土力学固结沉降
土力学 地基沉降量计算

轴向荷载N=1250kN,有关地基勘察资料与基础剖面详见下
图。试用《规范》法计算基础中点最终沉降量。
解:
按《建筑地基基础设计规范》计算,采用下式,计算结果 详见下表。
例题4-2 计算表格
z (m)
L/B
z/B
Esi (kPa)
0
0
0.250 0
0
1.0
0.8
0.234 6
0.234 6
0.2346
(亦称初始沉降);
Sc--固结沉降(亦称主
固结沉降);
Ss--次固ቤተ መጻሕፍቲ ባይዱ沉降(亦
称蠕变沉降)。
瞬时沉降是指加载后地基瞬时发生的沉降。由于基础 加载面积为有限尺寸,加载后地基中会有剪应变产生, 剪应变会引起侧向变形而造成瞬时沉降。
固结沉降是指饱和与接近饱和的粘性土在基础荷载作 用下,随着超静孔隙水压力的消散,土骨架产生变形所 造成的沉降(固结压密)。固结沉降速率取决于孔隙水 的排出速率。
(三)地基受压层计算深度的确定
计算深度zn可按下述方法确定:
1)存在相邻荷载影响的情况下,应满足下式要求:
式中:△Sn′--在深度 zn处,向上取计算厚 度为△z的计算变形值; △z查P92表5-4;
△Si′--在深度zn范围 内,第i层土的计算变
形量。
2)对无相邻荷载的独立基础,可按下列简化的经验公式
次固结沉降是指主固结过程(超静孔隙水压力消散过 程)结束后,在有效应力不变的情况下,土的骨架仍随 时间继续发生变形。这种变形的速率取决于土骨架本身 的蠕变性质。
(一)瞬时沉降计算 瞬时沉降没有体积变形,可认为是弹性变形,因此一
般按弹性理论计算,按式(4-17)求解。
式中:ω--沉降系数; p0--基底附加应力; μ--泊松比,这时是在不排水条件下没有体积变形所产 生的变形量,所以应取μ=0.5; Eu--不排水变形模量(弹性模量),常根据不排水抗剪强 度Cu和Eu的经验关系式(4-18)求得。
土力学第四章、土的最终沉降量

一维固结力学模型
一维固结又称单向固结。土体在荷载作用 下土中水的渗流和土体的变形仅发生在一个方 向的固结问题。严格的一维固结问题只发生在 室内有侧限的固结试验中,实际工程中并不存 在。然而,当土层厚度比较均匀,其压缩土层 厚度相对于均布外荷作用面较小时,可近似为 一维固结问题。
使得上式与实测值之间的关系差 距较大。根据统计资料,E0值可 能是βEs值的几倍,一般说来, 土愈坚硬则倍数愈大,而软土的
E0值和βEs值比较接近。
4.2 地基最终沉降量计算
地基最终沉降量的计算方法主要有以 下几种方法:
1、 分层总和法 2、 规范法 3、 理论公式计算法
4.2.1 分层总和法
地基的最终沉 降量,通常采用 分层总和法进行 计算,即在地基 沉降计算深度范 围内划分为若干 层,计算各分层 的压缩量,然后 求其总和。
平均附加应力系数的物理
意义:分层总和法中地基附
加应力按均质地基计算,即 地基土的压缩模量Es不随深 度而变化。从基底至地基任 意深度Z范围内的压缩量为:
z
s'
dz
1
0
Es
0zzdzEAs
4.2.2 规范法分层总和法
附加应力面积:
z
z
Azdz p0dz
0
0
深度 z 范围内 的竖向平均附 加应力系数
土体变形机理非常复杂,土体不是 理想的弹塑性体,而是具有弹性、粘性 、塑性的自然历史的产物。
4.1.3 土的载荷试验及变形模量
通过载荷试验可测定地基变形模量,地 基承载力以及研究土的湿陷性等。
软土地基沉降计算

主要内容
§1 §2 §3 §4
天然地基沉降计算 复合地基沉降计算 桩基沉降计算 排水固结沉降计算
地基沉降是土力学中的重要研究课 题之一。自从Terzaghi(1923年)的一维 固结理论问世以来,地基沉降的理论研 究已取得了长足的进展,并且在工程建 设中发挥了巨大的指导作用。然而,从 工程建设的发展与要求来看,还需对现 有的地基沉降计算理论作进一步的研究 和改进。
≤建筑桩基技术规范≥JGJ94—94 推荐的方法 国家行业标准《建筑桩基技术规范》 (JGJ94--94) (以下简称“桩基规范”)推荐的方 法指出,“对于桩中心距小于或等于6倍桩径的桩 基,其最终沉降量计算可采用等效作用分层总和 法”。桩基规范实际上是一种等代实体基础法, 只是没有考虑桩基侧面应力的扩散作用,并采 用了如下假定: 1)等效作用面位于桩端平面; 2)等效作用面积为桩承台投影面积; 3)等效作用附加应力近似取承台底平均 附加压力; 4)应力分布采用各向同性均质直线变形 体理论。
加固区的沉降计算
沉降量的计算包括加固区沉降的计算和下 卧层沉降计算两个部分,复合地基总沉降量是 以上两种沉降量的和。复合地基沉降量的计算 对于复合地基设计具有十分重要的意义,沉降 量分析的可靠程度不仅取决于计算方法的好坏, 还取决于复合地基参数的准确性。 加固区的沉降计算一般有复合模量法、应 力修正法和桩身压缩量法。计算下卧层沉降一 般采用分层总和法进行,其附加荷载的计算有 应力扩散法、等效实体法和改进Geddes法。
下卧层的沉降计算
下卧层的沉降量通常采用分层总和法 计算: n
S2
i 1 zi
式中,S1 —下卧层的沉降量; —第 i 层土的平均附加应力; E si —第 i 层土的压缩模量; hi —第 i 层土的厚度。 其附加荷载的计算有应力扩散法、 等效实体法和改进Geddes法。
《土力学》土的固结压缩试验

《土力学》土的固结压缩试验一、试验目的测定试样在侧限与轴向排水条件下的压缩变形△h和荷载P的关系,以便计算土的单位沉降量S1、压缩系数a v和压缩模量E s等。
二、试验原理土的压缩性主要是由于孔隙体积减少而引起的。
在饱和土中,水具有流动性,在外力作用下沿着土中孔隙排出,从而引起土体积减少而发生压缩,试验时由于金属环刀及刚性护环所限,土样在压力作用下只能在竖向产生压缩,而不可能产生侧向变形,故称为侧限压缩。
固结试验通常只用于粘性土,由于砂土的固结性较小,且压缩过程需时也很短,故一般不在实验室里进行砂土的固结试验。
固结试验可根据工程要求用原状土或制备成所需要状态的扰动土。
可采用常速法或快速法。
本实验主要采用非饱和的扰动土样,并按常速法步骤进行,但为了能在实验课的规定时间内完成实验,所以要缩短加荷间隔时间(具体时间间隔由实验室决定)。
三、仪器设备1.固结仪:如图4所示。
2.量表:量程10mm,最小分度0.01mm。
3.其它:刮土刀、电子天平、秒表、称量盒等。
四、操作步骤1. 根据工程需要,切取原状土样或由实验室提供制备好的扰动土样一块。
2. 用固结环刀(内径61.8或79.8毫米,高20毫米)按密度试验方法切取试样,并取土留作测含水率。
如系原状土样,切土的方向与自然地层中的上下方向一致。
然后称环刀和试样总质量,扣除环刀质量后即得湿试样质量,计算出土的密度(ρ)。
3. 用切取试样时修下的土测定含水率(ω),平行测定,取算术平均值。
4. 在固结仪容器底座内,顺次放上一块较大的洁净而湿润的透水石和滤纸各一,将切取的试样连同环刀一起(环刀刀口向下)放在透水石和滤纸上,再在试样上按图依次放上护环以及试样面积相同的洁净而湿润的滤纸和透水石各一,加上传压板和钢珠。
安装好后待用。
5.检查加压设备是否灵敏,将手轮顺时针方向旋转,使升降杆上升至顶点,再逆时针方向旋转3~5转。
转动杠杆上的平衡锤使杠杆上的水准器对中(即杠杆取于水平)。
土力学地基基础名词解释

土力学地基基础名词解释1.解理:矿物受到外力的作用(如敲打),其内部质点间的连结力被破坏,沿一定的方向形成一系列光滑的破裂面的性质,称为解理。
2.褶皱构造:地壳中的岩层受到地壳运动应力的强烈作用,形成一系列波浪起伏的弯曲状而未丧失其连续性的构造,称为褶皱构造。
3.岩石软化性:岩石浸水后强度降低的性能称为岩石的软化性。
4.风化:地壳表面的岩石由于大气应力以及生物活动等因素的影响,发生破碎或成份变化的过程称为风化。
5.土的抗剪强度:土的抗剪强度是指土抵抗剪切变形与破坏的能力。
6.断口:矿物受到外力作用(如敲打),形成不具方向性的不规则断裂面,称为断口。
7.硬度:矿物抵抗外力刻划或研磨的能力称为硬度。
8.逆断层:上盘沿断层面相对上升,下盘沿断层面相对下降的断层,称为逆断层。
9.滑坡:斜坡上的岩土体在重力作用下,失去原有的稳定状态,沿斜坡内某些滑动面(带)整体向下滑移的现象,称为滑坡。
10.先期固结压力:形成土结构时的结构性应力,称为先期固结压力。
11.岩石:组成地壳的基本物质,是在一定地质条件下,由一种或几种矿物自然组合而成的矿物集合体。
12.风化作用:地壳表面的岩石,由于大气应力以及生物活动等因素的影响,而发生的物理和化学作用,称为风化作用。
13.泥石流:泥石流是山区特有的一种不良地质现象,它是由暴雨或上游冰雪消融形成的携带有大量泥土和石块的间歇性洪流。
14.流土:在渗流向上作用时,土体表面局部隆起或者土颗粒群同时发生悬浮和移动的现象称为流土。
15.固结沉降:是指荷载压力作用下,由于地基土的结构骨架受力压缩,使孔隙中水排出,土体积压缩引起的部分沉降,即由于排水固结引起的沉降。
16.断层:岩层受力作用断裂后,岩层沿着破裂面产生显著位移的断裂构造,称为断裂。
17.岩石的抗剪切摩擦强度:是指岩石与岩石相互接触面间,或岩石与其他材料接触面间,在正应力作用下相互摩擦的强度。
18.砂土液化:无粘性土(砂土)从固体状态转变为液体状态的现象称为砂土液化。
土力学_第5章(固结与压缩)

P0 P H
③计算地基中自重应力σsz分布
不排水
孔隙水压力
孔隙水压力
(五)三轴压缩试验成果—应力--应变关系
1 3
(1 3 ) y
1 3
f
E
1
b c
②-超固结土或密实砂 b ③-正常固结土或松砂
①-理想弹塑性
a O
b点为峰值强度
土 的 本 构 模 型
线弹性-理想塑性 1 3 1 2
1
应变硬化段
应变软化段
C
s
p
lg '
(五)三轴压缩试验
三轴试验测定: 轴向应变 轴向应力 体应变或孔隙水压力
轴向加压杆 顶帽
压力室
试 样
有机玻璃罩 橡皮膜 加压进水
类型 固结排水 施加σ3时 固结
透水石 排水管
量测体应变或 孔隙水压力
阀门
施加σ1-σ3时 排水
量 测 体应变
固结不排水
不固结不排水
固结
不固结
不排水
将地基分成若干层,认为整个地基 的最终沉降量为各层沉降量之和。
n n
o
s si i H i
i 1 i 1
ΔS1 ΔS2 ΔS3 ΔS4 Δ Si ΔSn
i第i层土的
压缩应变
z v
e e1 e2 1 e1 1 e1
z
取基底中心点下的附加应力进行计算,以基底中点的沉降代
400
e-p曲线
p(kPa)
(σ')
Δp
(σ')
p(kPa)
Δ p相等而 ΔeA> ΔeB,所以曲线A的压缩性 >曲线B的压缩性
土力学_柳厚祥_第五章土的压缩性与沉降计算
第五章 土的压缩性与沉降计算§ 5.1 基本概念一、地基土在上部结构荷载作用下产生应力和变形⎩⎨⎧→→形状变形(剪破)体积变形(不破坏)zx yz xy z y x τττσσσ,,,,地基的竖直方向变形即为沉降三相土受力后的变形包括⎩⎨⎧排出土孔隙中的水和空气的,相互挤紧)土颗粒压缩(重新排列土体积减小的过程土体压缩性:指的是在压力作用下体积减小过程的特性,包括两个方面:1. 1. 压缩变形量的绝对大小(沉降量大) 2. 2. 压缩变形随时间的变化(固结问题)一、一、 工程意义地基的沉降有均匀沉降与不均匀沉降1. 1. 均匀沉降对路桥工程的上部结构危害较小,但过量的 均匀沉降也会导致路面标高的降低,桥下净空的减小而影响正常的使用。
2. 2. 不均匀沉降则会造成路堤的开裂,路面不平,超静定结构,桥梁产生较大的附加应力等工程问题,甚至影响其正常使用。
沉降计算是地基基础验算的重要内容,也是土力学的重要课题之一§5.2 研究土体压缩性的方法及变形指标一、一、 压缩试验与压缩性规律土体积的变小是孔隙体积变小的结果,研究土的压缩性大小及其特征的室内试验方法称为压缩试验。
对一般工程情况来说,或在压缩土层厚度比荷载面宽度小很多的情况下常用侧限压缩试验来研究土的压缩性。
试验室用以进行土的侧限压缩试验的仪器称为压缩仪(固结仪),如图5-1 所示 透水石以便土中水的排出传压活塞向土样施加压力。
由于环刀所限,增压或减压是土样只能在铅直方向产生压缩或回胀,而不可能产生侧向变形,故称为侧限压缩试验。
试验采用压缩仪进行压缩试验是研究土的压缩性最基本的方法,有上述已知,试样土粒本身体积是假定不变的,即()112211211,11,e h he e h e h v v s s +∆=∆+=+=,因此,试样在各级压力pi 作用下的变形,常用孔隙比e 的变化来表示。
(一)e-p 曲线的表示方法如右图所示е0a 曲线为压缩曲线 ab 曲线为减压曲线 ba’为才压缩曲线当在压的压力超过试样所曾经受过的最大压力后,其e-p 曲线很快就和压缩曲线的延长线重合如图a’c 所示。
土力学简答题
粘性土颗粒为何会带电答:粘性土颗粒带电的原由有:(1)离解:指晶体表面的某些矿物在水介质中产生离解,离解后阳离子扩散于水中,阳离子留在颗粒表面。
(2)吸附作用:指晶体表面的某些矿物把水介质中一些带电荷的离子吸附到颗粒的表面。
(3)同象置换:指矿物晶格中高价的阳离子被廉价的阳离子置换,产生剩余的未饱和负电荷。
毛细现象对工程有何影响答:毛细水的上涨对建筑物地下部分的防潮举措和地基土的浸润和冻胀等有重要影响。
别的,在干旱地域,地下水中的可溶盐随毛细水上涨后不停蒸发,盐分便聚集于凑近地表处而形成盐渍土。
什么是土的敏捷度和触变性其在工程中有何应用答:土的敏捷度是以原状土的强度与同一土经重塑后的强度之比来表示的,它反应了土的结构性对强度的影响。
土的敏捷度愈高,结构性愈强,受扰动后土的强度降低的越多,所以在基础施工中应注意保护基槽,尽量减少土结构的扰动。
土的触变性是指黏性土结构遇到扰动,强度降低,当扰动停止后,土的强度又随时间而渐渐增大,这类抗剪强度随时间恢复的胶体化学性质,即为土的触变性。
比如:在黏性土中打桩,可利用土的敏捷度,将桩打入;利用土的触变性,可保证桩的承载力知足要求。
为何细粒土压及时存在最优含水量答:当含水量很小时,颗粒表面的水膜很薄,要使颗粒互相挪动需要战胜很大的粒间阻力,因此需要耗费很大的能量。
这类阻力可那根源于毛细压力或许联合水的剪切阻力。
跟着含水量的增添,水膜加厚,粒间阻力必定减小,水起润滑作用,使土粒易于挪动而形成最优的密实摆列,压实成效就变好;但当含水量连续增大,以致土中出现了自由水,压及时,孔隙水不易排出,形成较大的孔隙压力,必定阻挡土粒的聚拢,所以压实成效反而降落砂土、粉土、粘性土的工程分类时,采纳的指标为何不相同答:影响土的工程性质的三个主要要素是土的三相构成、物理状态、结构性。
对粗粒土,其工程性质主要取决于颗粒及其级配。
对细粒土,其工程性质主要取决于土的吸附联合水的能力,因此多采纳稠度指标来反应。
土力学解答2
9.土粒比重:土颗粒与同体积4℃纯水的质量之比。
10.灵敏度:评价粘性土结构性强弱的指标,是指同一粘性土的原状土与重塑土的无侧限抗压强度之比。
61、饱和软粘性土灵敏度St的定义?
答:在含水量不变的条件下,原状土不排水强度与彻底扰动后土的不排水强度之比。
62、粘性土触变性的定义?
答:在含水量不变的条件下,土经扰动后土强度下降,经过静置它的初始强度可随时间而逐渐恢复的现象。
63、砂土的液化条件?
答:土体必须是饱水的;排水不畅;土结构较疏松;有适当动荷载条件作用。
22.粘性土按塑性指数分为粉质粘土和粘土,粉质粘土的塑性指数为(10 <IP≤17 >。
23.埋藏在地表浅处、局部隔水层之上且具有自由水面的地下水称为__<上层滞水>__。
24.布辛涅斯克解是弹性解,竖向集中荷载作用点处的应力将趋于__无穷大__。
25.在局部荷载作用下,地基中的竖向附加应力分布范围相当
11.最优含水量:土的压实效果与含水量有关,当土的含水量达到某一特定值时,土最容易被压实,获得最大干密度,这个特定的含水量值就是最优含水量。
12.粘性土可塑性:在外力作用下,粘性土可任意改变形状而不裂、不断。当外力拆除后,土仍能保持已改变的形状,这就是可塑性。
13.孔隙比:土中孔隙体积与土粒体积之比。
50、压缩系数a1-2与土的压缩性的关系?
答:a1-2<0.1MPa-1时,属于低压缩性土。0.1MPa-1≤a1-2<0.5MPa-1时,属于中等压缩性土。a1-2≥0.5MPa-1时,属于高压缩性土。
工程地质及土力学常考名词解释
工程地质及土力学常考名词解释,填空,简答,自考试题,计算题,复习题名词解释:1.基础: 设置于建筑物底部承受上部结构荷载并向地基传递压力的下部结构。
2.崩塌:陡峻斜坡上的某些大块岩块突然崩落或滑落,顺山坡猛烈地翻滚跳跃,岩块相互撞击破碎,最后堆积于坡脚,这一现象称为崩塌。
3.固结:土的骨架受压产生压缩变形,导致土孔隙中水产生渗流,孔隙中水随着时间的发展逐渐渗流排除,孔隙体积缩小,土体体积逐渐压缩,最后趋于稳定,这个过程常称为渗透固结、简称固结。
4.压缩变形:土体受外力作用后产生体积缩小称为压缩变形。
5.矿物的解理:矿物受到外力的作用,其内部质点间的连结力被破坏,沿一定方向形成一系列光滑的破裂面的性质,称为解理。
6.渗透性:土被水渗流通过的性能称为渗透性。
7.静止土压力:若挡土墙具有足够的刚度,且建立在坚实的地基上,墙体在墙后土体的推力作用下,不产生任何移动或转动,则墙后土体处于弹性平衡状态,这时,作用在墙背上的土压力称为静止土压力。
12。
风化作用:地壳表面的岩石由于风、电、雨和温度等大气应力以及生物活动等因素的影响发生破碎或成分变化的过程称为风化。
风化作用指的是岩石中发生物理和化学作用。
14。
渗流:土通过水中连续孔隙流动称为渗流。
15.流土:在渗流向上作用时,土体表面局部隆起或者土颗粒群同时发生悬浮和移动的现象。
16.土层:在图的形成过程中,有些残留在原地形成的残积层,有些经过风、水、冰川等的剥蚀、侵蚀、搬运,在某一适当的沉积环境下,按一定的沉积规律形成层状的沉积层,称为土层。
19.达西定律:在稳定流和层流的作用下,用粗颗粒土进行大量的渗透试验,测定水流通过土试样单位截面积的渗流量,获得渗流量与水力梯度的关系,从而得到渗流速度与水力梯度(或水头能量损失)和土的渗透性质的基本规律,即渗流基本规律——达西渗透定律。
20.砂土液化:无粘性土从固体状态转变成液体状态的现象。
22.滑坡:斜坡上的岩土体在重力作用下失去原有的稳定状态,沿斜坡内的某些滑动面(带)整体向下滑的现象. 25.土坡:土坡就是具有倾斜坡面的土体。