ππ=-,即1310dh dt =-. ① (0)130h =.②(3)解①得13()10h t t C =-+. 由②得130C =,即13()13010h t t =-+. 令()0h t =,得100t =.因此,高度为130厘米的雪堆全部融化所需时间为100小时. 九、【解】由于(1,2)i i s β=是12,,s ααα线性组合,又12,,s ααα是0Ax =的解,所以根据齐次线性方程组解的性质知(1,2)i i s β=均为0Ax =的解.从12,,s ααα是0Ax =的基础解系,知()s n r A =-. 下面来分析12,,s βββ线性无关的条件.设11220s s k k k βββ++=,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++=.由于12,,s ααα线性无关,因此有 112211222132110,0,0,0.s s st k t k t k t k t k t k t k t k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩ (*) 因为系数行列式12211211221000000000(1)000s s st t t t t t t t t t +=+-,所以当112(1)0ss st t ++-≠时,方程组(*)只有零解120s k k k ====.从而12,,s βββ线性无关.十、【解】(1)由于AP PB =,即22322(,,)(,,)(,,32)A x Ax A x Ax A x A x Ax A x Ax A x ==-2000(,,)103012x Ax A x ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦, 所以000103012B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦.(2)由(1)知AB ,那么A EB E ++,从而100||||1134011A EB E +=+==--.十一、【解】 (1){|}(1),0,0,1,2,mmn mn P Y m X n C p p m n n -===-≤≤=.(2){,}P X n Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm mn m n e C p p m n n n λλ--⋅-≤≤=十二、【解】 易见随机变量11()n X X ++,22()n X X ++,2,()n n X X +相互独立都服从正态分布2(2,2)N μσ.因此可以将它们看作是取自总体2(2,2)N μσ的一个容量为n 的简单随机样本.其样本均值为21111()2n ni n i i i i X X X X n n +==+==∑∑,样本方差为2111(2)11n i n ii X X X Y n n +=+-=--∑. 因样本方差是总体方差的无偏估计,故21()21E Y n σ=-,即.2()2(1)E Y n σ=-。

2019年浙江大学2001常微分期终试卷.doc

2019年浙江大学2001常微分期终试卷.doc

浙江大学2001级微积分(上)期终考试试卷系__________ 班级__________ 学号__________姓名__________ 考试教室__________一、选择题:(每小题2分,共8分)在每题的四个选项中,只有一个是正确的,请把正确那项的代号填入空格中1.设()()()()()f x x a x b x c x d=----,其中a,b,c,d互不相等,且'()()()()f k k a k b k c=---,则k的值等于().(A).a(B).b(C).c(D).d2.曲线y=x→-∞时,它有斜渐进线().(A).1y x=+(B).1y x=-+(C).1y x=--(D).1y x=-3.下面的四个论述中正确的是().(A).“函数()f x在[],a b上有界”是“()f x在[],a b上可积”的必要条件;(B).函数()f x在区间(),a b内可导,(),x a b∈,那末'()0f x=是()f x在x处取到极值的充分条件;(C).“函数()f x在点x处可导”对于“函数()f x在点x处可微”而言既非充分也非必要;(D).“函数()f x在区间E上连续”是“()f x在区间E上原函数存在”的充要条件.4.下面四个论述中正确的是().(A).若0nx≥(1,2,)n=,且{}n x单调递减,设lim nnx a→+∞=,则0a>;(B). 若0nx>(1,2,)n=,且limnnx→+∞极限存在,设limnnx a→+∞=,则0a>;(C). 若lim0nnx a→+∞=>,则0nx≥(1,2,)n=;(D). 若lim0nnx a→+∞=>,则存在正整数N,当n N>时,都有2nax>.二、填空题:(每空格2分,共12分)只填答案1.2lim(1)tgxxxπ→+-=____________;2lim(1)tgxxxπ→--=____________.2.函数()f u可导,(sin)y f x x=,则dydx=____________.3.cossinx xxe edxe⎰=____________.4. 5sin tdtπ⎰=____________;5cos tdtπ⎰=____________.三、求极限:(每小题7分,共14分)1.数列{}n x通项2nxn=++++,求limnnx→+∞.2.求3sinlimsinxxtdttx x→-⎰.四、求导数:(每小题7分,共21分)1.2sin1xxy xx=+,求dydx.2.2,sin,x ty t⎧=⎨=⎩求dydx,22d ydx.3.函数()y y x=由sinx y y+=确定,求221;xydydxππ=-=22221,.xyd ydxππ=-=五、求积分:(每小题7分,共28分)1.求21(1)xdxx x++⎰.2.求sin cosx x dxπ-⎰.3.求⎰(0)a>.4.计算2cosxe xdxπ+∞-⎰.六、(6分)下面两题做一题,其中学过常微分方程的专业做第1题,未学常微分方程的专业做第2题.1.求解常微分方程:22(),(1) 1.x dy xy x dxy⎧=-⎨=⎩2.有一半径为4米的半球形水池注满了水,现要把水全部抽到距水池水面高6米的水箱内,问至少要做多少功?七、(6分)在xoy平面上将连结原点(0,0)O与点(1,0)A的线段OA(即区间[]0,1)作n等分,分点(,0)kn记作kP,对1,2,,1k n=-,过kP作抛物线2y x=的切线,切点为kQ.1.设k kPQ A∆的面积为kS,求kS;2.求极限111limnknkSn-→+∞=∑.八、证明题(5分)设()f x在(),-∞+∞上连续,且()0f x>,()()xG x tf x t dt=-⎰.证明:对任意,(,)a b∈-∞+∞,且a b≠,必有()()'()()0G b G a G a b a--->.浙江大学2001级微积分(下)期终考试试卷系__________ 班级__________ 学号__________姓名__________ 考试教室__________一、填空题:(每小题3分,共15分)只填答案1.设一平面经过原点及点()6,3,2-,且与平面428x y z-+=垂直,则此平面的方程是____________。

2001年考研数学一试题答案与解析

2001年考研数学一试题答案与解析

2001年考‎研数学一试题‎答案与解析一、(1)【分析】 由通解的形式‎可知特征方程‎的两个根是12,1r r i =±,从而得知特征‎方程为22121212()()()220r r r r r r r r rr r r --=-++=-+=.由此,所求微分方程‎为'''220y y y -+=.(2)【分析】 grad r=,,,,r r r x y z x y z r r r ∂∂∂⎧⎫⎧⎫=⎨⎬⎨⎬∂∂∂⎩⎭⎩⎭.再求 divgra‎d r=()()()x y z x r y r z r ∂∂∂++∂∂∂ =222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=.于是 divgra ‎d r|(1,2,2)-=(1,2,2)22|3r -=. (3)【分析】 这个二次积分‎不是二重积分‎的累次积分,因为10y -≤≤时12y -≤.由此看出二次‎积分是二重积‎0211(,)ydy f x y dx --⎰⎰分的一个累次‎积分,它与原式只差‎一个符号.先把此累次积‎分表为0211(,)(,)yDdy f x y dx f x y dxdy --=⎰⎰⎰⎰.由累次积分的‎内外层积分限‎可确定积分区‎域D :10,12y y x -≤≤-≤≤.见图.现可交换积分‎次序原式=02202111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=⎰⎰⎰⎰⎰⎰.(4)【分析】 矩阵的元素没‎A 有给出,因此用伴随矩‎阵、用初等行变换‎求逆的路均堵‎塞.应当考虑用定‎义法.因为 2()(2)240A E A E E A A E -+-=+-=,故()(2)2A E A E E -+=,即2()2A E A E E +-⋅=.按定义知11()(2)2A E A E --=+. (5)【分析】 根据切比雪夫‎不等式2(){()}D x P X E X εε-≥≤, 于是2()1{()2}22D x P XE X -≥≤=. 二、(1)【分析】 当0x <时,()f x 单调增'()0f x ⇒≥,(A ),(C )不对;当0x>时,()f x :增——减——增'()f x ⇒:正——负——正,(B )不对,(D )对.应选(D ).(2)关于(A ),涉及可微与可‎偏导的关系.由(,)f x y 在(0,0)存在两个偏导‎数⇒(,)f x y 在(0,0)处可微.因此(A )不一定成立.关于(B )只能假设(,)f x y 在(0,0)存在偏导数(0,0)(0,0),f f x y∂∂∂∂,不保证曲面在‎(,)z f x y =(0,0,(0,0))f 存在切平面.若存在时,法向量n=(0,0)(0,0)1f f x y ⎫∂∂⎧±-=±⎨⎬∂∂⎩⎭,,{3,1,-1}与{3,1,1}不共线,因而(B )不成立.关于(C ),该曲线的参数‎方程为,0,(,0),x t y z f t =⎧⎪=⎨⎪=⎩它在点处的切‎(0,0,(0,0))f 向量为'0{',0,(,0)}|{1,0,(0,0)}{1,0,3}t x dt f t f dt===.因此,(C )成立. (3)【分析】 当(0)0f =时,'0()(0)lim x f x f x →=∃00()()lim lim x x f x f x x x→+→-⇔=∃.关于(A ):220001(1cos )1cos 1()lim (1cos )lim 1cos lim1cos 2h h t f h h f t f h t h h h h t→→→+---=⋅=--, 由此可知201lim (1cos )h f h h →-∃ ⇔ '(0)f + ∃.若()f x 在0x =可导⇒(A )成立,反之若(A )成立⇒'(0)f + ∃⇒'(0)f ∃.如()||f x x =满足(A ),但'(0)f 不∃.关于(D ):若()f x 在0x =可导,⇒''001(2)()lim [(2)()]lim[2]2(0)(0)2h h f h f h f h f h f f h h h→→-=-=-. ⇒(D )成立.反之(D )成立0l i m ((2)())0h f h f h →⇒-=⇒()f x 在0x =连续,⇒()f x 在0x =可导.如21,0()0,0x x f x x +≠⎧=⎨=⎩ 满足(D ),但在处不连续‎()f x 0x =,因而'(0)f 也不∃.再看(C ):2220001sin (sin )sin ()lim(sin )lim lim sin h h h h h f h h h h f t f h h h h h h h t→→→----=⋅=⋅-(当它们都∃时). 注意,易求得20sin lim 0h h h h →-=.因而,若'(0)f ∃⇒(C )成立.反之若(C )成立⇒0()lim t f t t →(即 '(0)f ∃).因为只要有界‎()f t t ,任有(C )成立,如()||f x x =满足(C ),但'(0)f 不∃.因此,只能选(B ).(4)【分析】 由43||40E A λλλ-=-=,知矩阵的特征‎A 值是4,0,0,0.又因是实对称‎A 矩阵,A 必能相似对角‎化,所以与对角矩‎A 阵B 相似.作为实对称矩‎阵,当A B 时,知与有相同的‎A B 特征值,从而二次型与‎T x Ax T x Bx 有相同的正负‎惯性指数,因此A 与B 合同.所以本题应当‎选(A ).注意,实对称矩阵合‎同时,它们不一定相‎似,但相似时一定‎合同.例如1002A ⎡⎤=⎢⎥⎣⎦与1003B ⎡⎤=⎢⎥⎣⎦,它们的特征值‎不同,故A 与B 不相似,但它们的正惯‎性指数均为2‎,负惯性指数均‎为0.所以A 与B 合同.(5)【分析】 解本题的关键‎是明确和的关‎XY系:X Y n +=,即Y n X =-,在此基础上利‎用性质:相关系数的绝‎XY ρ对值等于1的‎充要条件是随‎机变量与之间‎XY存在线性关系‎,即Y aX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A ).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系‎数的定义式有‎(,)1XY Cov X Y DXDX DY DX DYρ-===-.三、【解】原式=222211arctan ()[arctan ]22(1)x x x x xx xde e d e e e e e ---=--+⎰⎰=2221(arctan )21x x x x x xde de e e e e---++⎰⎰=21(arctan arctan )2x x x xe e e e C ---+++. 四、【解】先求(1)(1,(1,1))(1,1)1f f f ϕ===.求32''1()|3(1)(1)3(1)x d x dxϕϕϕϕ===,归结为求'(1)ϕ.由复合函数求‎导法'''12()(,(,))(,(,))(,)dx f x f x x f x f x x f x x dxϕ=+,'''''1212(1)(1,1)(1,1)[(1,1)(1,1)]f f f f ϕ=++.注意 '1(1,1)(1,1)2f f x∂==∂,'2(1,1)(1,1)3f f y∂==∂.因此'(1)23(23)17ϕ=++=,31()|31751x d x dxϕ==⨯=. 五、【分析与求解】关键是将展成‎arctan x 幂级数,然后约去因子‎x ,再乘上并化简‎21x +即可. 直接将展开办‎arctan x不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n n n x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑⎰⎰,[1,1]x ∈-. ② 因为右端积分‎在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在‎收敛区间端点‎1x =±成立.现将②式两边同乘以‎21x x+得2222220001(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞∞∞===+---=+=++++∑∑∑=12200(1)(1)2121n n n n n n x x n n -∞∞==--++-∑∑ =21111(1)()2121nnn x n n ∞=+--+-∑221(1)2114n nn x n∞=-=+-∑,[1,1]x ∈-,0x ≠上式右端当时‎0x=取值为1,于是221(1)2()1,[1,1]14n nn f x x x n ∞=-=+∈--∑.上式中令1x =21(1)111[(1)1](21422442n n f nππ∞=-⇒=-=⨯-=--∑.六、【解】用斯托克斯公‎式来计算.记为平面上所‎S2x y z ++=L为围部分.由L的定向,按右手法则取‎S 上侧,S 的单位法向量‎1(cos ,cos ,cos )(1,1,1)3n αβγ== .于是由斯托克‎斯公式得222222cos cos cos 23SI dSx y z y z z x x y αβγ∂∂∂=∂∂∂---⎰⎰=111[(24)(26)(22)]333Sy z z x x y dS --+--+--⎰⎰ =22(423)(2)(6)33S Sx y z dS x y z x y dS -++++=-+-⎰⎰⎰⎰利用.于是'2'211113x y Z Z ++=++=.按第一类曲面‎积分化为二重‎积分得2(6)32(6)3D DI x y dxdy x y dxdy =-+-=-+-⎰⎰⎰⎰,其中围在平面‎D S xy 上的投影区域‎||||1x y +≤(图).由关于轴的对‎D ,x y 称性及被积函‎数的奇偶性得‎()0Dx y dxdy -=⎰⎰⇒ 21212(2)24DI dxdy =-=-=-⎰⎰.七、【证明】 (1)由拉格朗日中‎值定理,(1,1)x ∀∈-,0,(0,1)x θ≠∃∈,使'()(0)()f x f xf x θ=+(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一. (2)对使用的定义‎'()f x θ''(0)f .由题(1)中的式子先解‎出'()f x θ,则有'()(0)()f x ff x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f x θ---=.'''2()(0)()(0)(0)f x f f x f xf x x θθθ---⋅=, 解出θ,令x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===. 八、【解】(1)设时刻雪堆的‎t 体积为()V t ,侧面积为()S t .t 时刻雪堆形状‎如图所示,先求()S t 与()V t .侧面方程是222222()()()((,):)()2xy x y h t z h t x y D x y h t +=-∈+≤.⇒44,()()z x z yx h t y h t ∂∂=-=-∂∂. ⇒ 22222()16()()1()()()xyxyD D z z h t x y S t dxdy dxdy x y h t ∂∂++=++=∂∂⎰⎰⎰⎰.作极坐标变换‎:cos ,sin x r y r θθ==,则1:02,0()2xy D r h t θπ≤≤≤≤. ⇒12()2220013()222221()()16()2113[()16]|().()4812h t h t S t d h t r rdr h t h t r h t h t πθππ=+=⋅+=⎰⎰用先二后一的‎积分顺序求三‎重积分()0()()h t D x V t dz dxdy=⎰⎰⎰,其中222()():()()()x y D z h t z t h t +≤-,即2221[()()]2x y h t h t z +≤-.⇒()233301()[()()][()()]()2224h t V t h t h t z dz h t h t h t πππ=-=-=⎰. (2)按题意列出微‎分方程与初始‎条件. (3)体积减少的速‎度是dVdt-,它与侧面积成‎正比(比例系数0.9),即将与的表达‎0.9dV S dt =-()V t ()S t 式代入得22133()0.9()412dh h t h t dt ππ=-,即1310dh dt =-. ①(0)130h =.②(3)解①得13()10h t t C =-+. 由②得130C =,即13()13010h t t =-+. 令()0h t =,得100t =.因此,高度为130‎厘米的雪堆全‎部融化所需时‎间为100小‎时. 九、【解】由于是线性组‎(1,2)i i s β= 12,,s ααα 合,又12,,s ααα 是0Ax =的解,所以根据齐次‎线性方程组解‎的性质知均为‎(1,2)i i s β= 0Ax =的解.从是的基础解‎12,,s ααα 0Ax =系,知()s n r A =-.下面来分析线‎12,,s βββ 性无关的条件‎.设11220s s k k k βββ++= ,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++= .由于线性无关‎12,,s ααα ,因此有112211222132110,0,0,0.s s s t k t k t k t k t k t k t k t k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩(*) 因为系数行列‎式1221121122100000000(1)000s s st t t t t t t t t t +=+-,所以当112(1)0s s st t ++-≠时,方程组(*)只有零解120s k k k ==== .从而线性无关‎12,,s βββ .十、【解】(1)由于AP PB =,即22322(,,)(,,)(,,32)A x Ax A x Ax A x A x Ax A x Ax A x ==-2000(,,)103012x Ax A x ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦, 所以000103012B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦.(2)由(1)知A B ,那么A E B E ++ ,从而100||||1134011A EB E +=+==--.十一、【解】 (1){|}(1),0,0,1,2,m mn m n P Y m X n C p p m n n -===-≤≤= .(2){,}P X n Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm mn m n e C p p m n n n λλ--⋅-≤≤=十二、【解】 易见随机变量‎11()n X X ++,22()n X X ++,2,()n n X X + 相互独立都服‎从正态分布2(2,2)N μσ.因此可以将它‎们看作是取自‎总体的一个容‎2(2,2)N μσ量为的简单随‎n 机样本.其样本均值为‎21111()2n ni n i i i i X X X X n n +==+==∑∑,样本方差为2111(2)11n i n ii X X X Y n n +=+-=--∑. 因样本方差是‎总体方差的无‎偏估计,故21()21E Y n σ=-,即.2()2(1)E Y n σ=-。

2001-数一真题、标准答案及解析

2001-数一真题、标准答案及解析

形在 y 轴一定有两个零点,进一步可排除(B).
故正确答案为(D).
(2)设函数
f
( x,
y)
在点 (0, 0)
附近有定义,且
f
' x
( 0, 0)
=
3,
f
' y
( 0, 0 )
= 1,则
| (A) dz = 3dx + dy. (0,0)
(B)曲面 z = f ( x, y) 在点 (0, 0, f (0, 0)) 的法向量为{3,1,1}
(5)将一枚硬币重复掷 n 次,以 X 和 Y 分别表示正面向上和反面向上的次数,则 X 和 Y 的相
关系数等于
(A)-1
(B)0
(C) 1 2
(D)1 【】
-5-
【答】 应选(A)
【详解】 设 X 和Y 分别表示正面向上和反面向上的次数,则有Y = n − X ,因此 X 和Y 的 相关系数为 r = −1
∫ ∫ (3)交换二次积分的积分次序:
0
dy
1−y f ( x, y)dx =
−1 2
.
∫ ∫ 【答】
2
dx
1− x
f
( x, y)dy .
1
0
【详解】 因为
∫ ∫ ∫ ∫ 0 dy
1−y f ( x, y)dx = −
0
dy
2
f ( x, y)dx,
−1 2
−1 1− y
积分区域为
D = {( x, y) | −1 ≤ y ≤ 0,1− y ≤ x ≤ 2},
ex cos x 线性无关,故 b (c1 − c2 ) + cc1 = 2c2 , b (c1 + c2 ) + cc2 = −2c1 ,解得 b = −2, c = 2

2001年数学二试题_考研数学真题及解析

2001年数学二试题_考研数学真题及解析

2001年全国硕士研究生入学统一考试数学(二)试题一、填空题(本题共5小题,每小题3分,满分15分) 1、213lim21-++--→x x xx x =( ).2、曲线1)cos(2-=-+e xy e y x 在点(0,1)处 的切线方程为 :( ).3、xdx x x 223cos )sin (22⎰-+ππ=( ).4、微分方程11arcsin 2=-+'x y x y 满足)(21y =0的特解为:( ). 5、方程组⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛211111111321x x x a a a 有无穷多解,则a =( ).二、单项选择题(本题共5小题,每小题3分,满分15分.)1、111)(>≤⎩⎨⎧=x x x f 则)]}([{x f f f = ( A ) 0;(B )1;(C )1101>≤⎩⎨⎧x x ; (D )111>≤⎩⎨⎧x x . 2、0→x 时,)1ln()cos 1(2x x +-是比nx x sin 高阶的无穷小,而nx x sin 是比12-x e 高阶的无穷小,则正整数n 等于( A )1;(B )2;(C )3;(D )4. 3、曲线22)3()1(--=x x y 的拐点的个数为 ( A )0;(B )1;(C )2;(D )3.4、函数)(x f 在区间(1-δ,1+δ)内二阶可导,)(x f ' 严格单调减小,且 )1(f =)1(f '=1,则(A )在(1-δ,1)和(1,1+δ)内均有)(x f x <; (B )在(1-δ,1)和(1,1+δ)内均有)(x f x >;(C )在(1-δ,1)内有)(x f x <,在(1,1+δ)内有)(x f x >; (D )在(1-δ,1)内有)(x f x >,在(1,1+δ)内有)(x f x <.5、(同数学一的二1) 三、(本题满分6分)求⎰++221)12(xxdx.四、(本题满分7分)求函数)(x f =sin sin sin lim()sin xt x t x t x-→的表达式,并指出函数)(x f 的间断点及其类型.五、(本题满分7分)设)(x ρρ=是抛物线x y =上任意一点M (y x ,)(1≥x )处的曲率半径,)(x s s =是该抛物线上介于点A (1,1)与M 之间的弧长,计算222)(3ds d dsd ρρρ-的值(曲率K =23)1(2y y '+'').六、(本题满分7分))(x f 在[0,+∞)可导,)0(f =0,且其反函数为)(x g . 若x x f e x dt t g 2)(0)(=⎰,求)(x f .七、(本题满分7分)设函数)(x f ,)(x g 满足)(x f '=)(x g , )(x g '=2xe -)(xf 且)0(f =0,(0)g =2,求dx x x f x x g ⎰+-+π2])1()(1)([八、(本题满分9分)设L 为一平面曲线,其上任意点P (y x ,)(0>x )到原点的距离,恒等于该点处 的切线在y 轴上的截距,且L 过点(0.5,0).1、 求L 的方程2、 求L 的位于第一象限部分的一条切线,使该切线与L 以及两坐标轴所围成的图形的面积最小.九、(本题满分7分)一个半球型的雪堆,其体积的融化的速率与半球面积S 成正比比例系数K>0.假设在融化过程中雪堆始终保持半球形状,已知半径为 r 0 的雪堆在开始融化的3小时内,融化了其体积的7/8,问雪堆全部融化需要多少时间? 十、(本题满分8分))(x f 在[-a ,a]上具有二阶连续导数,且)0(f =01、 写出)(x f 的带拉格朗日余项的一阶麦克劳林公式;2、 证明在[-a ,a]上至少存在一点η,使⎰-=''a adx x f f a )(3)(3η十一、(本题满分6分)已知⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=011101110,111011001B A 且满足AXA+BXB=AXB+BXA+E ,求X .十二、(本题满分6分)设4321,,,αααα为线性方程组AX=O 的一个基础解系,144433322211,,,ααβααβααβααβt t t t +=+=+=+=,其中t 为实常数试问t 满足什么条件时4321,,,ββββ也为AX=O 的一个基础解系.。

2001年数学二试题 考研数学真题及解析

2001年数学二试题 考研数学真题及解析

2001年全国硕士研究生入学统一考试数学(二)试题一、填空题(本题共5小题,每小题3分,满分15分) 1、213lim21-++--→x x xx x =( ).2、曲线1)cos(2-=-+e xy e y x 在点(0,1)处 的切线方程为 :( ).3、xdx x x 223cos )sin (22⎰-+ππ=( ).4、微分方程11arcsin 2=-+'x y x y 满足)(21y =0的特解为:( ). 5、方程组⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛211111111321x x x a a a 有无穷多解,则a =( ).二、单项选择题(本题共5小题,每小题3分,满分15分.)1、1101)(>≤⎩⎨⎧=x x x f 则)]}([{x f f f =( A ) 0;(B )1;(C )1101>≤⎩⎨⎧x x ; (D )111>≤⎩⎨⎧x x . 2、0→x 时,)1ln()cos 1(2x x +-是比nx x sin 高阶的无穷小,而nx x sin 是比12-x e 高阶的无穷小,则正整数n 等于( A )1;(B )2;(C )3;(D )4. 3、曲线22)3()1(--=x x y 的拐点的个数为 ( A )0;(B )1;(C )2;(D )3.4、函数)(x f 在区间(1-δ,1+δ)内二阶可导,)(x f ' 严格单调减小,且 )1(f =)1(f '=1,则(A )在(1-δ,1)和(1,1+δ)内均有)(x f x <; (B )在(1-δ,1)和(1,1+δ)内均有)(x f x >;(C )在(1-δ,1)内有)(x f x <,在(1,1+δ)内有)(x f x >; (D )在(1-δ,1)内有)(x f x >,在(1,1+δ)内有)(x f x <.5、(同数学一的二1) 三、(本题满分6分)求⎰++221)12(xxdx.四、(本题满分7分)求函数)(x f =sin sin sin lim()sin xt x t x t x-→的表达式,并指出函数)(x f 的间断点及其类型.五、(本题满分7分)设)(x ρρ=是抛物线x y =上任意一点M (y x ,)(1≥x )处的曲率半径,)(x s s =是该抛物线上介于点A (1,1)与M 之间的弧长,计算222)(3ds d dsd ρρρ-的值(曲率K =3)1(2y y '+'').六、(本题满分7分))(x f 在[0,+∞)可导,)0(f =0,且其反函数为)(x g . 若x x f e x dt t g 2)(0)(=⎰,求)(x f .七、(本题满分7分)设函数)(x f ,)(x g 满足)(x f '=)(x g , )(x g '=2xe -)(xf 且)0(f =0,(0)g =2,求dx x x f x x g ⎰+-+π2])1()(1)([八、(本题满分9分)设L 为一平面曲线,其上任意点P (y x ,)(0>x )到原点的距离,恒等于该点处 的切线在y 轴上的截距,且L 过点(0.5,0).1、 求L 的方程2、 求L 的位于第一象限部分的一条切线,使该切线与L 以及两坐标轴所围成的图形的面积最小.九、(本题满分7分)一个半球型的雪堆,其体积的融化的速率与半球面积S 成正比比例系数K>0.假设在融化过程中雪堆始终保持半球形状,已知半径为 r 0 的雪堆在开始融化的3小时内,融化了其体积的7/8,问雪堆全部融化需要多少时间? 十、(本题满分8分))(x f 在[-a ,a]上具有二阶连续导数,且)0(f =01、 写出)(x f 的带拉格朗日余项的一阶麦克劳林公式;2、 证明在[-a ,a]上至少存在一点η,使⎰-=''a adx x f f a )(3)(3η十一、(本题满分6分)已知⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=011101110,111011001B A 且满足AXA+BXB=AXB+BXA+E ,求X .十二、(本题满分6分)设4321,,,αααα为线性方程组AX=O 的一个基础解系,144433322211,,,ααβααβααβααβt t t t +=+=+=+=,其中t 为实常数试问t 满足什么条件时4321,,,ββββ也为AX=O 的一个基础解系.。

2001年全国硕士研究生入学统一考试数学二试题及解析

2001年全国硕士研究生入学统一考试数学二试题及解析

2001年全国硕士研究生入学统一考试数学二试题及解析一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) 1、21lim________2x x x →=+-.【分析】考查未定式极限。

可以分子有理化,也可用罗比达法则。

【详解】法一:2112x x x x →→=+-6x →==法二:116x x →→==-。

2、设函数()y f x =由方程曲线1)cos(2-=-+e xy e y x 确定,则曲线()y f x =在点(0,1)处的法线方程为________.【分析】考查导数几何意义的使用及隐函数求导数。

【详解】方程两端微分得:2(2)sin()()0x y e dx dy xy ydx xdy ++++=。

将(0,1)P 代入上式得:(2)0P e dx dy +=,所以2P dydx=-,即法线斜率为12k =从而法线方程:112y x -=。

3、32222(sin )cos _______x x xdx ππ-+=⎰. 【分析】考查对称区间上定积分的计算。

对对称区间上的定积分一般都可利用积分性质化简计算。

【详解】3222232222222(sin )cos sin cos cos x x xdx x xdx x xdx ππππππ---+=+⎰⎰⎰22222202sin cos 2sin (1sin )x xdx x x dx ππ==-⎰⎰1132()πππ⋅=⋅-⋅=4、过点1(,0)2且满足关系式11arcsin 2=-+'xy x y 的曲线方程为________.【分析】考查一阶微分方程求特解。

【详解】方程11arcsin 2=-+'xy x y 是一阶线性微分方程,用通解公式可得其通解为1()arcsin y e e dx C x-=+⎰1()arcsin x C x=+又因为1()0y =,所以1C =-,从而曲线方程为1arcsin y x x =-。

2001年考研数学一真题

2001年考研数学一真题

f ( x, y ) 在(0,0)存在偏导数
f (0,0) f (0,0) ,不保证曲面 z f ( x, y ) 在 , x y
f (0,0) f (0,0) (0, 0, f (0, 0)) 存在切平面.若存在时,法向量 n= , , 1 {3,1,-1}与{3,1,1}不 y x
f ( x) 单调增 f ' ( x) 0 ,(A),(C)不对;
f ( x) :增——减——增 f ' ( x) :正——负——正,(B)不对,(D)对.
关于(A),涉及可微与可偏导的关系 .由 微.因此(A)不一定成立. 关于(B)只能假设
f ( x, y ) 在(0,0)存在两个偏导数 f ( x, y ) 在(0,0)处可
=(
于是
divgradr| (1, 2,2) =
2 2 |(1,2,2) . r 3
y 0时
(3)【分析】 这个二次积分不是二重积分的累次积分,因为 1
1 y 2 .由此看出二次积分 dy
1
0
2
1 y
f ( x, y)dx 是二重积分的一个累次
积分,它与原式只差一个符号.先把此累次积分表为
y'' 2 y' 2 y 0 .
(2)【分析】 先求 gradr. gradr=
r r r x y z , , , , . x y z r r r
再求
divgradr=
x y z ( ) ( ) ( ) x r y r z r 1 x2 1 y2 1 z2 3 x2 y 2 z 2 2 3 )( 3 )( 3 ) . r r r r r r r r3 r
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2001年浙江大学436数学分析考研真题 浙江大学2001年攻读硕士学位研究生入学试题
考试科目:数学分析(436)
一、(30分)
()i 用“εδ-语言”证明2211lim 3233n n n n n →∞-+=+-;
()ii 求极限tan 21lim(2)x x x π→-;
()iii 设101(ln )1x f x x x <≤⎧'=⎨>⎩,且(0)0f =,求()f x .
二、(10分) 设()y y x =是可微函数,求(0)y ',其中
2sin 7x y y ye e x x =-+-.
三、(10分) 在极坐标变换cos ,sin x r y r θθ==之下,变换方程2222(,)z z f x y x y ∂∂+=∂∂.
四、(20分)
()i 求由半径为a 的球面与顶点在球心,顶角为2α的圆锥面所围成区域的体积; ()ii 求曲面积分222()()()s I y x dydz z y dzdx x z dxdy =-+-+-⎰⎰,其中S 是曲面 222(12)z x y z =--≤≤的上侧.
五、(15分) 设二元函数(,)f x y 在正方形区域
[][]0,10,1⨯上连续,记[]0,1J =. ()i 试比较inf sup (,)y J y J f x y ∈∈与supinf (,)y J y J f x y ∈∈的大小并证明之;
()ii 给出一个使等式inf sup (,)supinf (,)y J y J y J y J f x y f x y ∈∈∈∈=成立的充分条件并证明之.
六、(15分) 设()f x 是在
[]1,1-上可积且在0x =处连续的函数,记 (1)01()10n n nx x x x e x ϕ⎧-≤≤⎪=⎨-≤≤⎪⎩ . 证明:11lim
()()(0)2n n n f x x dx f ϕ-→∞=⎰.。

相关文档
最新文档