简单砂土层自重的固结沉降
20.10月西工大《土力学与地基基础》机考作业答案

试卷总分:100 得分:96一、单选题(共25 道试题,共50 分)1.一般建筑物在施工期间所完成的沉降,通常随地基土质的不同而不相同,碎石土和砂土因压缩性小、渗透性大,施工期间,地基沉降量()。
A.已全部或基本完成B.50%~80%C.20%~50%D.5%~20%正确答案:A2.作为检验填土压实质量控制指标的是()。
A.土的干密度B.土的压实度C.土的压缩比D.土的可松性正确答案:A3.根据地基损坏可能造成建筑物破坏或影响正常使用的程度,可将基础设计分为()等级。
A.2个B.3个C.4个D.5个正确答案:B4.当地下水位突然从地表下降至基底平面处,对基底附加压力的影响是()。
A.没有影响B.基底附加压力增加C.基底附加压力减小D.以上说法均不正确正确答案:A5.在土中对土颗粒产生浮力作用的是()。
A.强结合水B.弱结合水C.毛细水D.重力水正确答案:D6.某粘土地基在固结度达到40%时的沉降量为100mm,则最终固结沉降量为()。
A.400mmB.250mmC.200mmD.140mm正确答案:B7.对土层情况,各桩的直径,入土深度和桩顶荷载相同的摩擦型群桩(桩距一般为桩径的3倍)的沉降量将比单桩()。
A.大B.小C.大或小D.两者相同正确答案:A8.地基中某点受到大主应力为700kPa,小主应力200kPa作用,则作用在与小主应力面呈30°角的面上的剪应力为()。
A.216.5kPaB.280kPaC.320kPaD.200.5kPa正确答案:A9.高耸结构和高层建筑,地基变形一般由()因素控制。
A.沉降量B.沉降差C.倾斜D.局部倾斜正确答案:C10.砌体承重结构,地基变形一般由()因素控制。
A.沉降量B.沉降差C.倾斜D.局部倾斜正确答案:D11.土的压缩模量越大,表示()。
A.土的压缩性越高。
2014年专业案例-地基处理考试试题(二)

专业案例-地基处理考试试题(二)一、论述题(本大题51小题.每题5.0分,共255.0分。
)第1题某软土地基fak=70kPa,采用搅拌桩处理地基,桩径0.5m,桩长10m,等边三角形布桩,桩距1.5m,桩周摩阻力特征值qs =15kPa,桩端阻力特征值qp=60kPa,水泥土无侧限抗压强度fcu=1.5MPa,试求复合地基承载力特征值(η=0.3,α=0.5,β=0.85)。
【正确答案】:m=d2/d2e =0.52/(1.05×1.5)2=0.1第2题采用砂石桩法处理黏性土地基,砂石桩直径0.6m,置换率0.28,试求等边三角形布桩和正方形布桩的桩间距。
【正确答案】:一根砂石桩承担的处理面积第3题采用振冲碎石桩法处理地基,桩径0.5m,等边三角形布桩,桩距1.5m,桩间土地基承载力特征值为80kPa,桩土应力比为3,试求复合地基承载力特征值。
【正确答案】:de=1.05s=1.05×1.5=1.575m fspk =[1+m(n-1)]fsk=[1+0.1×(3-1)]×80=96kPa第4题某松散砂土地基,e=0.81,室内试验得emax =0.9,emin=0.6,采用砂石桩法加固,要求挤密后砂土地基相对密实度达0.8,砂石桩直径0.7m,等边三角形布置,试求砂石桩间距 (ξ=1.1)。
【正确答案】:挤密后砂土孔隙比e1=emax-Dr1(emax-emin)=0.9-0.8×(0.9-0.6)=0.66第5题振冲碎石桩桩径0.8m,等边三角形布桩,桩距2.0m,复合地基承载力特征值为 200kPa,桩间土承载力特征值为150kPa,试求桩土应力比。
【正确答案】:de=1.05s=1.05×2=2.1m第6题某20m厚淤泥质土层,Kh =1.0×10-7cm/s,Cv=Ch=1.8×10-3cm2/s,采用袋装砂井预压固结加固地基,砂井直径dw =70mm,砂料渗透系数kw=2×10-2cm/s,涂抹区土的渗透系数,涂抹区直径ds 与竖井直径dw比值s=2,砂井等边三角形布置,间距1.4m,深度20m,砂井底部为不透水层,预压堆载第一级60kPa,加载10d,预压 20d,第二级40kPa,加载10d,预压80d,试求平均固结度。
土的压缩性及沉降计算

最终沉降量是指建筑物地基从开 始变形到变形稳定时基础的总沉 降值。
最终沉降量
分层总和法是将地基土在一定深度范围内划分成
若干薄层,先求得各个薄层的压缩量,再将各个薄层的压 缩量累加起来,即为总的压缩量。
计算沉降时,由于采用了一系列计算假定,还需对总的 压缩量根据经验进行修正。
一、计算假定
1.地基中划分的各薄层均在无侧向膨
z
si hi
e1i e2i 1e1i
si
e1i e2i 1e1i
hi
由压缩模量的定义知:
Esi
p si
si
p Esi
hi
hi
si
zi
E si
hi
2.各薄层压缩量求和公式
基础的总沉降量就是在压缩层范围内各薄层压缩量的总和
n
Sn Si
1
3.基础总沉降量的规范公式
由于采用了一系列计算假定,求出的总压缩量与工程实际有一定出入, 故现行规范用经验系数进行修正。
一、土的压缩性
节概述
土的压缩性是指在外荷载作用下,土体体积变小的性 质.
它反映的是土中应力与其变形之间的变化关系,是土 的基本
力学性质之一。
土体压缩变形一般包括:
二、沉降的概念
建筑物作为外荷载作用于地基上,使地基中产生附加应 力,而附加应力的产生致使地基土出现压缩变形,通常将建 筑物基础随地基产生的竖向变位称之为沉降。
Cc值越大,土的压缩性越高,低压缩性土的Cc一 般小于0.2,高压缩性土的Cc值一般大于0.4。
二、现场荷载试验
1.试验方法
现场载荷试验是在工程现场 通过千斤顶逐级对置于地基土 上的载荷板施加荷载,观测记 录沉降随时间的发展以及稳定
土力学第四章、土的最终沉降量

一维固结力学模型
一维固结又称单向固结。土体在荷载作用 下土中水的渗流和土体的变形仅发生在一个方 向的固结问题。严格的一维固结问题只发生在 室内有侧限的固结试验中,实际工程中并不存 在。然而,当土层厚度比较均匀,其压缩土层 厚度相对于均布外荷作用面较小时,可近似为 一维固结问题。
使得上式与实测值之间的关系差 距较大。根据统计资料,E0值可 能是βEs值的几倍,一般说来, 土愈坚硬则倍数愈大,而软土的
E0值和βEs值比较接近。
4.2 地基最终沉降量计算
地基最终沉降量的计算方法主要有以 下几种方法:
1、 分层总和法 2、 规范法 3、 理论公式计算法
4.2.1 分层总和法
地基的最终沉 降量,通常采用 分层总和法进行 计算,即在地基 沉降计算深度范 围内划分为若干 层,计算各分层 的压缩量,然后 求其总和。
平均附加应力系数的物理
意义:分层总和法中地基附
加应力按均质地基计算,即 地基土的压缩模量Es不随深 度而变化。从基底至地基任 意深度Z范围内的压缩量为:
z
s'
dz
1
0
Es
0zzdzEAs
4.2.2 规范法分层总和法
附加应力面积:
z
z
Azdz p0dz
0
0
深度 z 范围内 的竖向平均附 加应力系数
土体变形机理非常复杂,土体不是 理想的弹塑性体,而是具有弹性、粘性 、塑性的自然历史的产物。
4.1.3 土的载荷试验及变形模量
通过载荷试验可测定地基变形模量,地 基承载力以及研究土的湿陷性等。
大学本科《土力学》简答题

土力学简答题1. 何谓正常固结粘土和超固结粘土,两者的压缩特性和强度特性有何区别?答:把土在历史上曾经受到的最大有效应力称为前期固结应力,以pc表示;而把前期固结应力与现有应力po'之比称为超固结比OCR,对天然土,OCR>1时,该土是超固结;当OCR=1时,则为正常固结土。
压缩特性区别:当压力增量相同时,正常固结土压缩量比超固结土大。
强度特性区别:超固结土较正常固结土强度高2. 简述影响土压实性的因素?答:土压实性的影响因素主要有含水率、击实功能、土的种类和级配以及粗粒含量等。
对粘性土,含水率的影响主要表现为当含水率较低时,相同击实功能下所获得的干密度较低,随着含水率的增大,所得到的干密度会逐渐提高;当达到某含水率时,对应击实功能下会得到最大干密度,对应含水率称为最优含水率;随着含水率的提高,最大干密度反而会减小。
击实功能的影响表现为:击实功能越大,所得到的土体干密度也大;最优含水率随击实功能的增大而减小。
土类和级配的影响表现在:粘性土通常较无粘性土压缩性大;粘粒含量大,压缩性大;级配良好,易于压密,干密度大;粗粒含量对压实性有影响,大于5mm粒径的粗粒含量大于25%-30%时,需对轻型击实试验的结果进行修正。
3.地基破坏形式有哪几种?各自会发生在何种土类地基?答:有整体剪切破坏,局部剪切破坏和冲剪破坏。
地基破坏形式主要与地基土的性质尤其是压实性有关,一般而言,对于坚实或密实的土具有较低的压缩性,通常呈现整体剪切破坏.对于软弱黏土或松沙地基具有中高压缩性,常常呈现局部剪切破坏或冲剪破坏。
4.其它条件相同情况下,超固结粘土的沉降一定小于正常固结粘土的沉降吗?为什么?答:是的。
因为和正常固结粘土相比,超固结粘土孔隙比比正常固结土小,如果现有有效应力相同,则在某荷载增量作用下,超固结土是沿再压缩曲线压缩,而正常固结土沿压缩曲线压缩。
由于同一土质,再压缩曲线肯定比压缩曲线缓,即再压缩指数比压缩指数小,因此,超固结粘土沉降比正常固结土小。
沉降及固结计算题

e=0.55.求该土层的压缩量.
若沉降稳定后,又加盖2层,在土中增加的平均附加应力为50 kPa,求由此引起的沉降量.
0.0m -2.0m
-5.0m
砂 γ=19kN/m3 γ,=9kN/m3
γ,=10kN/m3 粘土
-15.0m 基岩
100kN/m2
e0
A
B
0.42e0 115
C 心部位的孔隙比:0.726 粘土层中下一层中心部位的孔隙比:0.623
• 某正常固结土层厚2.0m,平均自重应力为 100kPa,压缩实验数据如下:建筑物平均附 应力为200kPa,该土层的最终沉降量为多 12.91cm
压力 kPa
孔隙 比e
0
50 100 200 300 400
0.984 0.900 0.828 0.752 0.710 0.680
• 某方形基础,边长为4.0m,基础埋深为2m,地 面以上荷载F=4720kN,地基表层为细砂, γ1=17.5kN/m3,ES1=8.0MPa,厚度为6.0m, 第二层为粉质粘土, ES2=3.33MPa ,厚度为 3.0m,第三层为碎石, 厚度为4.5m, ES3=22MPa,用分层总和法计算粉质粘土层 的沉降量.
平均附加应力σz =200kPa,试问这种情况 该土层的最终变形为多少?
P0+ σz > Pc S=H/(1+e0)(CSlg(Pc/P0)+CClg((P0+ σz )/Pc)=16.05cm S2=H/(1+e0)(CSlg((P0+ σz )/P0)=5.61cm
第四章-土的压缩与固结资料
土的压缩变形常用孔隙比e的变化来表示。 根据固结试验的结果可建立压力p与相应的稳 定孔隙比的关系曲线,称为土的压缩曲线。
压缩曲线可以按两种 方式绘制,一种是按 普通直角坐标绘制的 e~p曲线;另一种是 用半对数直角坐标绘 制的e~lgp曲线。
1、e~p曲线
2、e~lgp曲线
(二)压缩系数
式中:av称为压缩 系数,即割线 M1M2 的 坡 度 , 以 kPa-1 或 MPa-1 计 。 e1 , e2 为 p1 , p2 相 对应的孔隙比。
对于天然土,当OCR>1时,该土是超固结土 ;当OCR=1时,则为正常固结土。如果土在 自重应力po作用下尚未完全固结,则其现有 有效应力poˊ小于现有固结应力po,即poˊ< po,这种土称为欠固结土。对欠固结土,其 现有有效应力即是历史上曾经受到过的最大
有效应力,因此,其OCR=1,故欠固结土实 际上是属于正常固结土一类。
V1
HA H
V1 V2 (1 e1)Vs (1 e2 )Vs e1 e2
V1
(1 e1)Vs
1 e1
无侧向变形条件下的土层压缩量计算 公式为
根据av,mv和Es的定义,上式又 可表示为
所以:
无侧向变形条件下的土层压缩量计算公式为
根据av,mv和Es的定义,上式又可表示为
第4节 地基沉降计算的e~p曲线法
思考:次固结沉降由什么荷载引起?
二、土的压缩性指标
(一)室内固结试验与压缩曲线 为了研究土的压缩特性,通常可在试验室内进行 固结试验,从而测定土的压缩性指标。室内固结 试验的主要装置为固结仪,如图所示。 用这种仪器进行试验时,由于 刚性护环所限,试样只能在竖 向产生压缩,而不能产生侧向 变形,故称为单向固结试验或 侧限固结试验。
地基沉降实用计算方法
第三节 地基沉降实用计算方法一、弹性理论法计算沉降(一) 基本假设弹性理论法计算地基沉降是基于布辛奈斯克课题的位移解,因此该法假定地基是均质的、各向同性的、线弹性的半无限体,此外还假定基础整个底面和地基一直保持接触。
布辛奈斯克是研究荷载作用于地表的情形,因此可以近似用来研究荷载作用面埋置深度较浅的情况。
当荷载作用位置埋置深度较大时,则应采用明德林课题的位移解进行弹性理论法沉降计算。
(二) 计算公式建筑物的沉降量,是指地基土压缩变形达固结稳定的最大沉降量,或称地基沉降量。
地基最终沉降量:是指地基土在建筑物荷载作用下,变形完全稳定时基底处的最大竖向位移。
基础沉降按其原因和次序分为:瞬时沉降d S ;主固结沉降c S 和次固结沉降s S 三部分组成。
瞬时沉降:是指加荷后立即发生的沉降,对饱和土地基,土中水尚未排出的条件下,沉降主要由土体测向变形引起;这时土体不发生体积变化。
(初始沉降,不排水沉降)固结沉降:是指超静孔隙水压力逐渐消散,使土体积压缩而引起的渗透固结沉降,也称主固结沉降,它随时间而逐渐增长。
(主固结沉降)次固结沉降:是指超静孔隙水压力基本消散后,主要由土粒表面结合水膜发生蠕变等引起的,它将随时间极其缓慢地沉降。
(徐变沉降)因此:建筑物基础的总沉降量应为上述三部分之和,即s c s s s s s ++=计算地基最终沉降量的目的:(1)在于确定建筑物最大沉降量;(2)沉降差;(3)倾斜以及局部倾斜;(4)判断是否超过容许值,以便为建筑物设计值采取相应的措施提供依据,保证建筑物的安全。
1、 点荷载作用下地表沉降ErQ y x E Q s πνπν)1()1(2222-+-==2、 绝对柔性基础沉降⎰⎰----=Ay x d d p Ey x s 2202)()(),(1),(ηξηξηξπν0)1(2bp s c Ec ων-=3、 绝对刚性基础沉降(1) 中心荷载作用下,地基各点的沉降相等。
土力学_柳厚祥_第五章土的压缩性与沉降计算
第五章 土的压缩性与沉降计算§ 5.1 基本概念一、地基土在上部结构荷载作用下产生应力和变形⎩⎨⎧→→形状变形(剪破)体积变形(不破坏)zx yz xy z y x τττσσσ,,,,地基的竖直方向变形即为沉降三相土受力后的变形包括⎩⎨⎧排出土孔隙中的水和空气的,相互挤紧)土颗粒压缩(重新排列土体积减小的过程土体压缩性:指的是在压力作用下体积减小过程的特性,包括两个方面:1. 1. 压缩变形量的绝对大小(沉降量大) 2. 2. 压缩变形随时间的变化(固结问题)一、一、 工程意义地基的沉降有均匀沉降与不均匀沉降1. 1. 均匀沉降对路桥工程的上部结构危害较小,但过量的 均匀沉降也会导致路面标高的降低,桥下净空的减小而影响正常的使用。
2. 2. 不均匀沉降则会造成路堤的开裂,路面不平,超静定结构,桥梁产生较大的附加应力等工程问题,甚至影响其正常使用。
沉降计算是地基基础验算的重要内容,也是土力学的重要课题之一§5.2 研究土体压缩性的方法及变形指标一、一、 压缩试验与压缩性规律土体积的变小是孔隙体积变小的结果,研究土的压缩性大小及其特征的室内试验方法称为压缩试验。
对一般工程情况来说,或在压缩土层厚度比荷载面宽度小很多的情况下常用侧限压缩试验来研究土的压缩性。
试验室用以进行土的侧限压缩试验的仪器称为压缩仪(固结仪),如图5-1 所示 透水石以便土中水的排出传压活塞向土样施加压力。
由于环刀所限,增压或减压是土样只能在铅直方向产生压缩或回胀,而不可能产生侧向变形,故称为侧限压缩试验。
试验采用压缩仪进行压缩试验是研究土的压缩性最基本的方法,有上述已知,试样土粒本身体积是假定不变的,即()112211211,11,e h he e h e h v v s s +∆=∆+=+=,因此,试样在各级压力pi 作用下的变形,常用孔隙比e 的变化来表示。
(一)e-p 曲线的表示方法如右图所示е0a 曲线为压缩曲线 ab 曲线为减压曲线 ba’为才压缩曲线当在压的压力超过试样所曾经受过的最大压力后,其e-p 曲线很快就和压缩曲线的延长线重合如图a’c 所示。
土力学问答题_名词解释
一、名词解释1 . 塑限答:粘性土从可塑状态转变为半固体状态的界限含水率,也就是可塑状态的下限含水率。
2 . 不均匀系数答:定义为Cu= d60/ d10, d10 , d60分别为粒径分布曲线上小于某粒径土的土颗粒含量分别为10%和60%。
3 . 有效应力原理答:由外荷在研究平面上引起的法向总应力为σ,那么它必由该面上的孔隙力u和颗粒间的接触面共同分担,即该面上的总法向力等于孔隙力和颗粒间所承担的力之和,即σ=σ'+u。
4. 被动土压力答:当挡土墙向沿着填土方向转动或移动时,随着位移的增加墙后受到挤压而引起土压力增加,当墙后填土达到极限平衡状态时增加到最大值,作用在墙上的土压力称为被动土压力。
5 . 代替法答:代替法就是在土坡稳定分析重用浸润线以下,坡外水位以上所包围的同体积的水重对滑动圆心的力矩来代替渗流力对圆心的滑动力矩。
6 . 容许承载力答:地基所能承受的最大的基底压力称为极限承载力,记为fu.将f除以安全系数fs后得到的值称为地基容许承载力值fa,即fa=fu/fs7. 塑性指数液限和塑限之差的百分数值(去掉百分号)称为塑性指数,用表示,取整数,即:—液限,从流动状态转变为可塑状态的界限含水率。
—塑限,从可塑状态转变为半固体状态的界限含水率。
8. 临界水力坡降土体抵抗渗透破坏的能力,称为抗渗强度。
通常以濒临渗透破坏时的水力梯度表示,称为临界水力梯度。
9.不均匀系数不均匀系数的表达式:式中:和为粒径分布曲线上小于某粒径的土粒含量分别为60%和10%时所对应的粒径。
10.渗透系数当水力梯度i等于1时的渗透速度(cm/s或m/s)。
11.砂土液化液化被定义为任何物质转化为液体的行为或过程。
对于饱和疏松的粉细砂,当受到突发的动力荷载时,一方面由于动剪应力的作用有使体积缩小的趋势,另一方面由于时间短来不及向外排水,因此产生很大的孔隙水压力,当孔隙水压力等于总应力时,其有效应力为零。
根据太沙基有效应力原理,只有土体骨架才能承受剪应力,当土体的有效应力为零时,土的抗剪强度也为零,土体将丧失承载力,砂土就象液体一样发生流动,即砂土液化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ADINA
FOCUSED ON EXCELLENCE
Porous多孔介质单元组属性的设置
• Porous多孔介质属性的设置:
在单元组内采用2D轴对称单元且考虑porous属性。
ADINA
FOCUSED ON EXCELLENCE
ADINA
简单砂土层自重的固结沉降_a.in 初始模型:计算模型初始孔压
短期不排水条件模型的结果
• 竖直方向ZZ有效应力云图如下:
ADINA
FOCUSED ON EXCELLENCE
短期不排水条件模型的结果
• Node99的孔压及Z方向有效应力时程曲线如下:
ADINA
FOCUSED ON EXCELLENCE
ADINA
简单砂土层自重的固结沉降_c.in 长期排水条件下的固结模型
FOCUSED ON EXCELLENCE
长期排水条件下的边界条件
零孔压排水边界
ADINA
FOCUSED ON EXCELLENCE
不排水 边界
长期排水条件模型的结果
• 竖直Z方向位移云图如下:
ADINA
FOCUSED ON EXCELLENCE
长期排水条件模型的结果
• 孔压云图如下:
ADINA
短期不排水条件下的边界条件
零孔压排水边界
ADINA
FOCUSED ON EXCELLENCE
右侧 固定 水位
短期不排水条件模型的结果
• 竖直Z方向位移云图如下:
ADINA
FOCU型的结果
• 孔压云图如下:
ADINA
FOCUSED ON EXCELLENCE
ADINA
FOCUSED ON EXCELLENCE
初始阶段模型的结果
ADINA
• 竖直方向ZZ应力云图如下,可见默认的应力就是有效应力(=总应力-孔总压):
FOCUSED ON EXCELLENCE
ADINA
简单砂土层自重的固结沉降_b.in 短期不排水条件下的固结模型
FOCUSED ON EXCELLENCE
ADINA
简单砂土层自重的固结沉降
----Porous属性的应用
ADINA技术部
模型文件: 简单砂土层自重的固结沉降_a.in(初始模型) 简单砂土层自重的固结沉降_b.in(短期不排水条件下的固结模型) 简单砂土层自重的固结沉降_c.in(长期排水条件下的固结模型)
ADINA
FOCUSED ON EXCELLENCE
FOCUSED ON EXCELLENCE
初始阶段模型的边界条件
ADINA
初始F时OC刻US总ED孔O压N等E于XC静EL孔LE压NC(E 梯度变化)
初始阶段模型的结果
• 竖直Z方向位移云图如下:
ADINA
FOCUSED ON EXCELLENCE
初始阶段模型的结果
• 孔压云图如下,可见此时总孔压即是静水孔压:
FOCUSED ON EXCELLENCE
长期排水条件模型的结果
• 竖直方向ZZ有效应力云图如下:
ADINA
FOCUSED ON EXCELLENCE
长期排水条件模型的结果
• Node99的孔压及Z方向有效应力时程曲线如下:
ADINA
FOCUSED ON EXCELLENCE