2018-2019学年北京市海淀区七年级(下)期中数学试卷
2019-2020学年北京市海淀区七年级(下)期末数学试卷

2019-2020学年北京市海淀区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.如图所示,匕2和匕1是对顶侣的是(B.±2A.+16 C. -2 D.23.己知a<b,下列不等式中,变形正确的是()A・a—3>b—3B・?>: C.—3a>—3b D.3a-l>3b-l4.在平而直角坐标系中,如果点P(—1,-2+m)在第三象限,那么m的取值范困为()A.m<2B.m<2C. m<0D.mVO5.下列调查方式,你认为最合适的是()A.旅客上飞机前的安检,采用抽样调查方式B. 了解某地区饮用水矿物质含量:的情况,采用抽样调查方式C.调查某种品牌笔芯的使用寿命,采用全面调查方式D.调查浙江卫视傍跑吧.兄弟口步目的收视率.采用全而调查方式6.如图,将含30。
角的直角三角板的直角顶点放任直尺的一边上,己知匕1=35气则£2的度数是()A.55°B.45°C.35°7.下列命题中,是假命题的是()A.在同一平而内.过一点有且只有一条直线与己知直线垂直B同旁内角互补,两直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平•行D.两条直线被第三条直线所截,同位角相等8.如图,。
为直线A8上一点,0E平分ZBOC.ODLOE于点若匕BOC=80。
,则40D的度数是()CA. 70°B. 50。
C. 40°9・象棋在中国有着三千多年的历史•由于用具简单•趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“焉”和“卓”的点的坐标分别 为(4,3), (-2,1),则表示棋子“炮”的点的坐标为()汉界B. (0,3)C・(3,2)A. (-3,3)10.如图,任平面直角坐标系xOy^.如果一个点的坐标D・(13)J,可以用来表示关于心y 的二元一次方程组:写就二:的解,那么这个点是()二、填空题(本大题共6小题,共13.0分)11. 列不等式表示:X 与2的差小于一 1.12. 把无理数M7, MT ,西,-归表示在数轴匕在这四个无理数中,被墨迹(如图所13. 若(a-3)2 + v f hT2 = 0> 则a+b=・14. 写出二元一次方程2x + y = 5的一个非负整数解15. 如图,写出能判定AB//CD 的一对角的数量关系:A816.在平而直角坐标系中,对于点P (x,y ).如果点Q (x,<)的纵坐标满足V =(X -y^X >y^)那么称点Q 为点尸的“关联点,,.请写出点(3,5)的“关联点 ly —x (? lx Vy 时)的坐标:如果点P (x,y )的关联点。
2018-2019学年度七年级下册期中数学试卷(含答案和解析)

2018-2019学年度七年级下册期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.下列运算结果正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a52.如图,在“A”字型图中,AB、AC被DE所截,则∠ADE与∠DEC是()A.内错角B.同旁内角C.同位角D.对顶角3.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6B.ax﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)4.如图,下列条件不能判定直线a∥b的是()A.∠1=∠3B.∠2=∠4C.∠2=∠3D.∠2+∠3=180°5.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)6.多边形剪去一个角后,多边形的外角和将()A.减少180°B.不变C.增大180°D.以上都有可能7.若a m=2,a n=3,则a m+n等于()A.5B.6C.8D.98.如图,△ABC中,∠A=60°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于()A.60°B.90°C.120°D.150°二、填空题(本大题共10小题,每小题4分,共40分.)9.分解因式:2x2﹣x=.10.一种细菌的半径是0.0000076厘米,用科学记数法表示为厘米.11.如图,直线a,b被直线c所截,且a∥b,如果∠1=65°,那么∠2=度.12.一个多边形的内角和为900°,则这个多边形的边数为.13.如图,在△ABC中,BC=5cm,把△ABC沿直线BC的方向平移到△DEF的位置,若EC=2cm,则平移的距离为cm.14.314×(﹣)7=.15.若等腰三角形有两边长为2cm、5cm,则第三边长为cm.16.若x2+mx+16可以用完全平方公式进行分解因式,则m的值等于.17.如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为.18.对于任何实数,我们规定符号的意义是=ad﹣bc,按照这个规定,请你计算:当x2﹣3x+1=0时,的值为.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.计算:(﹣2)2﹣()﹣1+2018020.计算:a(2﹣a)+(a+1)(a﹣1)21.因式分解:9x2﹣6x+1.22.分解因式:x3﹣x四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.化简再求值:(3﹣5y)(3+5y)+(3+5y)2,其中.y=0.424.已知:x+y=5,xy=﹣3,求:(1)x2+y2的值(2)(1﹣x)(1﹣y)的值五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC的AB边上的中线CD;(2)画出△ABC向右平移4个单位后得到的△A1B1C1;(3)图中AC与A1C1的关系是:;(4)能使S△ABQ=S△ABC的格点Q共有个.26.如图:已知∠1=∠2,∠3=∠B,FG⊥AB于G,猜想CD与AB的位置关系,并写出合适的理由.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“a(a﹣2b)+2b(a﹣2b)”,小丽使“做减法”,列式为“a2﹣4b2”.(1)请你把上述两式都分解因式;(2)当a=63.5m、b=18.25m时,求这块草坪的面积.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.如图1,已知∠ACD是△ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,∠DBC与∠ECB分别为△ABC的两个外角,则∠DBC+∠ECB∠A+180°(横线上填>、<或=)初步应用:(2)如图3,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=135°,则∠2﹣∠C=.(3)解决问题:如图4,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.(4)如图5,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠A、∠D的数量关系.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.)1.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a2与a3是加,不是乘,不能运算,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、a3÷a2=a3﹣2=a,故本选项正确;D、(a2)3=a2×3=a6,故本选项错误.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.2.【分析】根据内错角是在截线两旁,被截线之内的两角,内错角的边构成”Z“形作答.【解答】解:如图,∠ADE与∠DEC是AB、AC被DE所截的内错角.故选:A.【点评】本题考查了内错角的定义,正确记忆内错角的定义是解决本题的关键.3.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的,利用排除法求解.【解答】解:A、是多项式乘法,不是因式分解,错误;B、右边不是积的形式,错误;C、不是把多项式化成整式的积,错误;D、是平方差公式,x2﹣4=(x+2)(x﹣2),正确.故选:D.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.4.【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.根据平行线的判定定理进行解答.【解答】解:A、∵∠1=∠2,∴a∥b(同位角相等,两直线平行);B、∵∠2=∠4,∴a∥b(同位角相等,两直线平行);C、∠2=∠3与a,b的位置无关,不能判定直线a∥b;D、∵∠2+∠3=180°,∴a∥b(同旁内角互补,两直线平行).故选:C.【点评】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,当同位角相等、内错角相等、同旁内角互补,能推出两被截直线平行.5.【分析】原式利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式计算的是(﹣x+1)(﹣x﹣1).故选:B.【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.6.【分析】多边形的内角和与边数相关,随着边数的不同而不同,而外角和是固定的360°,从而可得到答案.【解答】解:根据多边形的外角和为360°,可得:多边形剪去一个角后,多边形的外角和还是360°,故选:B.【点评】此题主要考查了多边形的外角和定理,题目比较简单,只要掌握住定理即可.7.【分析】根据a m•a n=a m+n,将a m=2,a n=3,代入即可.【解答】解:∵a m•a n=a m+n,a m=2,a n=3,∴a m+n=2×3=6.故选:B.【点评】此题考查了同底数幂的乘法运算,属于基础题,解答本题的关键是掌握同底数幂的乘法法则,难度一般.8.【分析】根据三角形的内角和等于180°求出∠AEF+∠AFE的度数,再根据折叠的性质求出∠AED+∠AFD的度数,然后根据平角等于180°解答.【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∵沿EF向内折叠△AEF,得△DEF,∴∠AED+∠AFD=2(∠AEF+∠AFE)=2×120°=240°,∴∠1+∠2=180°×2﹣240°=360°﹣240°=120°.故选:C.【点评】本题考查了三角形的内角和定理,翻转变换的性质,整体思想的利用是解题的关键.二、填空题(本大题共10小题,每小题4分,共40分.)9.【分析】首先找出多项式的公因式,然后提取公因式法因式分解即可.【解答】解:2x2﹣x=2x•x﹣x•1=x(2x﹣1).故答案为:x(2x﹣1).【点评】此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:一种细菌的半径是0.0000076厘米,用科学记数法表示为7.6×10﹣6厘米.故答案为:7.6×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】直接根据两直线平行,同旁内角互补可以求出∠2的度数.【解答】解:∵a∥b,∠1=65°,∴∠2=180°﹣65°=115°.故应填:115.【点评】本题主要利用两直线平行,同旁内角互补的性质求值.12.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)×180°=900°,解得:n=7,∴这个多边形的边数为7.故答案为:7.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.13.【分析】根据平移的性质可得对应点连接的线段是AD、BE和CF,结合图形可直接求解.【解答】解:观察图形可知,对应点连接的线段是AD、BE和CF.∵BC=5cm,CE=2cm,∴平移的距离=BE=BC﹣EC=3cm.故答案为:3.【点评】本题主要考查了平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.【分析】运用幂的乘方法则以及积的乘方法则的逆运算,即可得到计算结果.【解答】解:314×(﹣)7=(32)7×(﹣)7=(﹣×9)7=(﹣1)7=﹣1,故答案为:﹣1.【点评】本题主要考查了幂的乘方法则以及积的乘方法则,积的乘方,把每一个因式分别乘方,再把所得的幂相乘.15.【分析】分2cm是腰长与底边两种情况,利用三角形的三边关系判定即可得解.【解答】解:①2cm是腰长时,三角形的三边分别为2cm、2cm、5cm,∵2+2=4<5,∴此时不能组成三角形;②2cm是底边时,三角形的三边分别为2cm、5cm、5cm,能够组成三角形,所以,第三边长为5cm,综上所述,第三边长为5cm.故答案为:5.【点评】本题考查了等腰三角形两腰相等的性质,三角形的三边关系,注意分情况讨论并利用三角形三边关系作出判断.16.【分析】直接利用完全平方公式分解因式进而得出答案.【解答】解:∵x2+mx+16可以用完全平方公式进行分解因式,∴m的值等于:±8.故答案为:±8.【点评】此题主要考查了公式法分解因式,正确运用公式是解题关键.17.【分析】根据三角形内角和定理求出∠DMC,求出∠AMF,根据三角形外角性质得出∠1=∠A+∠AMF,代入求出即可.【解答】解:∵∠ACB=90°,∴∠MCD=90°,∵∠D=60°,∴∠DMC=30°,∴∠AMF=∠DMC=30°,∵∠A=45°,∴∠1=∠A+∠AMF=45°+30°=75°,故答案为75°.【点评】本题考查了三角形内角和定理,三角形的外角性质的应用,解此题的关键是求出∠AMF 的度数.18.【分析】根据题中的新定义将所求式子化为普通运算,整理后将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣3x+1=0,x2﹣3x=﹣1,∴=(x+1)(x﹣1)﹣3x(x﹣2)=x2﹣1﹣3x2+6x=﹣2x2+6x﹣1=﹣2(x2﹣3x)﹣1=2﹣1=1.故答案为:1【点评】此题考查了整式的混合运算﹣化简求值,弄清题中的新定义是解本题的关键.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.【分析】直接利用负指数幂的性质以及零指数幂的性质化简进而得出答案.【解答】解:原式=4+2﹣1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.【分析】直接利用单项式乘以多项式以及平方差公式计算得出答案.【解答】解:原式=2a﹣a2+a2﹣1=2a﹣1.【点评】此题主要考查了平方差公式以及单项式乘以多项式,正确运用公式是解题关键.21.【分析】原式利用完全平方公式分解即可.【解答】解:原式=(3x﹣1)2.【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.22.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.【解答】解:x3﹣x=x(x2﹣1)=x(x+1)(x﹣1).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.【分析】直接利用乘法公式计算进而合并同类项,再把已知代入求出答案.【解答】解:原式=9﹣25y2+9+30y+25y2=30y+18,把y=0.4代入得:原式=30×0.4+18=30.【点评】此题主要考查了整式的混合运算,正确掌握基本运算法则是解题关键.24.【分析】(1)将x2+y2变形为(x+y)2﹣2xy,然后将x+y=5,xy=﹣3代入求解即可;(2)将所求式子展开整理成x+y与xy的值代入计算,即可得到所求式子的值.【解答】解(1)∵x+y=5,xy=﹣3,∴原式=(x+y)2﹣2xy=25﹣2×(﹣3)=31;(2)∵x+y=5,xy=﹣3,∴原式=1﹣y﹣x+xy=1﹣(x +y )+xy=1﹣5+(﹣3)=﹣7.【点评】本题考查了完全平方公式,解答本题的关键在于熟练掌握完全平方公式:(a ±b )2=a 2±2ab +b 2五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.【分析】(1)根据中线的定义得出AB 的中点即可得出△ABC 的AB 边上的中线CD ; (2)平移A ,B ,C 各点,得出各对应点,连接得出△A 1B 1C 1;(3)利用平移的性质得出AC 与A 1C 1的关系;(4)首先求出S △ABC 的面积,进而得出Q 点的个数.【解答】解:(1)AB 边上的中线CD 如图所示:;(2)△A 1B 1C 1如图所示:;(3)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;故答案为:平行且相等;(4)如图所示:能使S △ABQ =S △ABC 的格点Q ,共有4个.故答案为:4.【点评】此题主要考查了平移的性质以及三角形面积求法以及中线的性质,根据已知得出△ABC 的面积进而得出Q点位置是解题关键.26.【分析】已知∠3=∠B,根据同位角相等,两直线平行,则DE∥BC,通过平行线的性质和等量代换可得∠2=∠DCB,从而证得CD∥GF,又因为FG⊥AB,所以CD与AB的位置关系是垂直.【解答】解:CD⊥AB.∵∠3=∠B.∴DE∥BC,∴∠1=∠4,又∵∠1=∠2,∴∠2=∠4,∴GF∥CD,∴∠CDB=∠BGF,又∵FG⊥AB,∴∠BGF=90°,∴∠CDB=90°,即CD⊥AB.【点评】本题考查了平行线的判定与性质.根据平行线的判定和性质,通过等量代换求证CD与AB的位置关系.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.【分析】(1)直接利用提取公因式法以及平方差公式分解因式,进而得出答案;(2)直接把已知数据代入进而得出答案.【解答】解:(1)a(a﹣2b)+2b(a﹣2b)=(a﹣2b)(a+2b);a2﹣4b2=(a﹣2b)(a+2b)(2)(a﹣2b)(a+2b)当a=63.5m、b=18.25m时,原式=(63.5﹣2×18.25)×(63.5+2×18.25)=(63.5﹣36.5)×(63.5+36.5)=2700.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确分解因式是解题关键.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.【分析】(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;(2)利用(1)的结论:∵∠2+∠1﹣∠C=180°,将∠1=135°代入可得结论;(3)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°﹣∠A;(4)根据平角的定义得:∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,由角平分线得:∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,相加可得:∠3+∠4=180°﹣(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.【解答】解:(1)∠DBC+∠ECB﹣∠A=180°,理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,∴∠DBC+∠ECB=∠A+180°.故答案为:=.(2)∠2﹣∠C=45°.理由是:∵∠2+∠1﹣∠C=180°,∠1=135°,∴∠2﹣∠C+135°=180°,∴∠2﹣∠C=45°.故答案为:45°;(3)∠P=90°﹣∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=∠DBC,∠BCP=∠ECB,∵△BPC中,∠P=180°﹣∠CBP﹣∠BCP=180°﹣(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°﹣(180°+∠A)=90°﹣∠A.故答案为:∠P=90°﹣∠A,(4)∠P=180°﹣(∠A+∠D).理由是:∵∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,∴∠3+∠4=180°﹣(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°﹣(∠A+∠D),又∵△PBC中,∠P=180°﹣(∠3+∠4)=(∠1+∠2),∴∠P=×[360°﹣(∠A+∠D)]=180°﹣(∠A+∠D).【点评】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,难度适中,熟练掌握三角形外角的性质是关键.。
2017-2018学年北京市北京师大附中七年级下学期期中考试数学试卷(含答案)

北京师大附中2017-2018学年下学期初中七年级期中考试数学试卷一、选择题:(本题共16分,每小题2分)1.下列各数中无理数有()3.141, 鼠-心,0,0.1010010001A. 2个B. 3个C. 4个D. 5个2.如图所示,四幅汽车标志设计中,能通过平移得到的是A. AB. BC. CD. D3.若小b,则下列不等式中,不一定成立的是()A. B 3 f b-3B. 4 + bC. 23 2bD. Jwly4.如图,直线AB与直线CD相交于点O, EOJLAB, L E OD-<5,则々lOC5.已知点A (a,b)在第三象限,则点B(-a+1 , 3b-1)在A.第一象限B.第二象限C.第三象限D.第四象限6.下列说法中正确的有()①负数没有平方根,但负数有立方根;②一个数的立方根等于它本身,则这个数是0或1;③,-5;④的的平方根是土W;⑤『定是负数A. 1个B. 2 个C. 3 个D. 4 个7.如图,直线a,b被直线c所截,-Z4,若々・4行,则匕工等于()A.Q|B.卜费C.D.飘X8.在平面上,过一定点。
作两条斜交的轴x和y,它们的交角是s (切于兜。
),以定点。
为原点,在每条轴上取相同的单位长度,这样就在平面上建立了一个斜角坐标系,其中仍叫做坐标角,对于平面内任意一点P, 过P作x轴和y轴的平行线,与两轴分别交于A和B,它们在两轴的坐标分别是x和y,于是点P的坐标就是(x,y),如图,辨-60°|,且y轴平分£MOx, OM=2则点M的坐标是( )A. (2, -2)B. (-1, 2)C. (-2, 2)D. (-2, 1)二、填空题:(本题共16分,每小题2分)9. ____ ___~\________10.点P (-2, 1)向上平移2个单位后的点的坐标为11.不等式2\-3三收*5的解集是12.已知实数x,y满足& 1+肉;6| 0,贝U x-y=13.已知点怙,3:i+6.a 1),若点P在x轴上,则点P的坐标为14.如图,AB//CD,若司则二的度数是.15.下列各命题中:①对顶角相等;②若则x=2;③入叵c/;④两条直线相交,若有一组邻补角相等,则这两条直线互相垂直,其中错误的命题是 (填序号)16.图a中,四边形ABC虚细长的长方形纸条,士”PD-《沿眄\将纸条的右半部分做第一次折叠,得到图b和交点p』;再沿pP:将纸条的右半部分做第二次折叠,得到图c和交点巴;再沿PP§将纸条的右半部分做第三次折叠,得到图d和交点I\.P a-------- K~5-(1)如果Q- 1T,那么-(2) ZPF4B -三、计算题(每小题6分,共24分)17.计算:屈+ 1手18.化简:||i£5i4成-科+球斗19. 解不等式20.已知a是1的算术平方根,b是8的立方根,求b-a的平方根四、几何解答:(每小题8分,共16分)21.已知:如图,AB//CD, , |^1 - 75°,解:卜.COTAB, kB-35Z二£"乙(,而£ 1 - 75°,MACD -小A —°,v CD //W,“ 4A '+= 1 孵.(,22.如图,AB//CD, £ 1 ・上二AM^MN,求证:求乙人的度数. DN1NINfl五、平面直角坐标系的应用(8分)23 .如图所示的象棋盘上,若 ,位于点(1, 0)上,。
北京市海淀区2019_2020学年七年级数学下学期期末试卷含解析

北京市海淀区2019-2020学年七年级数学下学期期末试卷一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有-一个.1.的平方根是()A.3 B.±3 C.D.±2.在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,O是BC上一点,AO⊥BC于点O,直线DE经过O点,∠BOD=25°,则∠AOE的度数为()A.100°B.105°C.115°D.125°4.数轴上点P表示的数可能是()A.B.C.D.5.不等式x﹣3≤3x+1的解集在数轴上表示正确的是()A.B.C.D.6.下列调查:①了解某批种子的发芽率;②了解某班学生对“社会主义核心价值观”的知晓率;③了解某地区地下水水质;④了解七年级(1)班学生参加“开放性科学实践活动”完成次数.适合采取全面调查的是()A.①③B.②④C.①②D.③④7.已知:OA⊥OC,∠AOB:∠BOC=1:3,则∠BOC的度数为()A.67.5°B.135°C.67.5°或135°D.无法确定8.某调查机构对某地互联网行业从业情况进行调查统计,得到当地互联网行业从业人员年龄分布统计图和当地90后从事互联网行业岗位分布统计图:对于以下四种说法,你认为正确的是()①在当地互联网行业从业人员中,90后人数占总人数的一半以上②在当地互联网行业从业人员中,80前人数占总人数的13%③在当地互联网行业中,从事技术岗位的90后人数超过总人数的20%④在当地互联网行业中,从事设计岗位的90后人数比80前人数少A.①③B.②④C.①②D.③④二、填空题(本题共16分,每小题2分)9.若x﹣1有平方根,则实数x的取值范围是.10.已知,是二元一次方程ax+2y=6的一个解,那么a的值为.11.平面直角坐标系数中点M(a,a+3)在x轴上,则a=.12.把命题“对顶角相等”写成“如果…,那么…”的形式为:如果,那么.13.已知+|x2﹣3y﹣13|=0,则x+y=.14.如图,有一条直的等宽纸带按图折叠时,则图中∠α=.15.已知关于x,y的二元一次方程组的解满足x+y<3,则m的取值范围为.16.下面是小满的一次作业,老师说小满的解题过程不完全正确,并在作业旁写出了批改.长跑比赛中,张华跑在前面,在离终点100m时他以4m/s的速度向终点冲刺,在他身后.10m的李明需以多快的速度同时开始冲刺,才能在张华之前到达终点?解:设李明以xm/s的速度开始冲刺.依题意,得<,两边同时除以25,得x>4.4.答:李明需以大于4.4m/s的速度同时开始冲刺,才能在张华之前到达终点.请回答:必须添加“根据实际意义可知,x>0”这个条件的理由是.三.解答题(本题共68分,第17、19、20、21题,每小题5分,第18题10分,第22-25题,每小题5分,第26-27题,每小题5分)17.(5分)计算:+﹣+|﹣2|.18.(10分)解方程或方程组:(1)2(x﹣1)2=8;(2).19.(5分)解不等式组:,并写出该不等式组的非负整数解.20.(5分)故宫是世界上现存规模最大,保存最完整的宫殿建筑群.小赵和小钱在学校组织的综合实践活动中来到故宫学习,他们建立了相同的坐标系描述各景点的位置.小赵:“养心殿在原点的西北方向.”小钱:“太和门的坐标是(0,﹣1).”实际上,他们说的位置都是正确的.你知道这两位同学是如何建立平面直角坐标系的吗?(1)依据两位同学的描述,可以知道他们选择景点为原点,建立了平面直角坐标系;(2)在图中画出这两位同学建立的平面直角坐标系;(3)九龙壁的坐标是,景仁宫的坐标是.21.(5分)完成下面的证明:已知:如图,DE∥BC,BE,DF分别是∠ABC,∠ADE的角平分线,求证:∠1=∠2.证明:∵DE∥BC,∴∠ABC=∠ADE,()∵BE,DF分别是∠ABC,∠ADE的角平分线,∴∠3=∠ABC;∠4=∠ADE,∴∠3=∠4,()∴∥,()∴∠1=∠2.()22.(6分)已知△A′B′C′是由△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示:△ABC A(a,1)B(3,3)C(2,﹣1)△A′B′C′A′(4,4)B′(9,b)C′(c,2)(1)观察表中各对应点坐标的变化,并填空:a=,b=,c=;(2)在平面直角坐标系中画出△ABC及平移后的△A′B′C′;(3)直接写出△A′B′C′的面积是.23.(6分)“全名阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1600元,20本文学名著比20本动漫书多400元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,而且文学名著不低于25本,总费用不超过2000,请求出所有符合条件的购书方案.24.(6分)经过举国上下抗击新型冠状病毒的斗争,疫情得到了有效控制,国内各大企业在2月9日后纷纷进入复工状态.为了了解全国企业整体的复工情况,我们查找了截止到2020年3月1日全国部分省份的复工率,并对数据进行整理、描述和分析.下面给出了一些信息:a.截止3月1日20时,全国已有11个省份工业企业复工率在90%以上,主要位于东南沿海地区,位居前三的分别是贵州(100%)、浙江(99.8%)、江苏(99%).b.各省份复工率数据的频数分布直方图如图1(数据分成6组,分别是40<x≤50;50<x≤60;60<x≤70;70<x≤80;80<x≤90;90<x≤100);c.如图2,在b的基础上,画出的扇形统计图:d.截止到2020年3月1日各省份的复工率在80<x≤90这一组的数据是:81.3,83.9,84,87.6,89.4,90,90请解答以下问题:(1)依据题意,样本容量是,补全频数分布直方图;(2)扇形统计图中50<x≤60这组的圆心角度数是度(精确到0.1);(3)根据以上统计图表计算截止2020年3月1日,样本中复工率85%以上的省份占%(精确到0.1).25.(6分)在平面直角坐标系xOy中,点P(x,y)经过变换τ得到点P′(x′,y′),该变换记作τ(x,y)=(x′,y′),其中(a,b为常数).例如,当a=1,且b=1时,τ(﹣2,3)=(1,﹣5).(1)当a=﹣1,且b=2时,τ(0,1)=;(2)若τ(1,2)=(﹣2,0),则a=,b=;(3)设点P(x,﹣2x),点P经过变换τ得到点P′(x′,y′).若点P′与点P关于x轴对称,求a和b的值.26.(7分)如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF;(2)在图2中,画∠BEP的平分线与∠DFP的平分线,两条角平分线交于点Q,请你补全图形,试探索∠EPF与∠EQF之间的关系,并证明你的结论;(3)在(2)的条件下,已知∠BEP和∠DFP均为钝角,点G在直线AB、CD之间,且满足∠BEG=∠BEP,∠DFG=∠DFP,(其中n为常数且n>1),直接写出∠EGF与∠EPF的数量关系.27.(7分)阅读材料:平面直角坐标系中点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的折线距离,记为[P],即[P]=|x|+|y|,其中的“+”是四则运算中的加法,例如点P(1,2)的折线距离[P]=|1|+|2|=3.【解决问题】(1)已知点A(﹣2,4),B(+,﹣),直接写出[A],[B]的折线距离;(2)若点M满足[M]=2,①当点M在x轴的上方时,且横坐标为整数,求点M的坐标;②正方形EFGH的两个顶点坐标分别为E(t,0),F(t﹣1,0),当正方形EFGH上存在点M时,直接写出t的取值范围.2019-2020学年北京市海淀区七年级(下)期末数学试卷参考答案与试题解析一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有-一个.1.的平方根是()A.3 B.±3 C.D.±【分析】首先根据平方根概念求出=3,然后求3的平方根即可.【解答】解:∵=3,∴的平方根是±.故选:D.2.在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P(﹣3,2)在第二象限,故选:B.3.如图,O是BC上一点,AO⊥BC于点O,直线DE经过O点,∠BOD=25°,则∠AOE的度数为()A.100°B.105°C.115°D.125°【分析】根据垂直关系知∠AOC=90°,由对顶角相等可求∠COE,再根据角的和差关系可求∠AOE的度数.【解答】解:∵AO⊥BC,∴∠AOC=90°,∵∠COE=∠BOD=25°,∴∠AOE=90°+25°=115°.故选:C.4.数轴上点P表示的数可能是()A.B.C.D.【分析】首先判定出2<<3,由此即可解决问题.【解答】解:因为2<<3,所以数轴上点P表示的数可能是.故选:A.5.不等式x﹣3≤3x+1的解集在数轴上表示正确的是()A.B.C.D.【分析】先根据不等式的性质:先移项,然后合并同类项再系数化1即可解得不等式,然后注意在数轴上表示时小于方向向左,包含,应用实心圆点表示.【解答】解:不等式x﹣3≤3x+1,移项得:x﹣3x≤3+1,合并同类项得:﹣2x≤4解得:x≥﹣2;在数轴上表示为:故选:D.6.下列调查:①了解某批种子的发芽率;②了解某班学生对“社会主义核心价值观”的知晓率;③了解某地区地下水水质;④了解七年级(1)班学生参加“开放性科学实践活动”完成次数.适合采取全面调查的是()A.①③B.②④C.①②D.③④【分析】全面调查与抽样调查的优缺点:①全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.②抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.【解答】解:①了解某批种子的发芽率,适合抽样调查;②了解某班学生对“社会主义核心价值观”的知晓率,适合全面调查;③了解某地区地下水水质,适合抽样调查;④了解七年级(1)班学生参加“开放性科学实践活动”完成次数,适合全面调查.故选:B.7.已知:OA⊥OC,∠AOB:∠BOC=1:3,则∠BOC的度数为()A.67.5°B.135°C.67.5°或135°D.无法确定【分析】根据垂直关系知∠AOC=90°,由∠AOB:∠BOC=1:3,分两种情况可求∠BOC 的度数.【解答】解:∵OA⊥OC,∴∠AOC=90°,如图1:∵∠AOB:∠BOC=1:3,∴∠BOC=×90°=67.5°;如图2:∵∠AOB:∠BOC=1:3,∴∠BOC=90°÷=135°.综上所述,∠BOC的度数为67.5°或135°.故选:C.8.某调查机构对某地互联网行业从业情况进行调查统计,得到当地互联网行业从业人员年龄分布统计图和当地90后从事互联网行业岗位分布统计图:对于以下四种说法,你认为正确的是()①在当地互联网行业从业人员中,90后人数占总人数的一半以上②在当地互联网行业从业人员中,80前人数占总人数的13%③在当地互联网行业中,从事技术岗位的90后人数超过总人数的20%④在当地互联网行业中,从事设计岗位的90后人数比80前人数少A.①③B.②④C.①②D.③④【分析】根据扇形统计图可以得出各个年龄段的人数占调查总人数的百分比,再根据条形统计图可以得出90后从事互联网行业岗位的百分比,进而求出90后从事互联网行业岗位占调查总人数的百分比,就可以比较,做出判断.【解答】解:对于选项①,互联网行业从业人员中90后占调查人数的56%,占一半以上,所以该选项正确;对于选项②,在当地互联网行业从业人员中,80前人数占调查总人数的3%,所以该选项错误;对于选项③,互联网行业中从事技术岗位的人数90后占总人数的56%×41%=23%,所以该选项正确;对于选项④,互联网行业中,从事设计岗位的90后人数占调查人数的56%×8%=4.48%,而80前从事互联网行业的只占1﹣56%﹣41%=3%,因此该选项不正确;因此正确的有:①③,故选:A.二、填空题(本题共16分,每小题2分)9.若x﹣1有平方根,则实数x的取值范围是x≥1 .【分析】根据非负数有平方根,列式求解即可.【解答】解:根据题意得,x﹣1≥0,解得x≥1.故答案为:x≥1.10.已知,是二元一次方程ax+2y=6的一个解,那么a的值为 2 .【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:将代入方程ax+2y=6,得:2a+2=6,解得:a=2,故答案为:2.11.平面直角坐标系数中点M(a,a+3)在x轴上,则a=﹣3 .【分析】根据x轴上点的纵坐标为0列方程求解即可.【解答】解:∵点M(a,a+3)在x轴上,∴a+3=0,解得a=﹣3.故答案为:﹣3.12.把命题“对顶角相等”写成“如果…,那么…”的形式为:如果两个角是对顶角,那么这两个角相等.【分析】先找到命题的题设和结论,再写成“如果…,那么…”的形式.【解答】解:原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,命题“对顶角相等”写成“如果…,那么…”的形式为:“如果两个角是对顶角,那么这两个角相等”.故答案为:两个角是对顶角;这两个角相等.13.已知+|x2﹣3y﹣13|=0,则x+y=﹣1 .【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣2=0,x2﹣3y﹣13=0,解得x=2,y=﹣3,所以,x+y=2+(﹣3)=﹣1.故答案为:﹣1.14.如图,有一条直的等宽纸带按图折叠时,则图中∠α=70°.【分析】根据平行线的性质,40度的同位角加上α等于折叠角的度数,又由折叠的性质可知α+α+40=180度,由此可求出α的度数.【解答】解:根据平行线性质,折叠的角度是(α+40)度,根据折叠性质,折叠角度再加上α就是个平角180度.即α+α+40°=180度,解得α=70度.故答案为:70°.15.已知关于x,y的二元一次方程组的解满足x+y<3,则m的取值范围为m <1 .【分析】将方程组中两个方程相加得出3x+3y=12m﹣3,两边都除以3可得x+y=4m﹣1,根据x+y<3可得关于m的不等式,解之可得.【解答】解:,①+②,得:3x+3y=12m﹣3,∴x+y=4m﹣1,∵x+y<3,∴4m﹣1<3,解得m<1,故答案为:m<1.16.下面是小满的一次作业,老师说小满的解题过程不完全正确,并在作业旁写出了批改.长跑比赛中,张华跑在前面,在离终点100m时他以4m/s的速度向终点冲刺,在他身后.10m 的李明需以多快的速度同时开始冲刺,才能在张华之前到达终点?解:设李明以xm/s的速度开始冲刺.依题意,得<,两边同时除以25,得x>4.4.答:李明需以大于4.4m/s的速度同时开始冲刺,才能在张华之前到达终点.请回答:必须添加“根据实际意义可知,x>0”这个条件的理由是不等式两边乘以x,根据不等式的性质,x的正负决定不等号的方向是否改变,所以先判断x的正负.【分析】利用分式有意义的条件和时间的实际意义求解.【解答】解:必须添加“根据实际意义可知,x>0”这个条件的理由是不等式两边乘以x,根据不等式的性质,x的正负决定不等号的方向是否改变,所以先判断x的正负.故答案为不等式两边乘以x,根据不等式的性质,x的正负决定不等号的方向是否改变,所以先判断x的正负.三.解答题(本题共68分,第17、19、20、21题,每小题5分,第18题10分,第22-25题,每小题5分,第26-27题,每小题5分)17.(5分)计算:+﹣+|﹣2|.【分析】直接利用二次根式的性质以及绝对值的性质、立方根的性质分别化简得出答案.【解答】解:原式=8﹣2﹣1+2﹣=7﹣.18.(10分)解方程或方程组:(1)2(x﹣1)2=8;(2).【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)方程组利用加减消元法求出解即可.【解答】解:(1)2(x﹣1)2=8,整理得:(x﹣1)2=4,开方得:x﹣1=2或x﹣1=﹣2,解得:x1=3,x2=﹣1;(2),①+②×2得:9x=18,解得:x=2,把x=2代入①得:y=1,则方程组的解为.19.(5分)解不等式组:,并写出该不等式组的非负整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出其整数解.【解答】解:解不等式+2≥x,得:x≤1,解不等式3(x﹣1)﹣1>x﹣8,得:x>﹣2,则不等式组的解集为﹣2<x≤1,所以不等式组的非负整数解为0和1.20.(5分)故宫是世界上现存规模最大,保存最完整的宫殿建筑群.小赵和小钱在学校组织的综合实践活动中来到故宫学习,他们建立了相同的坐标系描述各景点的位置.小赵:“养心殿在原点的西北方向.”小钱:“太和门的坐标是(0,﹣1).”实际上,他们说的位置都是正确的.你知道这两位同学是如何建立平面直角坐标系的吗?(1)依据两位同学的描述,可以知道他们选择景点保和殿为原点,建立了平面直角坐标系;(2)在图中画出这两位同学建立的平面直角坐标系;(3)九龙壁的坐标是(2,0),景仁宫的坐标是(1,1.5).【分析】(1)根据题意,可知图中每个两个小格子为一个单位长度,从而可以确定出原点的位置,从而可以解答本题;(2)根据题意可以画出相应的平面直角坐标系;(3)根据(2)中的坐标系可以直接写出九龙壁和景仁宫的坐标.【解答】解:(1)由题意可得,依据两位同学的描述,可以知道他们选择景点保和殿为原点,建立了平面直角坐标系,故答案为:保和殿;(2)平面直角坐标系如图所示;(3)由(2)中的坐标系,可知九龙壁的坐标是(2,0),景仁宫的坐标是(1,1.5),故答案为:(2,0),(1,1.5).21.(5分)完成下面的证明:已知:如图,DE∥BC,BE,DF分别是∠ABC,∠ADE的角平分线,求证:∠1=∠2.证明:∵DE∥BC,∴∠ABC=∠ADE,(两直线平行,同位角相等)∵BE,DF分别是∠ABC,∠ADE的角平分线,∴∠3=∠ABC;∠4=∠ADE,∴∠3=∠4,(等量代换)∴BE∥DF,(同位角相等,两直线平行)∴∠1=∠2.(两直线平行,内错角相等)【分析】依据平行线的性质,即可得到∠ABC=∠ADE,再根据角平分线的定义,即可得出∠3=∠4,进而得到BE∥DF,最后依据平行线的性质,即可得出结论.【解答】证明:∵DE∥BC,∴∠ABC=∠ADE,(两直线平行,同位角相等)∵BE,DF分别是∠ABC,∠ADE的角平分线,∴∠3=∠ABC;∠4=∠ADE,∴∠3=∠4,(等量代换)∴BE∥DF,(同位角相等,两直线平行)∴∠1=∠2.(两直线平行,内错角相等)故答案为:两直线平行,同位角相等;等量代换;BE;DF;同位角相等,两直线平行;两直线平行,内错角相等.22.(6分)已知△A′B′C′是由△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示:△ABC A(a,1)B(3,3)C(2,﹣1)△A′B′C′A′(4,4)B′(9,b)C′(c,2)(1)观察表中各对应点坐标的变化,并填空:a=﹣2 ,b= 6 ,c=8 ;(2)在平面直角坐标系中画出△ABC及平移后的△A′B′C′;(3)直接写出△A′B′C′的面积是9 .【分析】(1)观察表中各对应点坐标的变化,△A′B′C′是由△ABC经过向上平移3个单位,向右平移6个单位得到的,进而可填空;(2)根据(1)即可在平面直角坐标系中画出△ABC及平移后的△A′B′C′;(3)根据割补法即可求出△A′B′C′的面积.【解答】解:(1)观察表中点A和点A′坐标的变化,点B和点B′坐标的变化可知:△A′B′C′是由△ABC经过向上平移3个单位,向右平移6个单位得到的,∴a=﹣2,b=6,c=8;故答案为:﹣2,6,8;(2)如图,△ABC及△A′B′C′即为所求;(3)△A′B′C′的面积为:5×4﹣2×5﹣1×4﹣2×4=9.故答案为:9.23.(6分)“全名阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1600元,20本文学名著比20本动漫书多400元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,而且文学名著不低于25本,总费用不超过2000,请求出所有符合条件的购书方案.【分析】(1)设每本文学名著x元,每本动漫书y元,列出方程组即可解决问题;(2)设学校要求购买文学名著x本,动漫书为(x+20)本,构建不等式组,求整数解即可;【解答】解:(1)设每本文学名著x元,每本动漫书y元,根据题意可得:,解得:,答:每本文学名著和动漫书各为40元和20元.(2)设学校要求购买文学名著x本,动漫书为(x+20)本,根据题意可得:,解得:25≤x≤26,因为x取整数,所以x取25,26;方案一:文学名著25本,动漫书45本;方案二:文学名著26本,动漫书46本.24.(6分)经过举国上下抗击新型冠状病毒的斗争,疫情得到了有效控制,国内各大企业在2月9日后纷纷进入复工状态.为了了解全国企业整体的复工情况,我们查找了截止到2020年3月1日全国部分省份的复工率,并对数据进行整理、描述和分析.下面给出了一些信息:a.截止3月1日20时,全国已有11个省份工业企业复工率在90%以上,主要位于东南沿海地区,位居前三的分别是贵州(100%)、浙江(99.8%)、江苏(99%).b.各省份复工率数据的频数分布直方图如图1(数据分成6组,分别是40<x≤50;50<x≤60;60<x≤70;70<x≤80;80<x≤90;90<x≤100);c.如图2,在b的基础上,画出的扇形统计图:d.截止到2020年3月1日各省份的复工率在80<x≤90这一组的数据是:81.3,83.9,84,87.6,89.4,90,90请解答以下问题:(1)依据题意,样本容量是28 ,补全频数分布直方图;(2)扇形统计图中50<x≤60这组的圆心角度数是12.9 度(精确到0.1);(3)根据以上统计图表计算截止2020年3月1日,样本中复工率85%以上的省份占53.6 %(精确到0.1).【分析】(1)80<x≤90这组的频数为7,频率为25%,可求出样本容量;计算出50<x ≤60组的频数即可补全频数分布直方图;(2)50<x≤60组的频数为1,样本容量为28,因此相应的圆心角的度数占360°的即可;(3)样本中,80<x≤90组复产率超过85%的有4个,90<x≤100组的频数为11个,可求出复产率超过85%的所占的频率.【解答】解:(1)7÷25%=28(个),全国已有11个省份工业企业复工率在90%以上,即:90<x≤100的频数为11,则50<x≤60的频数为28﹣11﹣3﹣6﹣7=1,故答案为:28,补全频数分布直方图如图所示;(2)360°×≈12.9°,故答案为:12.9;(3)(11+4)÷28≈53.6%,故答案为:53.6.25.(6分)在平面直角坐标系xOy中,点P(x,y)经过变换τ得到点P′(x′,y′),该变换记作τ(x,y)=(x′,y′),其中(a,b为常数).例如,当a=1,且b=1时,τ(﹣2,3)=(1,﹣5).(1)当a=﹣1,且b=2时,τ(0,1)=(8,﹣4);(2)若τ(1,2)=(﹣2,0),则a=﹣1 ,b=﹣;(3)设点P(x,﹣2x),点P经过变换τ得到点P′(x′,y′).若点P′与点P关于x轴对称,求a和b的值.【分析】(1)将a=﹣1,b=2,τ(0,1),代入,可求x′,y′的值,从而求解;(2)将τ(1,2)=(﹣2,0),代入,可得关于a,b的二元一次方程组,解方程组即可求解;(3)由点P(x,﹣2x)经过变换τ得到的对应点P'(x',y')与点P关于x轴对称,可得τ(x,y)=(x,y).根据点P(x,y)在直线y=2x上,可得关于a,b的二元一次方程组,解方程组即可求解.【解答】解:(1)当a=﹣1,且b=2时,x′=﹣1×(﹣2)+2×3=8,y′=﹣1×(﹣2)﹣2×3═﹣4,则τ(0,1)=(8,﹣4);(2)∵τ(1,2)=(﹣2,0),∴,解得a=﹣1,b=﹣;(3)∵点P(x,﹣2x)经过变换τ得到的对应点P'(x',y')与点P关于x轴对称,∴τ(x,﹣2x)=(x,2x).∴,即,∵x为任意的实数,∴,解得.故答案为:(8,﹣4);﹣1,﹣.26.(7分)如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF;(2)在图2中,画∠BEP的平分线与∠DFP的平分线,两条角平分线交于点Q,请你补全图形,试探索∠EPF与∠EQF之间的关系,并证明你的结论;(3)在(2)的条件下,已知∠BEP和∠DFP均为钝角,点G在直线AB、CD之间,且满足∠BEG=∠BEP,∠DFG=∠DFP,(其中n为常数且n>1),直接写出∠EGF与∠EPF的数量关系.【分析】(1)首先过点P作PG∥AB,然后根据AB∥CD,PG∥CD,可得∠AEP=∠1,∠CFP=∠2,据此判断出∠AEP+∠CFP=∠EPF即可;(2)首先由(1)可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ;然后根据∠BEP的平分线与∠DFP的平分线相交于点Q,推得∠EQF=(360﹣∠EPF),即可判断出∠EPF+2∠EQF=360°.(3)首先由(1)可得∠EGF=∠AEG+∠CFG,∠EPF=∠BEP+∠DFP;然后根据∠BEP=∠BEG,∠DFP=∠DFG,推得∠EPF=×(360°﹣∠EGF),即可判断出∠EGF+n∠EPF =360°.【解答】证明:(1)如图1,过点P作PG∥AB,,∵AB∥CD,∴PG∥CD,∴∠AEP=∠1,∠CFP=∠2,又∵∠1+∠2=∠EPF,∴∠AEP+∠CFP=∠EPF;(2)如图2,,由(1)可得:∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,∵∠BEP的平分线与∠DFP的平分线相交于点Q,∴∠EQF=∠BEQ+∠DFQ=(∠BEP+∠DFP)=[360°﹣(∠AEP+∠CFP)]=(360﹣∠EPF),∴∠EPF+2∠EQF=360°;(3)由(1)可得:∠EGF=∠AEG+∠CFG,∠EPF=∠BEP+∠DFP,∵∠BEP=∠BEG,∠DFP=∠DFG,∴∠EPF=∠BEP+∠DFP=(∠BEG+∠DFG)=[360°﹣(∠AEG+∠CFG)]=×(360°﹣∠EGF),∴∠EGF+n∠EPF=360°.27.(7分)阅读材料:平面直角坐标系中点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的折线距离,记为[P],即[P]=|x|+|y|,其中的“+”是四则运算中的加法,例如点P(1,2)的折线距离[P]=|1|+|2|=3.【解决问题】(1)已知点A(﹣2,4),B(+,﹣),直接写出[A],[B]的折线距离;(2)若点M满足[M]=2,①当点M在x轴的上方时,且横坐标为整数,求点M的坐标;②正方形EFGH的两个顶点坐标分别为E(t,0),F(t﹣1,0),当正方形EFGH上存在点M时,直接写出t的取值范围.【分析】(1)根据题意可以求得[A],[B]的折线距离;(2)①根据题意可知y>0,然后根据[M]=2,即可求得点M的坐标;②由题意可得EF=1,由正方形的性质可列不等式,即可求解.【解答】解:(1)∵点A(﹣2,4),B(+,﹣),∴[A]=|﹣2|+|4|=2+4=6,[B]=|+|+|﹣|=++﹣=2;(2)①∵点M在x轴的上方,其横坐标为整数,且[M]=2,∴x=±1时,y=1或x=0时,y=2,∴点M的坐标为(﹣1,1)或(1,1)或(0,2);②∵正方形EFGH的两个顶点坐标分别为E(t,0),F(t﹣1,0),∴EF=1,若M(﹣1,1)在正方形EFGH上时,∴t﹣1≤﹣1≤t,∴﹣1≤t≤0,若M(1,1)在正方形EFGH上时,∴t﹣1≤1≤t,∴1≤t≤2,综上所述:t的取值范围为﹣1≤t≤0或1≤t≤2.。
模拟卷:2018-2019学年七年级数学下学期期中原创卷A卷(河南)

数学试题 第1页(共4页) 数学试题 第2页(共4页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________绝密★启用前|豫2018-2019学年下学期期中原创卷A 卷七年级数学(考试时间:100分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:人教版七下第5—7章。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是 A .B .C .D .2.下列四个数中,是无理数的是 A .|-2|B .38C .1.732D .2-3.16的算术平方根是 A .2B .4C .±2D .±44.如图,与∠B 是同旁内角的角有A .1个B .2个C .3个D .4个5.如图,在数轴上表示7的点在哪两个字母之间A .B 与C B .A 与B C .A 与CD .C 与D6.如图,l 1与l 3交于点P ,l 2与l 3交于点Q ,∠1=104°,∠2=87°,要使得l 1∥l 2,下列操作正确的是A .将l 1绕点P 逆时针旋转14°B .将l 1绕点P 逆时针旋转17°C .将l 2绕点Q 顺时针旋转11°D .将l 2绕点Q 顺时针旋转14°7.已知点P (m +3,2m +4)在x 轴上,那么点P 的坐标为 A .(-1,0)B .(1,0)C .(-2,0)D .(2,0)8.如图,点E 在BC 的延长线上,下列条件中不能判定AB ∥CD 的是A .34∠=∠B .12∠=∠C .B DCE ∠=∠D .180B DAB ∠+∠=︒9.已知点P (a ,b )到x 轴的距离是2,到y 轴的距离是5,且||a b a b -=-,则P 点的坐标是 A .(5,2)B .(2,−5)C .(5,2)或(5,−2)D .(2,−5)或(5,2)10.如图,在平面直角坐标系中,从点P 1(-1,0),P 2(-1,-1),P 3(1,-1),P 4(1,1),P 5(-2,1),P 6(-2,-2),……,依次扩展下去,则P 2018的坐标为A .(-503,503)B .(504,504)C .(-506,-506)D .(-505,-505)第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)1113a ,小数部分是b ,则a -b =__________.数学试题 第3页(共4页) 数学试题 第4页(共4页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………12.如图,DE ∥BC ,EF ∥AB ,图中与∠BFE 互补的角有__________.13.已知一个正数的两个平方根分别是4a +1和a -11,则这个正数是__________. 14.如图,在正方形网格中,若A (1,1),B (2,0),则C 点的坐标为__________.15.已知点A (0,1),B (0,2),点C 在x 轴上,且2ABC S =△,则点C 的坐标__________. 三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分8分)计算:(1)23(2)|21|27-+--;(2)310.048|32|34+-++-+.17.(本小题满分9分)求下列代数式的值:(1)如果a 2=4,b 的算术平方根为3,求a +b 的值;(2)已知x 是25的平方根,y 是16的算术平方根,且x <y ,求x -y 的值.18.(本小题满分9分)如图,12180AGF ABC ∠=∠∠+∠=︒,. (1)试判断BF 与DE 的位置关系,并说明理由; (2)若2150BF AC ⊥∠=︒,,求AFG ∠的度数.19.(本小题满分9分)(1)已知:2a +1的算术平方根是3,3a -b -1的立方根是2,求320b a +的值.(2)已知a 是10的整数部分,b 是它的小数部分,求a 2+(b +3)2的值.20.(本小题满分9分)如图,直线AB 与CD 相交于点O ,OF ,OD 分别是∠AOE ,∠BOE 的平分线.(1)写出∠DOE 的补角;(2)若∠BOE =62°,求∠AOD 和∠EOF 的度数;(3)射线OD 与OF 之间的夹角是多少?21.(本小题满分10分)如图,∠BAP +∠APD =180°,∠AOE =∠1,∠FOP =∠2.(1)若∠1=55°,求∠2的度数; (2)求证:AE ∥FP .22.(本小题满分10分)如图所示,把三角形ABC 向上平移3个单位长度,再向右平移2个单位长度,得到三角形A 1B 1C 1.(1)在图中画出三角形A 1B 1C 1; (2)写出点A 1,B 1的坐标;(3)在y 轴上是否存在一点P ,使得三角形BCP 与三角形ABC 面积相等?若存在,请直接写出点P 的坐标;若不存在,说明理由.23.(本小题满分11分)已知下面四个图形中,AB ∥CD ,探究四个图形中,∠APC 与∠PAB ,∠PCD 的数量关系.(1)图①中,∠APC 与∠PAB ,∠PCD 的关系是__________;(2)图②中,∠APC 与∠PAB ,∠PCD 的关系是__________;(3)请你在图③和图④中任选一个,说明∠APC 与∠PAB ,∠PCD 的关系,并加以证明.。
2020年北京市海淀区七年级(下)期中数学试卷

七年级(下)期中数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.的相反数是()A. B. C. - D.2.如图,∠1的同位角是()A. ∠2B. ∠3C. ∠4D. ∠53.下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D.4.如图,点B,C,E三点共线,且BA∥CD,则下面说法正确的是()A. ∠2=∠BB. ∠1=∠BC. ∠3=∠BD. ∠3=∠A5.估算的值是在()A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间6.如图,将线段AB平移得到线段CD,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标为()A. (2,1)B. (2,3)C. (1,3)D. (1,2)7.若实数a,b满足+|b-1|=0,那么a+b的值是()A. -1B. 1C. -2D. 28.在平面直角坐标系xOy中,若点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点P的坐标为()A. (3,-1)B. (-3,1)C. (1,-3)D. (-1,3)9.如图,已知平行线a,b,一个直角三角板的直角顶点在直线a上,另一个顶点在直线b上,若∠1=70°,则∠2的大小为()A. 15°B. 20°C. 25°D. 30°10.如图的网格线是由边长为1的小正方形格子组成的,小正方形的顶点叫格点,以格点为顶点的多边形叫格点多边形,小明研究发现,内部含有3个格点的四边形的面积与该四边形边上的格点数有某种关系,请你观察图中的4个格点四边形.设内部含有3个格点的四边形的面积为S,其各边上格点的个数之和为m,则S与m的关系为()A. S=mB.C.D.二、填空题(本大题共8小题,共24.0分)11.实数4的算术平方根为______.12.若点P(2x+6,3x-3)在y轴上,则点P的坐标为______.13.若一个二元一次方程组的解是请写出一个符合此要求的二元一次方程组______.14.比较大小:______(填“>”“<”“=”).15.如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A是135°,则第二次的拐角∠B是______,根据是______.16.如果方程组的解是方程7x+my=16的一个解,则m的值为______.17.如图,在长方形内有两个相邻的正方形A,B,正方形A的面积为2,正方形B的面积为4,则图中阴影部分的面积是______.18.初三年级261位学生参加期末考试,某班35位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如图1和图2所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,总成绩名次靠前的学生是______;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是______,你选择的理由是______.三、计算题(本大题共1小题,共6.0分)19.解下列方程组(1)(2)四、解答题(本大题共8小题,共40.0分)20.计算:.21.如图,已知AD∥BC,∠1=2.求证:BE∥DF.22.如图,已知CO⊥AB于点O,∠AOD=5∠DOB,求∠COD的度数.23.一个数值转换器,如图所示:(1)当输入的x为16时.输出的y值是______;(2)若输入有效的x值后,始终输不出y值,请写出所有满足要求的x的值,并说明你的理由;(3)若输出的y是,请写出两个满足要求的x值:______.24.作图题:如图,直线AB,CD相交于点O,点P为射线OC上异于O的一个点.(1)请用你手中的数学工具画出∠AOC的平分线OE;(2)过点P画出(1)中所得射线OE的垂线PM(垂足为点M),并交直线AB于点N;(3)请直接写出上述所得图形中的一对相等线段______.25.如图,已知CF∥DE,∠ABC=85°,∠CDE=150°,∠BCD=55°,求证:AB∥DE.26.对于平面直角坐标系xOy中的点P(x,y),若点Q的坐标为(x+ay,ax+y)(其中a为常数,且a≠0),则称Q是点P的“a系联动点”.例如:点P(1,2)的“3系联动点”Q的坐标为(7,5).(1)点(3,0)的“2系联动点”的坐标为______;若点P的“-2系联动点”的坐标是(-3,0),则点P的坐标为______;(2)若点P(x,y)的“a系联动点”与“-a系联动点”均关于x轴对称,则点P 分布在______,请证明这个结论;(3)在(2)的条件下,点P不与原点重合,点P的“a系联动点”为点Q,且PQ 的长度为OP长度的3倍,求a的值.27.在直角坐标系中,点O为坐标原点,A(1,1),B(1,3),将线段AB平移到直线AB的右边得到线段CD(点C与点A对应,点D与点B对应),点D的坐标为(m,n),且m>1.(1)如图1,当点C坐标为(2,0)时,请直接写出三角形BCD的面积:______;(2)如图2,点E是线段CD延长线上的点,∠BDE的平分线DF交射线AB于点F.求证:∠C=2∠AFD;(3)如图3,线段CD运动的过程中,在(2)的条件下,n=4.①当m=4时,在直线AB上点P,满足三角形PBC的面积等于三角形CDF的面积,请直接写出点P的坐标:______;②在x轴上的点Q,满足三角形QBC的面积等于三角形CDF的面积的2倍,请直接写出点Q的坐标:______.(用含m的式子表示).答案和解析1.【答案】B【解析】解:的相反数是-,故选:B.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.【答案】A【解析】解:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角.故选:A.根据同位角的定义即可求出答案.本题考查同位角的定义,解题的关键是熟练理解同位角的定义,本题属于基础题型.3.【答案】D【解析】解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选:D.根据平移与旋转的性质得出.本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,导致误选.4.【答案】C【解析】解:∵AB∥CD,∴∠2=∠A,∠B=∠3,∴A、B、D,都不正确,故选:C.由平行线的性质逐项判断即可.本题主要考查平行线的性质,熟练掌握平行线的性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.5.【答案】B【解析】解:∵<,∴4<<5.故选B.找出比较接近的有理数,即与,从而确定它的取值范围.此题主要考查了估计无理数大小的方法,找出最接近的有理数,再进行比较是解决问题的关键.6.【答案】D【解析】解:平移中,对应点的对应坐标的差相等,设D的坐标为(x,y);根据题意:有4-(-1)=x-(-4);7-4=y-(-1),解可得:x=1,y=2;故D的坐标为(1,2).故选:D.直接利用平移中点的变化规律求解即可.本题考查点坐标的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.7.【答案】A【解析】解:∵+|b-1|=0,∴a+2=0,b-1=0,解得:a=-2,b=1,则a+b=-2+1=-1.故选:A.直接利用绝对值的性质以及二次根式的性质得出a,b的值,进而得出答案.此题主要考查了绝对值的性质以及二次根式的性质,正确把握相关定义是解题关键.8.【答案】A【解析】解:若点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点的坐标为(3,-1),故选:A.根据点到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,可得答案.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.【答案】B【解析】解:∵a∥b,∠1=70°∴∠3=70°,∵直角三角板的直角顶点在直线a上,∴∠2=90°-∠3=20°,故选:B.先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.本题考查的是平行线的性质以及垂线的定义的运用,解题时注意:两直线平行,内错角相等.10.【答案】C【解析】解:如图,第1个图形,S1=3×3-×3×2-×3×1=4.5,m=5;第2个图形,S2=×2×4=4,m=4;第3个图形,S3=3×3-×2×1×2-×1×1-×2×2=4.5,m=5;第4个图形,S4=3×4-×2×1-×1×1-×3×3=6,m=8;分别代入各解析式,S=m+2都符合条件;故选:C.分别计算各图形中的面积和格点数,确定对应用关系中的S和m的值,分别代入各解析式,可作判断.本题是图形类的函数题,需要根据图中表格和格点图形,与自己所算得的数据结合,确定其对应的函数关系式.11.【答案】2【解析】解:∵22=4,∴4的算术平方根是2.故答案为:2.依据算术平方根根的定义求解即可.本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.12.【答案】(0,-12)【解析】解:∵点P(2x+6,3x-3)在y轴上,∴2x+6=0,解得:x=-3,则3x-3=-3×3-3=-12.故答案为:(0,-12).直接利用在y轴上点的坐标性质进而得出答案.此题主要考查了点的坐标,正确得出x的值是解题关键.13.【答案】【解析】解:∵二元一次方程组的解为,∴这个方程组可以是,故答案为:,根据二元一次方程组的解找到x与y的数量关系,然后列出方程组即可.本题考查的是二元一次方程组解的定义,解答此题的关键是把方程的解代入各组方程中,看各方程是否成立.14.【答案】>【解析】解:∵-1>1,∴>.故填空结果为:>.因为分母相同所以比较分子的大小即可,可以估算的整数部分,然后根据整数部分即可解决问题.此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.当分母相同时比较分子的大小即可.15.【答案】135°两直线平行,内错角相等【解析】解:∠B=135°,理由是:∵道路是平行的,∴∠B=∠A=135°.即两直线平行,内错角相等;故答案为:135°;两直线平行,内错角相等由于拐弯前、后的两条路平行,可考虑用平行线的性质解答.此题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.16.【答案】2【解析】解:解方程组,得:,将代入7x+my=16,得:14+m=16,解得:m=2,故答案为:2.两个方程具有相同的解,可运用加减消元法得出二元一次方程组的解,然后将得出的x、y的值代入7x+my=16中,即可得出m的值.本题考查的是二元一次方程组的解法,解二元一次方程组常用加减消元法和代入法,本题运用的是加减消元法.17.【答案】【解析】解:设两个正方形A,B的边长是x、y(x<y),则x2=2,y2=4,x=,y=2,则阴影部分的面积是(y-x)x=(2-)×=2-2,故答案为:2-2.设两个正方形A,B的边长是x、y(x<y),得出方程x2=2,y2=4,求出x=,y=2,代入阴影部分的面积是(y-x)x求出即可.本题考查了二次根式的应用、算术平方根性质的应用,主要考查学生的计算能力.18.【答案】甲数学理由如下:由图2可知,该班总成绩在丙之后的有4人,据此可知,在图1中由右往左数的第5个点即表示丙,分别过图1和图2中代表丙的点作水平线,易知在图1中语文成绩在丙之后的人数明显少于图2中数学成绩在丙之后的人数,故丙同学的数学成绩更靠前【解析】解:(1)通过图象可知:在甲、乙两人中,总成绩名次靠前的学生是甲,故答案为:甲,(2)在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学,故答案为:数学,由图2可知,该班总成绩在丙之后的有4人,据此可知,在图1中由右往左数的第5个点即表示丙,分别过图1和图2中代表丙的点作水平线,易知在图1中语文成绩在丙之后的人数明显少于图2中数学成绩在丙之后的人数,故丙同学的数学成绩更靠前.(1)图1中,过表示甲、乙的点分布作横轴的垂线,在横轴上对应的数甲的较小,因此总成绩的排名甲在前面,(2)通过图1、图2,在图1中由右往左数的第5个点即表示丙,分别过图1和图2中代表丙的点作水平线,易知在图1中语文成绩在丙之后的人数明显少于图2中数学成绩在丙之后的人数,故丙同学的数学成绩更靠前.考查统计图的意义和识图的能力,理解统计图中各个点所表示的实际意义,是解决问题的关键,两个统计图结合起来得出数量之间的关系是基本的方法.19.【答案】解:(1)把①代入②得3x+2(2x-1)=5,解得:x=1,把x=1代入①,德:y=1,∴;(2)②×2,得4x+2y=-6 ③①+③,得5x=-5,解得:x=-1.把x=-1代入①,得-1-2y=1,解得:y=-1,∴.【解析】(1)利用代入消元法求解可得;(2)利用加减消元法求解可得.本题考查的是二元一次方程组的解法,解二元一次方程组常用加减消元法和代入法.20.【答案】解:原式=2+2-+2=6-.【解析】直接利用绝对值的性质以及二次根式的性质化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.【答案】证明:∵AD∥BC,∴∠1=∠3,又∵∠1=∠2,∴∠2=∠3,∴BE∥DF.【解析】根据平行线的性质和判定证明即可.此题考查平行线的判定和性质,关键是根据平行线的性质和判定解答.22.【答案】解:∵∠AOD=5∠BOD,设∠BOD=x°,∠AOD=5x°.∵∠AOD+∠BOD=180°,∴x+5x=180.∴x=30.∴∠BOD=30°.∵CO⊥AB,∴∠BOC=90°.∴∠COD=∠BOC-∠BOD=90°-30°=60°.【解析】根据邻补角的意义,可得关于x的方程,根据余角的性质的性质,可得答案.本题考查了垂线,利用邻补角的意义得出∠BOD的度数是解题关键.23.【答案】3和9【解析】解:(1)∵16的算术平方根是4,4是有理数,4不能输出,∴4的算术平方根是2,2是有理数,2不能输出,∴2的算术平方根是,是无理数,输出,故答案为:(2)∵0和1的算术平方根是它们本身,0和1是有理数,∴当x=0和1时,始终输不出y的值;(3)9的算术平方根是3,3的算术平方根是,故答案为:3和9.(1)根据算术平方根,即可解答;(2)根据0和1的算术平方根是它们本身,0和1是有理数,所以始终输不出y值;(3)3和9都可以.本题考查了算术平方根,解决本题的关键是熟记算术平方根.24.【答案】OP=ON【解析】解:如图:(1)射线OE即为所求:(2)线段PM,PN即为所求:(3)OP=ON,(或者PM=NM).故答案为:OP=ON.(1)根据角平分线的作法画图即可;(2)根据垂线的作法画出图形即可;(3)根据等腰三角形的三线合一解答即可.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.25.【答案】解:∵CF∥DE,∠CDE=150°,∴∠DCF=180°-∠CDE=180°-150°=30°.∵∠BCD=55°,∴∠BCF=∠BCD+∠DCF=55°+30°=85°,又∵∠ABC=85°,∴∠ABC=∠BCF,∴AB∥CF,又∵CF∥DE,∴AB∥DE.【解析】根据平行线的性质和判定证明即可.本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解决问题的关键.26.【答案】(3,6)(1,2)x轴上【解析】解:(1)点(3,0)的“2系联动点”的坐标为(3+2×0,2×3+0),即(3,6),点P(x,y)的“-2系联动点”的坐标是(-3,0),则,解得,即P(1,2),故答案为(3,6),P(1,2);(2)结论:点P分布在x轴上.理由:∵点P(x,y)的“a系联动点”的坐标为(x+ay,ax+y)(其中a为常数,且a≠0),∴点P(x,y)的“-a系联动点”为(x-ay,-ax+y).∵点P的“a系联动点”与“-a系联动点”均关于x轴对称,∴,∵a≠0,∴y=0,∴点P在x轴上.故答案为:在x轴上.(3)∵在(2)的条件下,点P不与原点重合,∴点P的坐标为(x,0),x≠0,∵点P的“a系联动点”为点Q,∴点Q的坐标为(x,ax),∵PQ的长度为OP长度的3倍,∴3|x|=|ax|,∴|a|=3,∴a=±3.(1)根据Q是点P的“a系联动点”的定义,计算或构建方程组解决问题即可;(2)根据Q是点P的“a系联动点”的定义的定义,理由轴对称的性质构建方程组即可解决问题;(3)构建方程即可解决问题;本题考查几何变换综合题、二元一次方程组、坐标与图形的性质、Q是点P的“a系联动点”的定义等知识,解题的关键是理解题意,学会用方程分思想思考问题,属于中考压轴题,27.【答案】1 (1,1)或(1,5)(2-m,0)或(7m-6,0)【解析】(1)解:如图1中,∵C(2,0),D(2,2),B(1,3),∴S△BCD=×2×1=1.故答案为1;(2)证明:如图2中,∵线段AB平移得到线段CD(点C与点A对应,点D与点B对应),∴AB∥CD,AC∥BD.∴∠AFD=∠FDE,∠C=∠BDE.∵DF是∠BDE的角平分线,∴∠BDE=2∠FDE.∴∠BDE=2∠AFD.∴∠C=2∠AFD;(3)解:①如图3中,设P(1,m).由题意•|m-3|•3=×2×3,解得m=5或1,∴P1(1,5),P2(1,1);故答案为(1,1)或(1,5);②如图3-1中,在BA的延长线上取一点G(1,-1),连接CG、CB、CF.易证S△BCG=2S△DCF,过点G作GQ∥BC交x轴于Q,此时S△QBC=S△GBC=2S△DCF,∵B(1,3),C(m,2),∴直线BC的解析式为y=x+,∴直线QG的解析式为y=x+,令y=0,得到x=2-m,∴Q(2-m,0),在射线DE取K(m,6),则S△KBC=2S△DCF,过点K作BC的平行线交x轴于Q′,此时S△Q′BC=2S△DCF,由直线KQ′的解析式为:y=x+,令y=0,得到x=7m-6,∴Q′(7m-6,0).综上所述,满足条件的点P坐标为(2-m,0)或(7m-6,0).故答案为(2-m,0)或(7m-6,0).(1)根据B、C、D的坐标,利用三角形的面积公式计算即可;(2)利用平行线的性质证明即可;(3)分两种情形,寻找特殊点,构建一次函数即可解决问题;本题考查三角形综合题、平行线的性质、三角形的面积、一次函数的应用等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会构建一次函数解决问题,学会用转化的思想思考问题,属于中考压轴题.。
人教版北京市海淀区2018-2019学年七年级(下)期中考试数学试卷(含答案)

2018-2019学年北京市海淀区七年级(下)期中数学试卷一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.4的算术平方根是()A.16B.±2C.2D.2.在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.4.如图所示,AB∥CD,若∠1=144°,则∠2的度数是()A.30°B.32°C.34°D.36°5.在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,内错角相等D.两直线平行,同位角相等6.如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A.4B.5C.6D.77.小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x轴、y轴正方向,图中点A的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是()A.(3.2,1.3)B.(﹣1.9,0.7)C.(0.7,﹣1.9)D.(3.8,﹣2.6)8.我们知道“对于实数m,n,k,若m=n,n=k,则m=k”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a,b,c是直线,若a∥b,b∥c,则a∥c.②a,b,c是直线,若a⊥b,b⊥c,则a⊥c.③若∠α与∠β互余,∠β与∠γ互余,则∠α与∠γ互余.其中正确的命题是()A.①B.①②C.②③D.①②③9.如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x 值可能为()A.1B.6C.9D.1010.根据表中的信息判断,下列语句中正确的是x1515.115.215.315.415.515.615.715.815.916 x2225228.01231.04234.09237.16240.25243.36246.49249.64252.81256()A.=1.59B.235的算术平方根比15.3小C.只有3个正整数n满足15.5D.根据表中数据的变化趋势,可以推断出16.12将比256增大3.19二、填空题(本大题共16分,每小题2分)11.(2分)将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为.12.(2分)如图,数轴上点A,B对应的数分别为﹣1,2,点C在线段AB上运动.请你写出点C可能对应的一个无理数.13.(2分)如图,直线a,b相交,若∠1与∠2互余,则∠3=.14.(2分)依据图中呈现的运算关系,可知a=,b=.15.(2分)平面直角坐标系xOy中,已知线段AB与x轴平行,且AB=5,若点A的坐标为(3,2),则点B的坐标是.16.(2分)一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点D在斜边AB上.现将三角板DEF绕着点D顺时针旋转,当DF第一次与BC平行时,∠BDE的度数是.17.(2分)如图,电子宠物P在圆上运动,点O处设置有一个信号转换器,将宠物P的位置信号沿着垂直于线段OP的方向OQ传送,被信号接收板l接收.若传送距离越近,接收到的信号越强,则当P点运动到图中号点的位置时,接收到的信号最强(填序号①,②,③或④).18.(2分)若两个图形有公共点,则称这两个图形相交,否则称它们不相交.回答下列问题:(1)如图1,直线P A,PB和线段AB将平面分成五个区域(不包含边界),当点Q落在区域时,线段PQ与AB相交(直接填写区域序号);(2)在设计印刷线路板时,常常会利用折线连接元件,要求所有连线不能相交.如图2,如果沿着图中的格线连接印有相同字母的元件,那么一共有种连线方案.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.(8分)计算:(1)+()2﹣;(2).20.(8分)求出下列等式中x的值:(1)12x2=36;(2).21.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(﹣3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:;(2)若中国人民大学的坐标为(﹣3,﹣4),请在坐标系中标出中国人民大学的位置.22.有一张面积为100cm2的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为150cm2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.四、解答题(本大题共11分,23题5分,24题6分)23.(5分)如图,点D,点E分别在∠BAC的边AB,AC上,点F在∠BAC内,若EF∥AB,∠BDF=∠CEF.求证:DF∥AC.24.(6分)已知正实数x的平方根是m和m+b.(1)当b=8时,求m;(2)若m2x+(m+b)2x=4,求x的值.五、解答题(本大题共19分,25~26每题6分,27题7分)25.(6分)在平面直角坐标系xOy中,已知点A(a,a),B(a,a﹣3),其中a为整数.点C在线段AB上,且点C的横纵坐标均为整数.(1)当a=1时,画出线段AB;(2)若点C在x轴上,求出点C的坐标;(3)若点C纵坐标满足1,直接写出a的所有可能取值:.26.(6分)如图,已知AB∥CD,点E是直线AB上一个定点,点F在直线CD上运动,设∠CFE=α,在线段EF上取一点M,射线EA上取一点N,使得∠ANM=160°.(1)当∠AEF=时,α=;(2)当MN⊥EF时,求α;(3)作∠CFE的角平分线FQ,若FQ∥MN,直接写出α的值:.27.(7分)对于平面直角坐标系xOy中的不同两点A(x1,y1),B(x2,y2),给出如下定义:若x1x2=1,y1y2=1,则称点A,B互为“倒数点”.例如,点A(,1),B(2,1)互为“倒数点”.(1)已知点A(1,3),则点A的倒数点B的坐标为;将线段AB水平向左平移2个单位得到线段A′B′,请判断线段A′B′上是否存在“倒数点”.(填“是”或“否”);(2)如图所示,正方形CDEF中,点C坐标为(),点D坐标为(),请判断该正方形的边上是否存在“倒数点”,并说明理由;(3)已知一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值:.2018-2019学年北京市海淀区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:C.2.【解答】解:点P(﹣3,2)在第二象限,故选:B.3.【解答】解:根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选:D.4.【解答】解:∵AB∥CD,∴∠1=∠CAB=144°,∵∠2+∠CAB=180°,∴∠2=180°﹣∠CAB=36°,故选:D.5.【解答】解:有平行线的画法知道,得到同位角相等,即同位角相等两直线平行.∴同位角相等两直线平行.故选:B.6.【解答】解:根据题意得:平移折线AEB,得到折线CFD,则平移过程中扫过的图形为矩形ABCD,所以其面积为2×3=6,故选:C.7.【解答】解:由图可知,(﹣1.9,0.7)距离原点最近,故选:B.8.【解答】解:①a,b,c是直线,若a∥b,b∥c,则a∥c,是真命题.②a,b,c是直线,若a⊥b,b⊥c,则a∥c,是假命题.③若∠α与∠β互余,∠β与∠γ互余,则∠α=∠γ,是假命题;故选:A.9.【解答】解:A.将x=1代入程序框图得:输出的y值为1,不符合题意;B.将x=6代入程序框图得:输出的y值为3,不符合题意;C.将x=9代入程序框图得:输出的y值为3,不符合题意;D.将x=10代入程序框图得:输出的y值为4,符合题意;故选:D.10.【解答】解:A.根据表格中的信息知:,∴=1.59,故选项不正确;B.根据表格中的信息知:<,∴235的算术平方根比15.3大,故选项不正确;C.根据表格中的信息知:15.52=240.25<n<15.62=243.36,∴正整数n=241或242或243,∴只有3个正整数n满足15.5,故选项正确;D.根据表格中的信息无法得知16.12的值,∴不能推断出16.12将比256增大3.19,故选项不正确.故选:C.二、填空题(本大题共16分,每小题2分)11.【解答】解:将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为(﹣1,7),故答案为:(﹣1,7),12.【解答】解:由C点可得此无理数应该在﹣1与2之间,故可以是,故答案为:(答案不唯一,无理数在﹣1与2之间即可),13.【解答】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°﹣45°=135°,故答案为:135°.14.【解答】解:依据图中呈现的运算关系,可知2019的立方根是m,a的立方根是﹣m,∴m3=2019,(﹣m)3=a,∴a=﹣2019;又∵n的平方根是2019和b,∴b=﹣2019.故答案为:﹣2019,﹣2019.15.【解答】解:∵线段AB与x轴平行,∴点B的纵坐标为2,点B在点A的左边时,3﹣5=﹣2,点B在点A的右边时,3+5=8,∴点B的坐标为(﹣2,2)或(8,2).故答案为:(﹣2,2)或(8,2).16.【解答】解:∵DF∥BC,∴∠FDB=∠ABC=45°,∴∠EDB=∠DFB﹣∠EDF=45°﹣30°=15°,故答案为15°.17.【解答】解:根据垂线段最短,得出当OQ⊥直线l时,信号最强,即当当P点运动到图中①号点的位置时,接收到的信号最强;故答案为:①.18.【解答】解:(1)当点Q落在区域②时,线段PQ与AB相交;(2)点A沿向上两个格、向右三个格、向下一个格连接,也可以沿向上两个格、向右两个格、向下一个格、向右一个格连接,两种方法;点B沿向下两个格、向右一个格连接,或向下一个格、向右一个格、向下一个格连接,或向右一个格、向下两个格连接,或向右一个格、向下一个格、向左一个格、向下一个格、向右一个格连接,共四种方法;点C只有一种连接方法,所以共6种方法.故答案为:②,6.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.【解答】解:(1)原式==(2)原式==.20.【解答】解:(1)x2=3∴x=±(2)x3﹣24=3x3=27∴x=321.【解答】解:(1)北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:22.【解答】解:设长方形信封的长为5xcm,宽为3xcm.由题意得:5x•3x=150,解得:x=(负值舍去)所以长方形信封的宽为:3x=3,∵=10,∴正方形贺卡的边长为10cm.∵(3)2=90,而90<100,∴3<10,答:不能将这张贺卡不折叠的放入此信封中.四、解答题(本大题共11分,23题5分,24题6分)23.【解答】证明:∵EF∥AB,∴∠CEF=∠A,∵∠BDF=∠CEF,∴∠BDF=∠A,∴DF∥AC.24.【解答】解:(1)∵正实数x的平方根是m和m+b ∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=.五、解答题(本大题共19分,25~26每题6分,27题7分)25.【解答】解:(1)(2)由题意可知,点C的坐标为(a,a),(a,a﹣1),(a,a﹣2)或(a,a﹣3),∵点C在x轴上,∴点C的纵坐标为0.由此可得a的取值为0,1,2或3,因此点C的坐标是(0,0),(1,0),(2,0),(3,0)(3)a的所有可能取值是2,3,4,5.故答案为:2,3,4,5.26.【解答】解:(1)∵AB∥CD,∴∠AEF+∠CFE=180°,∵∠CFE=α,∠AEF=,∴α+=180°,∴α=120°;(2)如,1所示,过点M作直线PM∥AB,由平行公理推论可知:AB∥PM∥CD.∵∠ANM=160°,∴∠NMP=180°﹣160°=20°,又∵NM⊥EF,∴∠NMF=90°,∠PMF=∠NMF﹣∠NMP=90°﹣20°=70°.∴α=180°﹣∠PMF=180°﹣70°=110°;(3)如图2,∵FQ平分∠CFE,∴∠QFM=,∵AB∥CD,∴∠NEM=180°﹣α,∵MN∥FQ,∴∠NME=,∵∠ENM=180°﹣∠ANM=20°,∴20°++180°﹣α=180°,∴α=40°.故答案为:120°,40°.27.【解答】解:(1)设A(x1,y1),B(x2,y2),∵x1x2=1,y1y2=1,A(1,3),∴x2=1,y2=,点B的坐标为(1,),将线段AB水平向左平移2个单位得到线段A′B′,则A′(﹣1,3),B′(﹣1,),∵﹣1×(﹣1)=1,3×=1,∴线段A′B′上存在“倒数点”,故答案为:(1,);是;(2)正方形的边上存在“倒数点”M、N,理由如下:①若点M(x1,y1)在线段CF上,则x1=,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=,点N(x2,y2)应当满足y2=,∴点N只可能在线段DE上,N(,),此时点M(,)在线段EF上,满足题意;∴该正方形各边上存在“倒数点”M(,),N(,);(3)如图所示:一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,则该正方形有两条边在坐标轴上,∵坐标轴上的点的横坐标或纵坐标为0,∴在坐标轴上的边上不存在倒数点,又∵该正方形各边上不存在“倒数点”,∴各边上点的横坐标和纵坐标的绝对值都≤1,即正方形面积的最大值为1;故答案为:1.。
2018-2019学年北京市海淀区七年级(上)期末数学试卷-普通用卷

2018-2019学年北京市海淀区七年级(上)期末数学试卷副标题一、选择题(本大题共10小题,共30.0分)1.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A. B.C. D. 没有刻度尺,无法确定2.-5的绝对值是()A. 5B.C.D.3.2018年10月23日,世界上最长的跨海大桥-港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为()A. B. C. D.4.下列计算正确的是()A. B.C. D.5.若x=-1是关于x的方程2x+3=a的解,则a的值为()A. B. 5 C. D. 16.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2的大小是()A.B.C.D.7.已知AB=6,下面四个选项中能确定点C是线段AB中点的是()A. B. C. D.8.若x=2时x4+mx2-n的值为6,则当x=-2时x4+mx2-n的值为()A. B. 0 C. 6 D. 269.从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是()A. B. C. D.10.数轴上点A,M,B分别表示数a,a+b,b,那么下列运算结果一定是正数的是()A. B. C. ab D.二、填空题(本大题共8小题,共16.0分)11.比较大小:-3______-2.1(填“>”,“<”或“=”).12.图中A,B两点之间的距离是______厘米(精确到厘米),点B在点A的南偏西______°(精确到度).13.如图是一位同学数学笔记可见的一部分.若要补充文中这个不完整的代数式,你补充的内容是:______.14.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为______(用含a,b的式子表示).15.如图,点O在直线AB上,射线OD平分∠COA,∠DOF=∠AOE=90°,图中与∠1相等的角有______(请写出所有答案).16.传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x 表示珐琅书签的销量,则可列出一元一次方程______.17.已知点O为数轴的原点,点A,B在数轴上,若AO=10,AB=8,且点A表示的数比点B表示的数小,则点B表示的数是______.18.如图,这是一个数据转换器的示意图,三个滚珠可以在槽内左右滚动.输入x的值,当滚珠发生撞击,就输出相撞滚珠上的代数式所表示数的和y.已知当三个滚珠同时相撞时,不论输入x的值为多大,输出y的值总不变.(1)a=______;(2)若输入一个整数x,某些滚珠相撞,输出y值恰好为-1,则x=______.三、计算题(本大题共4小题,共25.0分)19.计算:(1)5-32÷(-3);(2)-8×(+1-1).20.解方程:(1)5x+8=1-2x;(2).21.已知2a-b=-2,求代数式3(2ab2-4a+b)-2(3ab2-2a)+b的值.22.洛书(如图1),古称龟书,现已入选国家级非物质文化遗产名录.洛书是术数中乘法的起源,“戴九履一,左三右七,二四为肩,六八为足,五居中宫”是对洛书形象的描述,洛书对应的九宫格(如图2)填有1到9这九个正整数,满足任一行、列、对角线上三个数之和相等.洛书的填法古人是怎么找到的呢?在学习了方程相关知识后,小凯尝试探究其中的奥秘.【第一步】设任一行、列、对角线上三个数之和为S,则每一行三个数的和均为S,而这9个数的和恰好为1到9这9个正整数之和,由此可得S=______;【第二步】再设中间数为x,利用包含中间数x的行、列、对角线上的数与9个数的关系可列出方程,求解中间数x.请你根据上述探究,列方程求出中间数x的值.四、解答题(本大题共5小题,共29.0分)23.如图,点C在∠AOB的边OA上,选择合适的画图工具按要求画图.(1)反向延长射线OB,得到射线OD,画∠AOD的角平分线OE;(2)在射线OD上取一点F,使得OF=OC;(3)在射线OE上作一点P,使得CP+FP最小;(4)写出你完成(3)的作图依据:______.24.如图1,已知点C在线段AB上,点M为AB的中点,AC=8,CB=2.(1)求CM的长;(2)如图2,点D在线段AB上,若AC=BD,判断点M是否为线段CD的中点,并说明理由.25.已知k≠0,将关于x的方程kx+b=0记作方程◇.(1)当k=2,b=-4时,方程◇的解为______;(2)若方程◇的解为x=-3,写出一组满足条件的k,b值:k=______,b=______;(3)若方程◇的解为x=4,求关于y的方程k(3y+2)-b=0的解.26.如图,已知点O在直线AB上,作射线OC,点D在平面内,∠BOD与∠AOC互余.(1)若∠AOC:∠BOD=4:5,则∠BOD=______;(2)若∠AOC=α(0°<α≤45°),ON平分∠COD.①当点D在∠BOC内,补全图形,直接写出∠AON的值(用含α的式子表示);②若∠AON与∠COD互补,求出α的值.27.数学是一门充满思维乐趣的学科,现有3×3的数阵A,数阵每个位置所对应的数都是1,2或3.定义a*b为数阵中第a行第b列的数.例如,数阵A第3行第2列所对应的数是3,所以3*2=3.(1)对于数阵A,2*3的值为______;若2*3=2*x,则x的值为______;(2)若一个3×3的数阵对任意的a,b,c均满足以下条件:条件一:a*a=a;条件二:(a*b)*c=a*c;则称此数阵是“有趣的”.①请判断数阵A是否是“有趣的”.你的结论:______(填“是”或“否”);②已知一个“有趣的”数阵满足1*2=2,试计算2*1的值;③是否存在“有趣的”数阵,对任意的a,b满足交换律a*b=b*a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:由图可知,A′B′<AB;故选:C.根据比较线段的长短进行解答即可.本题主要考查了比较线段的长短,解题的关键是正确比较线段的长短.2.【答案】A【解析】解:-5的绝对值是:|-5|=5.故选:A.根据绝对值的含义和求法,可得-5的绝对值是:|-5|=5,据此解答即可.此题主要考查了绝对值的含义和求法的应用,要熟练掌握,解答此题的关键是要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.3.【答案】C【解析】解:55000=5.5×104.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】B【解析】解:∵3a+2b不能合并,故选项A错误;∵3a-(-2a)=3a+2a=5a,故选项B正确;∵3a2-2a不能合并,故选项C错误;∵(3-a)-(2-a)=3-a-2+a=1,故选项D错误,故选:B.根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.【答案】D【解析】解:把x=-1代入方程得:-2+3=a,解得:a=1,则a的值为1,故选:D.把x=-1代入方程计算即可求出a的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.【答案】B【解析】解:∵∠BAC=60°,∠1=27°40′,∴∠EAC=32°20′,∵∠EAD=90°,∴∠2=90°-∠EAC=90°-32°20′=57°40′;故选:B.根据∠BAC=60°,∠1=27°40′,求出∠EAC的度数,再根据∠2=90°-∠EAC,即可求出∠2的度数.本题主要考查了度分秒的换算,关键是求出∠EAC的度数,是一道基础题.7.【答案】B【解析】解:A、AC+BC=6,C不一定在线段AB中点的位置,不符合题意;B、AC=BC=3,点C是线段AB中点,符合题意;C、BC=3,点C不一定是线段AB中点,不符合题意;D、AB=2AC,点C不一定是线段AB中点,不符合题意.故选:B.根据线段中点的定义确定出点A、B、C三点共线的选项即为正确答案.本题考查了两点间的距离,要注意根据条件判断出A、B、C三点是否共线.8.【答案】C【解析】解:把x=2代入得:16+4m-n=6,解得:4m-n=-10,则当x=-2时,原式=16+4m-n=16-10=6,故选:C.把x=2代入求出4m-n的值,再将x=-2代入计算即可求出所求.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.【答案】D【解析】解:从正面看是,故选:D.根据从正面看得到的图形是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.10.【答案】A【解析】解:数轴上点A,M,B分别表示数a,a+b,b,由它们的位置可得a<0,a+b>0,b>0且|a|<|b|,则a-b<0,ab<0,|a|-b<0,故运算结果一定是正数的是a+b.故选:A.数轴上点A,M,B分别表示数a,a+b,b,由它们的位置可得a<0,a+b>0,b>0且|a|<|b|,再根据整式的加减乘法运算的计算法则即可求解.考查了列代数式,数轴,正数和负数,绝对值,关键是得到a<0,a+b>0,b>0且|a|<|b|.11.【答案】<【解析】解:∵|-3|>|-2.1|,∴-3<-2.1,故答案为:<.直接根据负数比较大小的法则进行比较即可.本题考查的是有理数大小,熟知以下知识是解答此题的关键:正数都大于0,负数都小于0,正数大于一切负数;两个负数相比较,绝对值大的反而小.12.【答案】2 58【解析】解:测量可得,图中A,B两点之间的距离是2厘米(精确到厘米),点B在点A 的南偏西58°(精确到度).故答案为:2,58.根据长度的测量可求图中A,B两点之间的距离;根据方向角的定义可求点B 的方向.考查了两点间的距离,关键是熟练掌握长度和角的测量方法.13.【答案】答案不唯一,如:2x3【解析】解:可以写成:2x3+xy-5,故答案为:2x3.根据多项式的次数定义进行填写,答案不唯一,可以是2x3,3x3等.本题考查了多项式的定义和次数,明确如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.14.【答案】4b-2a【解析】解:剩余白色长方形的长为b,宽为(b-a),所以剩余白色长方形的周长=2b+2(b-a)=4b-2a.故答案为4b-2a.利用矩形的性质得到剩余白色长方形的长为b,宽为(b-a),然后计算它的周长.本题考查了矩形的性质:平行四边形的性质矩形都具有;矩形的四个角都是直角;邻边垂直;矩形的对角线相等;15.【答案】∠COD,∠EOF【解析】解:∵射线OD平分∠COA,∴∠COD=∠1.∵∠DOF=∠AOE=90°,∴∠DOE+∠EOF=90°,∠DOE+∠1=90°,∴∠EOF=∠1.∴图中与∠1相等的角有∠COD,∠EOF.故答案为∠COD,∠EOF.根据角平分线定义可得∠COD=∠1;根据同角的余角相等可得∠EOF=∠1.本题考查了余角和补角,角平分线定义,掌握余角的性质是解题的关键.16.【答案】(2x-700)+x=5900【解析】解:设珐琅书签的销售了x件,则文创笔记本销售了(2x-700)件,根据题意得:(2x-700)+x=5900.故答案为:(2x-700)+x=5900.设珐琅书签的销售了x件,则文创笔记本销售了(2x-700)件,根据文创笔记本和珐琅书签共销售5900件,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.17.【答案】-2或18【解析】解:∵AO=10,∴点A表示的数为±10,∵AB=8,且点A表示的数比点B表示的数小,∴点B表示的数是-2或18,故答案为:-2或18根据AO=10,得到点A表示的数为±10,由AB=8,且点A表示的数比点B表示的数小,得到点B表示的数在点A表示的数的右边,于是得到结论.本题考查了数轴,正确的理解题意是解题的关键.18.【答案】-2 2【解析】解:(1)(2x-1)+3+ax=2x-1+3+ax=(2+a)x+2,∵当三个滚珠同时相撞时,不论输入x的值为多大,输出y的值总不变,∴2+a=0,得a=-2,故答案为:-2;(2)当y=2x-1+3=2x+2时,令y=-1,则-1=2x+2,得x=-1.5(舍去),当y=3+(-2x)=-2x+3时,令y=-1,则-1=-2x+3,得x=-2,故答案为:-2.(1)根据题意得到y=2x-1+3+ax=(2+a)x+2,由y的值与x的值无关,可知x的系数为0,即2+a=0,由此求得a的值;(2)结合(1)的a的值,可知当y=-1时,此时只有两个球相撞,分两种情况,从而可以求得x的值.本题考查有理数的混合运算、代数式求值,解答本题的关键是明确题意,求出a的值和相应的x的值.19.【答案】解:(1)原式=5-9÷(-3),=5+3,=8;(2)原式=,=-4-8+10,=-2.【解析】(1)先根据乘方的意义计算乘方运算,然后利用除法法则把除法运算化为乘法运算,根据负因式的个数判断得到结果的符号,最后利用加法法则即可得出结果;(2)根据乘法分配律进行计算即可.此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先计算括号里边的,且先小括号,再中括号,最后算大括号,同级运算从左到右依次计算,有时可以利用运算律来简化运算,熟练掌握各种运算法则是解本题的关键.20.【答案】解:(1)移项得:5x+2x=1-8,合并得:7x=-7,解得:x=-1;(2)去分母得:3(x+1)=2(2-3x),去括号得:3x+3=4-6x,移项合并得:9x=1,解得:x=.【解析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.【答案】解:3(2ab2-4a+b)-2(3ab2-2a)+b=6ab2-12a+3b-6ab2+4a+b=-8a+4b,∵2a-b=-2,∴原式=-8a+4b=-4(2a-b)=-4×(-2)=8.【解析】利用去括号法则和合并同类项的方法先对所求式子进行化简,然后根据2a-b 的值,即可求得所求式子的值,本题得以解决.本题考查整式的加减-化简求值,解答本题的关键是明确整式化简求值的方法.22.【答案】15【解析】解:(1)S=(1+2+3+…+9)÷3=45÷3=15.故答案为15;(2)由计算知:1+2+3+…+9=45.设中间数为x,依题意可列方程:4×15-3x=45,解得:x=5.故中间数x的值为5.(1)根据每一行三个数的和均为S,而这9个数的和恰好为1到9这9个正整数之和,由此可得S的值;(2)设中间数为x,利用包含中间数x的行、列、对角线上的数与9个数的关系列出方程,解方程即可.本题考查了一元一次方程的应用,理解洛书对应的九宫格的要求是解题的关键.23.【答案】两点之间,线段最短【解析】解:(1)如图,OD、OE为所作;(2)如图,点F为所作;(3)如图,点P为所作;(4)连接FC交OE于P,则根据两点之间,线段最短可判断此时PC+PF最小.答案为:两点之间,线段最短.(1)、(2)根据几何语言画出对应的几何图形;(3)连接CF交OE于P;(4)利用两点之间线段最短求解.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.24.【答案】解:(1)方法一:∵AC=8,CB=2,∴AB=AC+CB=10,∵点M为线段AB的中点,∴,∴CM=BM-CB=5-2=3.或方法二:∴CM=AC-AM=8-5=3.(2)点M是线段CD的中点,理由如下:方法一:∵BD=AC=8,∴由(1)可知,DM=DB-MB=8-5=3.∴DM=MC=3,∴由图可知,点M是线段CD的中点.方法二:∵AC=BD,∴AC-DC=BD-DC,∴AD=CB.∵点M为线段AB的中点,∴AM=MB,∴AM-AD=MB-CB,∴DM=MC∴由图可知,点M是线段CD的中点.【解析】(1)方法一:根据线段的和差关系可求AB,再根据中点的定义可求BM,再根据CM=BM-CB或方法二:CM=AC-AM即可求解;(2)方法一:由(1)可知,DM=DB-MB,可得DM=MC,从而求解;方法二:根据等量关系可得AD=CB,根据中点的定义可得AM=MB,再根据等量关系可得DM=MC,从而求解.本题考查了两点间的距离,利用了线段的和差,线段中点的性质.25.【答案】x=2 1 3【解析】解:(1)当k=2,b=-4时,方程◇为:2x-4=0,x=2.故答案为:x=2;(2)答案不唯一,如:k=1,b=3.(只需满足b=3k即可)故答案为:1,3;(3)方法一:依题意:4k+b=0,∵k≠0,∴.解关于y的方程:,∴3y+2=-4.解得:y=-2.方法二:依题意:4k+b=0,∴b=-4k.解关于y的方程:k(3y+2)-(-4k)=0,3ky+6k=0,∵k≠0,∴3y+6=0.解得:y=-2.(1)代入后解方程即可;(2)只需满足b=3k即可;(3)介绍两种解法:方法一:将x=4代入方程◇:得,整体代入即可;方法二:将将x=4代入方程◇:得b=-4k,整体代入即可;本题考查了一元一次方程的解,熟练掌握解一元一次方程是关键.26.【答案】50°【解析】解:(1)∵∠AOC:∠BOD=4:5,∠BOD与∠AOC互余,∴∠BOD=90°×=50°;(2)①补全图形如下:∵∠BOD与∠AOC互余,∴∠BOD+∠AOC=90°,∴∠COD=90°,∵ON平分∠COD,∴∠CON=45°,∴∠AON=α+45°;②情形一:点D在∠BOC内.此时,∠AON=α+45°,∠COD=90°,依题意可得:α+45°+90°=180°,解得:α=45°.情形二:点D在∠BOC外.在0°<α≤45°的条件下,补全图形如下:此时∠AON=45°,∠COD=90°+2α,依题意可得:45°+90°+2α=180°,解得:α=22.5°.综上,α的取值为45°或22.5°.故答案为:50°.(1)根据余角的定义即可求解;(2)①先根据余角、平角的定义求出∠BOC,再根据角平分线的定义求出∠COD,再根据角的和差关系即可求解;②分点D在∠BOC内,点D在∠BOC外两种情况即可求解.本题考查了余角和补角、角度的计算,正确理解角平分线的定义,理解角度之间的和差关系是关键.27.【答案】2 1,2,3 是【解析】解:(1)对于数阵A,2*3的值为2;若2*3=2*x,则x的值为1,2,3;(2)①由数阵图可知,数阵A是“有趣的”.②∵1*2=2,∴2*1=(1*2)*1,∵(a*b)*c=a*c,∴(1*2)*1=1*1,∵a*a=a,∴1*1=1,∴2*1=1.(3)不存在理由如下:方法一:若存在满足交换律的“有趣的”数阵,依题意,对任意的a,b,c有:a*c=(a*b)*c=(b*a)*c=b*c,这说明数阵每一列的数均相同.∵1*1=1,2*2=2,3*3=3,∴此数阵第一列数均为1,第二列数均为2,第三列数均为3,∴1*2=2,2*1=1,与交换律相矛盾.因此,不存在满足交换律的“有趣的”数阵.方法二:由条件二可知,a*b只能取1,2或3,由此可以考虑a*b取值的不同情形.例如考虑1*2:情形一:1*2=1.若满足交换律,则2*1=1,再次计算1*2可知:1*2=(2*1)*2=2*2=2,矛盾;情形二:1*2=2由(2)可知,2*1=1,1*2≠2*1,不满足交换律,矛盾;情形三:1*2=3若满足交换律,即2*1=3,再次计算2*2可知:2*2=(2*1)*2=3*2=(1*2)*2=1*2=3,与2*2=2矛盾.综上,不存在满足交换律的“有趣的”数阵.故答案为:2;1,2,3;是.(1)根据定义a*b为数阵中第a行第b列的数即可求解;(2)①根据“有趣的”定义即可求解;②根据a*a=a;(a*b)*c=a*c,将2*1变形得到2*1=(1*2)*1即可求解;③若存在满足交换律的“有趣的”数阵,依题意,对任意的a,b,c有:a*c=(a*b)*c=(b*a)*c=b*c,这说明数阵每一列的数均相同.进一步得到1*2=2,2*1=1,与交换律相矛盾.因此,不存在满足交换律的“有趣的”数阵.考查了规律型:数字的变化类,探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年北京市海淀区七年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.4的算术平方根是()A. 16B. ±2C. 2D. √22.在平面直角坐标系中,点P(-3,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.过点B画线段AC所在直线的垂线段,其中正确的是()A. B.C. D.4.如图所示,AB∥CD,若∠1=144°,则∠2的度数是()A. 30∘B. 32∘C. 34∘D. 36∘5.在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是()A. 内错角相等,两直线平行B. 同位角相等,两直线平行C. 两直线平行,内错角相等D. 两直线平行,同位角相等6.如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A. 4B. 5C. 6D. 77.小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x轴、y轴正方向,图中点A 的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是()A. (3.2,1.3)B. (−1.9,0.7)C. (0.7,−1.9)D. (3.8,−2.6)8.我们知道“对于实数m,n,k,若m=n,n=k,则m=k”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a,b,c是直线,若a∥b,b∥c,则a∥c.②a,b,c是直线,若a⊥b,b⊥c,则a⊥c.③若∠α与∠β互余,∠β与∠γ互余,则∠α与∠γ互余.其中正确的命题是()A. ①B. ①②C. ②③D. ①②③9.如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A. 1B. 6C. 9D. 1010.根据表中的信息判断,下列语句中正确的是x1515.115.215.315.415.515.615.715.815.916 x2225228.01231.04234.09237.16240.25243.36246.49249.64252.81256()A. √25.281=1.59B. 235的算术平方根比15.3小C. 只有3个正整数n满足15.5<√n<15.6D. 根据表中数据的变化趋势,可以推断出16.12将比256增大3.19二、填空题(本大题共8小题,共16.0分)11.将点A(-1,4)向上平移三个单位,得到点A′,则A′的坐标为______.12.如图,数轴上点A,B对应的数分别为-1,2,点C在线段AB上运动.请你写出点C可能对应的一个无理数______.13.如图,直线a,b相交,若∠1与∠2互余,则∠3=______.14.依据图中呈现的运算关系,可知a=______,b=______.15.平面直角坐标系xOy中,已知线段AB与x轴平行,且AB=5,若点A的坐标为(3,2),则点B的坐标是______.16.一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点D在斜边AB上.现将三角板DEF绕着点D顺时针旋转,当DF第一次与BC平行时,∠BDE的度数是______.17.如图,电子宠物P在圆上运动,点O处设置有一个信号转换器,将宠物P的位置信号沿着垂直于线段OP的方向OQ传送,被信号接收板l接收.若传送距离越近,接收到的信号越强,则当P点运动到图中______号点的位置时,接收到的信号最强(填序号①,②,③或④).18.若两个图形有公共点,则称这两个图形相交,否则称它们不相交.回答下列问题:(1)如图1,直线PA,PB和线段AB将平面分成五个区域(不包含边界),当点Q落在区域______时,线段PQ与AB相交(直接填写区域序号);(2)在设计印刷线路板时,常常会利用折线连接元件,要求所有连线不能相交.如图2,如果沿着图中的格线连接印有相同字母的元件,那么一共有______种连线方案.三、计算题(本大题共1小题,共4.0分)19. 有一张面积为100cm 2的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为150cm 2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.四、解答题(本大题共8小题,共50.0分)20. 计算:(1)√(−4)2+(√13)2-√83; (2)√2(3−√2)−5√2.21. 求出下列等式中x 的值:(1)12x 2=36;(2)x 38−3=38.22.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(-3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:______;(2)若中国人民大学的坐标为(-3,-4),请在坐标系中标出中国人民大学的位置.23.如图,点D,点E分别在∠BAC的边AB,AC上,点F在∠BAC内,若EF∥AB,∠BDF=∠CEF.求证:DF∥AC.24.已知正实数x的平方根是m和m+b.(1)当b=8时,求m;(2)若m2x+(m+b)2x=4,求x的值.25.在平面直角坐标系xOy中,已知点A(a,a),B(a,a-3),其中a为整数.点C在线段AB上,且点C的横纵坐标均为整数.(1)当a=1时,画出线段AB;(2)若点C在x轴上,求出点C的坐标;(3)若点C纵坐标满足1<y<√5,直接写出a的所有可能取值:______.26.如图,已知AB∥CD,点E是直线AB上一个定点,点F在直线CD上运动,设∠CFE=α,在线段EF上取一点M,射线EA上取一点N,使得∠ANM=160°.时,α=______;(1)当∠AEF=a2(2)当MN⊥EF时,求α;(3)作∠CFE的角平分线FQ,若FQ∥MN,直接写出α的值:______.27.对于平面直角坐标系xOy中的不同两点A(x1,y1),B(x2,y2),给出如下定义:,1),B(2,1)若x1x2=1,y1y2=1,则称点A,B互为“倒数点”.例如,点A(12互为“倒数点”.(1)已知点A(1,3),则点A的倒数点B的坐标为______;将线段AB水平向左平移2个单位得到线段A′B′,请判断线段A′B′上是否存在“倒数点”.______(填“是”或“否”);(2)如图所示,正方形CDEF中,点C坐标为(12,12),点D坐标为(32,12),请判断该正方形的边上是否存在“倒数点”,并说明理由;(3)已知一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值:______.答案和解析1.【答案】C【解析】解:∵2的平方为4,∴4的算术平方根为2.故选:C.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.2.【答案】B【解析】解:点P(-3,2)在第二象限,故选:B.根据各象限内点的坐标特征解答即可.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.【答案】D【解析】解:根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选:D.垂线段满足两个条件:①经过点B.②垂直于AC;由此即可判断.本题考查作图-复制作图,垂线的定义等知识,解题的关键是熟练掌握基本知识.4.【答案】D【解析】解:∵AB∥CD,∴∠1=∠CAB=144°,∵∠2+∠CAB=180°,∴∠2=180°-∠CAB=36°,故选:D.根据平行线的性质即可得到结论.本题考查了平行线的性质的应用,能求出∠1+∠2=180°是解此题的关键.5.【答案】B【解析】解:有平行线的画法知道,得到同位角相等,即同位角相等两直线平行.∴同位角相等两直线平行.故选:B.根据平行线的判定定理即可得到结论.本题考查了作图-复杂作图,平行线的判定定理,熟练掌握平行线的定理是解题的关键.6.【答案】C【解析】解:根据题意得:平移折线AEB,得到折线CFD,则平移过程中扫过的图形为矩形ABCD,所以其面积为2×3=6,故选:C.根据平移的性质确定平移过程中扫过的图形的形状,从而确定面积;考查了平移的性质,能够确定平移形成的图形是确定面积的基础,难度不大.7.【答案】B【解析】解:由图可知,(-1.9,0.7)距离原点最近,故选:B.根据平面直角坐标系的定义建立平面直角坐标系,然后根据象限特点解答即可.本题考查了坐标确定位置,主要利用了平面直角坐标系的定义和在平面直角坐标系中确定点的位置的方法.8.【答案】A【解析】解:①a,b,c是直线,若a∥b,b∥c,则a∥c,是真命题.②a,b,c是直线,若a⊥b,b⊥c,则a∥c,是假命题.③若∠α与∠β互余,∠β与∠γ互余,则∠α=∠γ,是假命题;故选:A.根据平行线的判定、垂直和互余进行判断即可.本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.【答案】D【解析】解:A.将x=1代入程序框图得:输出的y值为1,不符合题意;B.将x=6代入程序框图得:输出的y值为3,不符合题意;C.将x=9代入程序框图得:输出的y值为3,不符合题意;D.将x=10代入程序框图得:输出的y值为4,符合题意;故选:D.将各个选项的x的值代入程序框图得输出的y值,依次进行判断即可.此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.10.【答案】C【解析】解:A.根据表格中的信息知:,∴=1.59,故选项不正确;B.根据表格中的信息知:<,∴235的算术平方根比15.3大,故选项不正确;C.根据表格中的信息知:15.52=240.25<n<15.62=243.36,∴正整数n=241或242或243,∴只有3个正整数n满足15.5,故选项正确;D.根据表格中的信息无法得知16.12的值,∴不能推断出16.12将比256增大3.19,故选项不正确.故选:C.根据表格中的信息可知x2和其对应的算术平方根的值,然后依次判断各选项即可.此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.11.【答案】(-1,7)【解析】解:将点A(-1,4)向上平移三个单位,得到点A′,则A′的坐标为(-1,7),故答案为:(-1,7),直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.本题考查了坐标与图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.12.【答案】√3(答案不唯一,无理数在-1与2之间即可)【解析】解:由C点可得此无理数应该在-1与2之间,故可以是,故答案为:(答案不唯一,无理数在-1与2之间即可),根据无理数的估计解答即可.此题考查实数与数轴,关键是根据无理数的估计解答.13.【答案】135°【解析】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°-45°=135°,故答案为:135°.依据∠1与∠2互余,∠1=∠2,即可得到∠1=∠2=45°,进而得出∠3的度数.本题主要考查了余角,如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.14.【答案】-2019 -2019【解析】解:依据图中呈现的运算关系,可知2019的立方根是m,a的立方根是-m,∴m3=2019,(-m)3=a,∴a=-2019;又∵n的平方根是2019和b,∴b=-2019.故答案为:-2019,-2019.利用立方根和平方根的定义及性质即可解决问题.本题考查了立方根和平方根的定义及性质,熟练掌握定义及性质是解题的关键.15.【答案】(-2,2)或(8,2)【解析】解:∵线段AB与x轴平行,∴点B的纵坐标为2,点B在点A的左边时,3-5=-2,点B在点A的右边时,3+5=8,∴点B的坐标为(-2,2)或(8,2).故答案为:(-2,2)或(8,2).根据平行于x轴的直线上的点的纵坐标相等,再分点B在点A的左边与右边两种情况讨论求解.本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论.16.【答案】15°【解析】解:∵DF∥BC,∴∠FDB=∠ABC=45°,∴∠EDB=∠DFB-∠EDF=45°-30°=15°,故答案为15°.利用平行线的性质即可解决问题.本题考查平行线的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】①【解析】解:根据垂线段最短,得出当OQ⊥直线l时,信号最强,即当当P点运动到图中①号点的位置时,接收到的信号最强;故答案为:①.根据垂线段最短得出即可.本题考查了直角三角形的性质和垂线的性质,能知道垂线段最短是解此题的关键.18.【答案】② 6【解析】解:(1)当点Q落在区域②时,线段PQ与AB相交;(2)点A沿向上两个格、向右三个格、向下一个格连接,也可以沿向上两个格、向右两个格、向下一个格、向右一个格连接,两种方法;点B沿向下两个格、向右一个格连接,或向下一个格、向右一个格、向下一个格连接,或向右一个格、向下两个格连接,或向右一个格、向下一个格、向左一个格、向下一个格、向右一个格连接,共四种方法;点C只有一种连接方法,所以共6种方法.故答案为:②,6.(1)由相交线的定义可以找到点Q所在的区域;(2)因为要求所有连线不能相交,所以可按图示6种方法连接.本题考查了直线、射线、线段的画法,掌握它们的定义是解题的关键.19.【答案】解:设长方形信封的长为5xcm,宽为3xcm.由题意得:5x•3x=150,解得:x=√10(负值舍去)所以长方形信封的宽为:3x=3√10,∵√100=10,∴正方形贺卡的边长为10cm.∵(3√10)2=90,而90<100,∴3√10<10,答:不能将这张贺卡不折叠的放入此信封中.【解析】设长方形信封的长为5xcm,宽为3xcm.根据长方形的面积列出关于x的方程,解之求得x的值,再由其宽和长与10的大小可得答案.本题主要考查一元二次方程的应用,解题的关键是根据长方形的面积得出关于x的方程.−220.【答案】解:(1)原式=4+13=73(2)原式=3√2−2−5√2=−2−2√2.【解析】(1)根据实数的混合计算解答即可;(2)根据实数的混合计算解答即可.此题考查实数的运算,关键是根据实数的混合计算解答.21.【答案】解:(1)x2=3∴x=±√3(2)x3-24=3x3=27∴x=3【解析】(1)根据等式的性质方程两同时除以12,再由平方根的定义问题可解.(2)方程可先去分母,得x3-24=3,再移项合并同类项,最后根据立方根定义可求解.本题考查用平方根,立方根定义法解方程,理解平方根,立方根定义是解题的关键.22.【答案】(3,1)【解析】解:(1)北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:(1)利用清华大学的坐标为(0,3),北京大学的坐标为(-3,2)画出直角坐标系;(2)根据点的坐标的意义描出中国人民大学所表示的坐标.本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.23.【答案】证明:∵EF∥AB,∴∠CEF=∠A,∵∠BDF=∠CEF,∴∠BDF=∠A,∴DF∥AC.【解析】想办法证明∠BDF=∠A即可解决问题.本题考查平行线的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【答案】解:(1)∵正实数x的平方根是m和m+b∴m+m+b=0,∵b=8,∴2m+8=0∴m=-4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=√2.【解析】(1)利用正实数平方根互为相反数即可求出m的值;(2)利用平方根的定义得到(m+b)2=x,m2=x,代入式子m2x+(m+b)2x=4即可求出x值.本题考查了平方根的定义及平方根的性质,熟练掌握这两个知识点是解题的关键.25.【答案】2,3,4,5【解析】解:(1)(2)由题意可知,点C的坐标为(a,a),(a,a-1),(a,a-2)或(a,a-3),∵点C在x轴上,∴点C的纵坐标为0.由此可得a的取值为0,1,2或3,因此点C的坐标是(0,0),(1,0),(2,0),(3,0)(3)a的所有可能取值是2,3,4,5.故答案为:2,3,4,5.(1)根据坐标与图形的特点解答即可;(2)根据x轴的点的特点解答即可;(3)根据无理数的估计和坐标特点解答即可.本题考查了坐标与图形,关键是根据坐标与图形的特点和代数式求值解答.26.【答案】解:(1)∵AB∥CD,∴∠AEF+∠CFE=180°,∵∠CFE=α,∠AEF=a,2∴α+α=180°,2∴α=120°;(2)如图1所示,过点M作直线PM∥AB,由平行公理推论可知:AB∥PM∥CD.∵∠ANM=160°,∴∠NMP=180°-160°=20°,又∵NM⊥EF,∴∠NMF=90°,∠PMF=∠NMF-∠NMP=90°-20°=70°.∴α=180°-∠PMF=180°-70°=110°;(3)如图2所示,∵FQ平分∠CFE,∴∠QFM=α,2∵AB∥CD,∴∠NEM=180°-α,∵MN∥FQ,∴∠NME=α,2∵∠ENM=180°-∠ANM=20°,∴20°+α+180°-α=180°,2∴α=40°.【解析】本题考查了平行线的性质,角平分线定义,熟练掌握平行线的性质定理是解题的关键.(1)根据平行线的性质即可得到结论;(2)如图1所示,过点M作直线PM∥AB,由平行公理推论可知:AB∥PM∥CD,根据平行线的性质即可得到结论;(3)如图2,根据角平分线的定义和平行线的性质即可得到结论.27.【答案】(1,1)是 13【解析】解:(1)设A(x1,y1),B(x2,y2),∵x1x2=1,y1y2=1,A(1,3),∴x2=1,y2=,点B的坐标为(1,),将线段AB水平向左平移2个单位得到线段A′B′,则A′(-1,3),B′(-1,),∵-1×(-1)=1,3×=1,∴线段A′B′上存在“倒数点”,故答案为:(1,);是;(2)正方形的边上存在“倒数点”M、N,理由如下:①若点M(x1,y1)在线段CF上,则x1=,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=,点N(x2,y2)应当满足y2=,∴点N只可能在线段DE上,N(,),此时点M(,)在线段EF上,满足题意;∴该正方形各边上存在“倒数点”M(,),N(,);(3)如图所示:一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,则该正方形有两条边在坐标轴上,∵坐标轴上的点的横坐标或纵坐标为0,∴在坐标轴上的边上不存在倒数点,又∵该正方形各边上不存在“倒数点”,∴各边上点的横坐标和纵坐标的绝对值都≤1,即正方形面积的最大值为1;故答案为:1.(1)设A(x1,y1),B(x2,y2),由题意得出x2=1,y2=,点B的坐标为(1,),由平移的性质得出A′(-1,3),B′(-1,),即可得出结论;(2)①若点M(x1,y1)在线段CF上,则x1=,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=,点N(x2,y2)应当满足y2=,得出N(,),此时点M(,)在线段EF上,满足题意;(3)由题意得出各边上点的横坐标和纵坐标的绝对值都≤1,得出正方形面积的最大值为1即可.本题是四边形综合题目,考查了正方形的性质、新定义“倒数点”、平面直角坐标系、平移的性质等知识;熟练掌握正方形的性质,正确理解新定义“倒数点”是解题的关键.。