车床主轴箱齿轮的选材与热处理

合集下载

汽车变速箱齿轮的选材及热处理工艺分析

汽车变速箱齿轮的选材及热处理工艺分析

汽车变速箱齿轮的选材及热处理工艺分析汽车变速箱齿轮的选材及热处理工艺分析内容提要:本文以汽车变速箱齿轮为例,详细论述了其材料选择的具体思路及其热处理工艺的制定、分析和工序的安排,论证了汽车变速箱齿轮材料的选择及热处理工艺对产品的质量和使用寿命的影响。

关键词:变速箱齿轮材料热处理工艺分析在汽车制造过程中,除了一些标准件外,其他零部件都涉及材料的选择及热处理工艺的制定、分析和工序的安排。

合理选择零件的材料及正确安排零件的热处理工艺将直接关系到产品的质量和使用寿命。

本文以汽车变速箱齿轮为例,论述了其选材及热处理工艺的制定过程与思路,与大家探讨。

一、变速箱齿轮的材料选择:1、选材的原则:零件材料的选择应根据零件的使用性能要求及加工工艺性能、经济成本要求进行选择:1)、使用性能要求:使用性能是指零件在正常使用状态下,材料应具备的性能,是保证零件工作安全可靠、经久耐用的必要条件。

零件在选材时,首先要根据零件的工作条件和失效形式,正确判断所要求的使用性能,再根据主要的使用性能指标来选择合适的材料。

变速箱齿轮位于汽车传动部分,用于传递扭矩与动力、调整速度的作用。

其工作条件、失效形式及要求的力学性能如下表:零件名称工作条件常见失效形式要求的力学性能变速箱齿轮A、由于传递扭矩,齿根要承受较大的弯曲应力和交变应力;B、由于变速箱齿轮转速变化范围广,齿轮表面承受较大的接触应力,并在高速下承受强烈的磨擦力;C、由于工作时不断换档,轮齿之间经常要承受换档造成的冲击与碰撞。

A、当齿轮所受弯曲应力过大时,可能发生齿根折断;B、轮齿在交变应力的作用下,长时间工作可能发生疲劳断裂;C、齿面在强磨擦作用下可能发生磨损和点蚀现象。

D、齿轮心部韧性过低时,在冲击作用下可能发生断裂。

A、表面高硬度、高耐磨性:齿面硬度58-64HRC,心部硬度30-45HRC;B、齿面高的接触疲劳强度;C、齿根高的弯曲强度(σb>1000Mpa);D、心部较高强度、高韧性(a k>60J/cm 2)。

各类齿轮热处理要求及材质要求

各类齿轮热处理要求及材质要求

各类齿轮热处理要求及材质要求一、工作条件以及材料与热处理要求1.条件:低速、轻载又不受冲击要求:HT200HT250HT300去应力退火2.条件:低速(<1m/s)、轻载,如车床溜板齿轮等要求:45调质,HB200-2503.条件:低速、中载,如标准系列减速器齿轮要求:4540Cr40MnB(5042MnVB)调质,HB220-250Y4.条件:低速、重载、无冲击,如机床主轴箱齿轮要求:40Cr(42MnVB)淬火中温回火HRC40-455.条件:中速、中载,无猛烈冲击,如机床主轴箱齿轮要求:40Cr、40MnB、42MnVB调质或正火,感应加热表面淬火,低温回火,时效,HRC50-556.条件:中速、中载或低速、重载,如车床变速箱中的次要齿轮要求:45高频淬火,350-370℃回火,HRC40-45(无高频设备时,可采用快速加热齿面淬火)7.条件:中速、重载要求:40Cr、40MnB(40MnVB、42CrMo、40CrMnMo、40CrMnMoVBA)淬火,中温回火,HRC45-50.8.条件:高速、轻载或高速、中载,有冲击的小齿轮要求:15、20、20Cr、20MnVB渗碳,淬火,低温回火,HRC56-62.38CrAl38CrMoAl渗氮,渗氮深度0.5mm,HV9009.条件:高速、中载,无猛烈冲击,如机床主轴轮.要求:40Cr、40MnB、(40MnVB)高频淬火,HRC50-55.10.条件:高速、中载、有冲击、外形复杂和重要齿轮,如汽车变速箱齿轮(20CrMnTi淬透性较高,过热敏感性小,渗碳速度快,过渡层均匀,渗碳后直接淬火变形较小,正火后切削加工性良好,低温冲击韧性也较好)要求:20Cr、20Mn2B、20MnVB渗碳,淬火,低温回火或渗碳后高频淬火,HRC56-62.18CrMnTi、20CrMnTi(锻造→正火→加工齿轮→局部镀同→渗碳、预冷淬火、低温回火→磨齿→喷丸)渗碳层深度1.2-1.6mm,齿轮硬度HRC58-60,心部硬度HRC25-35.表面:回火马氏体+残余奥氏体+碳化物.中心:索氏体+细珠光体11.条件:高速、重载、有冲击、模数要求:20Cr、20Mn2B渗碳、淬火、低温回火,HRG56-62.12.条件:高速、重载、或中载、模数>6,要求高强度、高耐磨性,如立车重要螺旋锥齿轮要求:18CrMnTi、20SiMnVB渗碳、淬火、低温回火,HRC56-6213.条件:高速、重载、有冲击、外形复杂的重要齿轮,如高速柴油机、重型载重汽车,航空发动机等设备上的齿轮.要求:12Cr2Ni4A、20Cr2Ni4A、18Cr2Ni4WA、20CrMnMoVBA(锻造→退火→粗加工→去应力→半精加工→渗碳→退火软化→淬火→冷处理→低温回火→精磨)渗碳层深度1.2-1.5mm,HRC59-62.14.条件:载荷不高的大齿轮,如大型龙门刨齿轮要求:50Mn2、50、65Mn淬火,空冷,15.条件:低速、载荷不大,精密传动齿轮.要求:35CrMO淬火,低温回火,HRC45-5016.条件:精密传动、有一定耐磨性大齿轮.要求:35CrMo调质,HB255-302.17.条件:要求抗磨蚀性的计量泵齿轮.要求:9Cr16Mo3VRE沉淀硬化18.条件:要求高耐磨性的鼓风机齿轮.要求:45调质,尿素盐浴软氮化.19.条件:要求耐、保持间隙精度的25L油泵齿轮。

车床主轴的选材 加工路线 热处理

车床主轴的选材 加工路线 热处理

选择车床主轴材料,设计合理的加工路线,热处理工艺方案摘要:根据车床主轴的工作情况,对材料的选用、其加工路线及相应的热处理工艺进行了分析,并就其操作提出了自己观点。

关键词:车床主轴;加工路线;热处理工艺;材料一、材料的选择主轴是车床上传递动力的零件,传递着动力和各种负荷,它的合理选材直接影响整台车床的精度和使用寿命。

其主要实效形式如下:1、受横向力并传递扭矩,承受交变弯曲应力和扭应力,常常发生疲劳断裂。

2、轴颈和花键等部位发生相对运动,承受较大的摩擦,轴颈表面产生过量的磨损。

3、承受一定的过载和冲击和载荷,产生过量弯曲变形,甚至发生折断或扭断。

所以所选的材料应满足:良好的综合力学性能,即具有较高的强度刚度、足够的韧性、疲劳强度、变形小及对应力集中的敏感性低等性能以防止过载和冲击断裂,还要有良好的切削加工性,高的表面硬度和良好的耐磨性,以防止轴颈摩损。

在设计时要充分考虑:1、主轴的工作特性和技术要求。

主轴的摩檫和磨损情况;主轴的载荷大小和载荷性质。

2、主轴热处理的要求。

主轴的工作状况;主轴精密度和光洁度;主轴弯曲载荷和扭转力矩;主轴转速;主轴有无冲击载荷。

3、主轴热处理加工工艺实行的可能性以及经济性。

轴的常用材料为碳素钢和合金钢。

合金钢比碳素钢具有更高的机械性能和更好的热处理性能。

含不同合金的钢可获得各种特殊性能。

因此,对于载荷大并要求尺寸小,重量轻、耐高温或耐磨性、抗腐蚀性能要求高的轴可采用合金钢。

合金钢对应力集中的敏感性高,因此设计时应从结构上避免或减小应力集中,并降低其表面粗糙度的数值。

由于在常温下合金钢的弹性模量与一般碳素钢差不多,故选合金钢对提高轴的刚度没有实效。

而对形状复杂的轴可采用球墨铸铁。

球墨铸铁具有良好的吸振性和耐磨性,对应力集中的敏感性低,且价格低廉,加工性好。

但球墨铸铁的强度较低。

我们一般主轴承受交变弯曲应力和扭应力,在轻度或中等载荷、转速不太高,精度不很高,冲击、交变载荷不大的情况下,具有普通力学性能就能满足要求,一般采用45钢制造。

齿轮对材料和热处理的要求

齿轮对材料和热处理的要求

齿轮对材料和热处理的要求1、齿轮工作时的受力状况齿轮传动可做成开式、半开式和闭式三种。

开式齿轮传动:齿轮完全外露,易落入灰砂和杂物,不能保证良好的润滑,轮齿易磨损,多用于低速、不重要的场合。

(1)半开式齿轮传动装有简单的防护罩,有时还把大齿轮部分地浸入油池中,这样比开式传动润滑好些,但仍不能严密防止灰砂及杂物的侵入。

(2)闭式齿轮传动齿轮和轴承完全封闭在箱体内,能保证良好的润滑和较好的啮合精度,应用广泛。

齿轮是用于传递动力,改变运动速度或运动方向的零件。

两齿面在相对运动中既有滚动,又有滑动。

齿轮表面受到脉动接触应力和摩擦力的双重作用。

齿根部受到脉动弯曲应力的作用。

所以,齿面和齿根在上述不同应力作用下导致不同的失效形式。

齿轮所受应力主要有摩擦力、接触应力,弯曲应力和起动、变速换挡时的冲击力。

2、齿轮传动的功能要求(1)能传递两个平行轴、相交轴或交错轴间的回转运动和转矩。

(2)保证传动比恒定不变。

(3)能传递足够大的动力,工作可靠。

(4)保证较高的运动精度。

(5)能达到预定的工作寿命。

只要齿轮设计合理,制造质量高,达到规定的制造精度,就能达到预期的功能要求。

3、选材和热处理要求(1)保证齿轮有高的抗弯曲疲劳性能①足够的抗弯强度:齿轮用钢合金化体系的构成应当与各种齿轮心部的冷却速度相匹配;保证各种齿轮都能有理想的心部硬度。

①低的含氧量(脆性夹渣物):疲劳裂纹源数量少。

①齿轮心部的塑韧性高,缺口敏感性低:疲劳裂纹扩张速度慢。

(2)保证齿轮有高的接触疲劳性能①齿轮热处理后渗层的非马氏体组织含量不高。

①齿轮用钢合金化体系的构成应当与各种齿轮渗层的冷却速度相匹配;保证各种齿轮热处理后渗层的残留奥氏体含量适中。

①齿轮热处理后渗层的马氏体组织细小。

①齿轮热处理后渗层的碳化物弥散分布或没有碳化物游离析出。

(3)保证齿轮的加工精度①齿轮的热处理变形波动幅度小:变形对钢的成分波动和齿轮热处理冷速的波动敏感度不高。

①齿轮热处理变形量小。

工程齿轮的材料选择与热处理技术

工程齿轮的材料选择与热处理技术

工程齿轮的材料选择与热处理技术工程齿轮作为机械传动系统中重要的零部件之一,其材料选择和热处理技术影响着齿轮的强度、硬度和耐磨性等性能指标。

本文将就工程齿轮的材料选择和热处理技术展开讨论,帮助读者更好地理解和应用于实际工程中。

一、工程齿轮的材料选择工程齿轮的材料选择主要考虑以下几个因素:1. 强度要求:工程齿轮在传动系统中承受较大的载荷,因此材料的强度是选择的首要考虑因素。

常用的工程齿轮材料有合金钢、碳钢和铸铁等。

合金钢具有较高的强度和硬度,适用于对强度和耐磨性较高的场合。

碳钢适用于载荷较小的场合,成本较低。

铸铁适用于低速低载的场合,但其硬度较低。

2. 耐磨性要求:工程齿轮在传动过程中会发生摩擦和磨损,因此对材料的耐磨性要求较高。

合金钢具有较好的耐磨性,因此在对耐磨性要求较高的工程齿轮中应用较多。

对于低速低载的场合,碳钢和铸铁也能满足耐磨性要求。

3. 制造成本:工程齿轮的制造成本也是材料选择的一个重要考虑因素。

合金钢相对于碳钢和铸铁而言,制造成本较高。

因此,在经济性要求较高的场合,碳钢和铸铁更具优势。

二、工程齿轮的热处理技术工程齿轮的热处理技术主要包括淬火、回火和渗碳等。

热处理可以提高工程齿轮的硬度、强度和耐磨性等性能。

1. 淬火:淬火是将工程齿轮材料加热至临界温度,经过快速冷却使其组织发生变化,从而获得较高的硬度和强度。

淬火过程中,要控制冷却速度和温度,以避免产生过高的应力和变形。

2. 回火:回火是通过将淬火后的工程齿轮材料加热至较低的温度,使其硬度降低,同时提高韧性。

回火过程中,要控制回火温度和时间,以获得理想的硬度和韧性组织。

3. 渗碳:渗碳是将工程齿轮材料放入渗碳剂中,在高温下进行温度保持一定时间,使渗碳剂中的碳元素渗入工程齿轮表面,从而提高其表面硬度和耐磨性。

渗碳过程中,要控制温度、温度保持时间和碳含量,以获得理想的渗碳层。

总结:工程齿轮的材料选择和热处理技术对其性能有着重要影响。

在材料选择时,需要考虑强度要求、耐磨性要求和制造成本等因素。

齿轮材料选择及其热处理

齿轮材料选择及其热处理

齿轮材料选择及其热处理标准化工作室编码[XX968T-XX89628-XJ668-XT689N]齿轮材料选择及其热处理摘要:齿轮是轮缘上有齿能连续啮合传递运动和动力的机械元件,是能互相啮合的有齿的机械零件,是机械传动中应用最广泛的零件之一。

在齿轮的制造过程中,合理选择材料与热处理工艺,是提高承载能力和延长使用寿命的必要保证。

常用齿轮材料锻钢、铸钢、铸铁、有色金属、非金属材料等的选择及热处理工艺进行了分析。

关键词:齿轮材料热处理工艺一、齿轮结构:二、齿轮的分类:按其外形分为:圆柱齿轮、锥齿轮、非圆齿轮、、蜗杆蜗轮按齿线形状分为:直齿轮、斜齿轮、人字齿轮、曲线齿轮按轮齿所在的表面分为:外齿轮、内齿轮按制造方法可分为:铸造齿轮、切制齿轮、轧制齿轮、烧结齿轮三、常用齿轮材料及热处理工艺的选择:1)高承载能力的重要齿轮,如汽车、拖拉机、矿山机械及航空发动机等齿轮汽车、拖拉机等齿轮主要分装在变速箱和差速器中,推动汽车、拖拉机运行,所以传递功率、冲击力及摩擦压力都很大, 工作条件比较差。

因此在耐磨性、疲劳强度、心部强度和冲击韧性等方面的要求均比较高,因此选用渗碳钢经渗碳、淬火及低温回火后使用最为合适。

小模数齿轮一般采用20Cr和20CrMnTi,而较大模数齿轮采用30CrMnTi 钢。

工艺路线一般为:备料——锻造——正火——机械粗加工、半精加工——渗碳+ 淬火+ 低温回火——喷丸——校正——精加工2)中等承载能力的齿轮,主要用于切削机床齿轮机床齿轮大多用于齿轮箱,传递动力,改变运动速度和方向,工作条件相对较好,载荷不大,工作平稳无强烈冲击,转速也不高,属工作条件较好的齿轮。

因此,要求综合力学性能好,一般选用调质钢制造, 如40 钢、45 钢、40Cr、40SiMn 等。

工艺路线一般为:备料——锻造——正火——机械粗加工——调质——机械半精加工——高频感应淬火+ 低温回火——磨削3)较低承载能力的齿轮较低承载能力的齿轮一般选用中碳钢(40、45)或低合金中碳钢(40Cr、40Mn、40MnB等)制造,进行调质处理,调质后硬度约为200~300HB。

常用齿轮材料及热处理

常用齿轮材料及热处理齿轮是一种常见的机械传动元件,广泛应用于各种机械设备中。

齿轮材料的选择和热处理技术的应用对于齿轮的性能和使用寿命有着重要的影响。

下面将介绍一些常用的齿轮材料及其热处理方法。

1.铸铁材料铸铁是一种常用的齿轮材料,具有良好的可铸性、低成本和较高的耐磨性。

根据使用环境和要求,铸铁齿轮可以选择不同的热处理方法,如退火、正火和渗碳等。

退火可以改善铸铁的韧性和耐磨性,正火可以提高硬度和强度,渗碳可以增加齿面的硬度和耐磨性。

2.钢材料钢是齿轮制造中最常用的材料之一,具有较高的强度、硬度和耐磨性。

常用的钢材包括低碳钢、中碳钢和合金钢。

对于低碳钢和中碳钢,常用的热处理方法有退火、正火、淬火和渗碳等。

退火可以改善钢材的韧性,正火可以提高硬度和强度,淬火可以获得较高的硬度和耐磨性,渗碳可以增加齿面的硬度和耐磨性。

对于合金钢,除了上述热处理方法外,还可以通过调质淬火来提高材料的强度和耐磨性。

3.不锈钢材料不锈钢是一种耐腐蚀性能较好的材料,常用于要求齿轮具有较高质量和美观外观的场合。

不锈钢的热处理方法主要包括退火和淬火。

退火可以消除不锈钢材料的内部应力和碳化物析出,提高材料的韧性和耐腐蚀性能。

淬火可以提高不锈钢材料的硬度和强度。

4.铝合金材料铝合金是一种密度低、重量轻的材料,常用于要求齿轮具有较高强度和良好耐磨性的场合。

对于铝合金齿轮,常用的热处理方法有固溶处理和时效处理。

固溶处理可以提高铝合金的强度和耐磨性,时效处理可以进一步提高材料的硬度和强度。

在选择齿轮材料和热处理方法时,需要根据具体的应用场景和要求来确定。

不同的材料和处理方法可以使齿轮具有不同的性能和使用寿命。

因此,在设计和生产齿轮时,应根据实际情况选择适合的材料和热处理方法,以确保齿轮的性能和可靠性。

45钢车床主轴箱齿轮的热处理工艺设计

45钢车床主轴箱齿轮的热处理工艺设计1 热处理工艺课程设计的目的,任务及方法1.1 热处理工艺课程设计的目的热处理工艺课程设计是高等工业学校金属材料工程专业一次专业课程设计练习,是热处理原理与工艺课程的最后一个教学环节。

其目的是:①培养学生综合运用所学的热处理课程的知识去解决工程问题的能力,并使其学习知识得到巩固和发展。

②学习热处理工艺设计的一般方法,热处理设备选用和装夹具设计等。

③进行热处理设计的基本技能训练,如计算、工艺图绘制和学习使用设计资料、手册、标准和规范。

1.2 热处理工艺课程设计的任务进行零件的加工路线中有关热处理工序和热处理辅助工序的设计。

根据零件的技术要求,选定能实现技术要求的热处理方法,制定工艺参数,画出热处理工艺曲线图,选择热处理设备,设定或选定夹具,填写热处理工艺卡。

最后,写出设计说明书,说明书中要求对各热处理工序的工艺参数的选择和各热处理后的显微组织,作出说明。

1.3热处理工艺设计的方法热处理工艺的最佳方案是在能够保证达到根据零件使用性能和由产品设计者提出的热处理技术要求的基础上,设计的一种高质量、低成本、低能耗、清洁、高效、精确的热处理工艺方法。

热处理工艺设计的流程:①45号钢齿轮的热处理工艺流程的设计②制定热处理工艺参数③选择热处理设备④设计热处理工艺所需的挂具、装具或夹具⑤分析热处理工序中材料的组织和性能⑥填写工艺卡片2 热处理工艺课程设计的内容2.1 课题简图图2.1 主轴箱齿轮示意图2.2 技术要求车床圆柱齿轮表面进行高频感应淬火调质硬度:200-250HB表面硬度:45-50HRC淬硬层深度:1-2mm工件重量:6 kg生产批量: 6件2.3 主轴箱齿轮材料的选择,工作条件及其性能要求2.3.1 材料的选择根据对齿轮力学性能的要求,应从具有好的综合性能指标这个要素选材,工业生产中常用的金属材料主要是钢、铸铁及合金。

中碳钢的含碳量在0.25%~0.6%,位于低碳钢与高碳钢之间,其性能也同样位于两者之间,有较好的综合性能,因此中碳钢适合做齿轮。

45钢车床主轴箱齿轮的热处理工艺设计

45钢车床主轴箱齿轮的热处理工艺设计钢车床主轴箱齿轮在使用过程中需要承受很大的载荷和转速,因此对其进行适当的热处理是非常重要的。

热处理工艺设计能够改善齿轮的力学性能和耐磨性,提高其使用寿命和可靠性。

以下是对45钢车床主轴箱齿轮热处理工艺设计的详细阐述。

1.车削切削加工:首先,对45钢材料进行车削切削加工,保证齿轮的精度和尺寸准确度。

采用刀具高速切削、小进给、小切削深度等切削参数,减小机械加工过程中的应力集中。

2.淬火热处理:淬火是齿轮热处理中最关键的步骤之一,可以大大提高齿轮的强度和硬度。

在淬火之前,需要对齿轮进行均匀加热,使其达到适当的温度,然后迅速放入适当温度的淬火介质中(如水或油)进行淬火处理。

在淬火过程中,应控制淬火温度和时间,以保证齿轮的硬度和耐磨性。

3.回火处理:经过淬火处理后的齿轮可能具有很高的硬度,但也容易产生脆性,因此需要进行回火处理。

回火可以降低齿轮的硬度,提高韧性和强度,使其具有更好的抗磨性和抗脆性。

回火温度和持续时间的选择应根据齿轮的具体要求和使用条件来确定。

4.齿面调质:为了进一步提高齿轮的耐磨性和表面质量,可以对齿轮齿面进行局部调质处理。

齿面调质可以通过感应加热或火焰加热来实现,使齿面获得适当的硬度,同时保持齿轮齿根的韧性。

5.精密磨削:最后,通过精密磨削工艺对齿轮进行加工,提高其精度和表面质量。

磨削工艺应根据齿轮的尺寸和要求选择合适的磨削参数,减小残余应力和表面粗糙度,提高齿轮的互换性和传动效率。

热处理工艺设计在钢车床主轴箱齿轮的制造过程中起着非常重要的作用。

正确选择和控制热处理参数可以提高齿轮的力学性能和耐磨性,延长其使用寿命和可靠性。

同时,还需要结合实际情况,根据齿轮的具体要求和使用条件选择合适的热处理工艺,以确保齿轮的质量和性能符合要求。

齿轮的材料选择及热处理

齿轮的材料选择及热处理3赵越超,付 莹(辽宁工程技术大学机械工程学院,辽宁阜新 123000)摘 要:介绍了齿轮工作中的失效形式和性能要求,针对钢制齿轮,根据齿轮工作时载荷的大小、转速的高低及齿轮的精度,分析了齿轮材料的选择和相应的热处理工艺。

同时还介绍了钢制齿轮常用的热处理方法,最后论述了典型零件的选材及工艺路线。

关键词:钢制齿轮;载荷;转速;精度;热处理中图分类号:TG14 文献标识码:A 文章编号:1007-4414(2007)05-0070-02M a ter i a l selecti on and hea t trea tm en t of gearsZhao Yue -Chao,Fu Ying(School of m echanical engineering,L iaoning technical university ,Fuxin L iaoning 123000,China )Abstract:I n this paper,the failure mode and perfor mance requirements of gears are intr oduced .I n vie w of steel gears,the material selecti on and the corres ponding heat treat m ent p r ocess is analysed based on the size of work l oad,s peed and the accu 2racy of gears .The author als o intr oduces the methods of heat treat m ent used in steel gears,finally discusses the choices and p r ocess r outes of typ ical parts .Key words:steel gear;l oad;s peed;accuracy;heat treat m ent 齿轮用于机械装置中功率的传递与速度的调节,在汽车、拖拉机、机床、起重机械等产品中不仅有重要的作用,而且用量相当大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[J I A N G S U U N I V E R S I T Y]题目:表面工程课程设计所属学院:材料科学与工程学院专业班级:金属1002*名:**学号:**********指导教师姓名:邵红红、纪嘉明2013年1月车床主轴箱齿轮的选材与热处理1.车床主轴箱齿轮图如下2.车床主轴箱齿轮的服役条件车床主轴箱是一变速装置,通常将主动轴的一种转换为从动轴的一种或多种转速,而这种转速的改变主要是通过一系列相互啮合的不同齿数的齿轮来实现的。

因此主动齿轮会对与其啮合的从动轮轮齿施加推动力,从而带动从动轮的旋转。

所以齿轮会受到外力的影响,从而导致齿轮自身会产生相应的应力。

虽然齿轮所承受的应力远低于材料的屈服点,但长时间工作也有可能导致齿轮产生裂纹而断裂。

齿轮在转动过程中,接触面的齿面会产生滑动摩擦,从而磨损齿面而导致轮齿的断裂。

齿轮在传动过程中,会由于换挡、启动或啮合不良而使齿轮受到冲击载荷的作用,从而使齿轮变形甚至断裂。

以上均是齿轮的工作环境,为了能使齿轮在上述环境下能正常工作,就得要求齿轮的自身条件能符合上述条件。

2.1受力分析及失效形式齿轮在工作过程中,由于轮齿受到外力的作用,会产生相应的应力。

该应力是由零逐渐增加到最大值,又由最大值逐渐减小到零,即应力随时间作周期性的变化,这种应力称为交变应力(也称循环应力)。

在交变应力作用下,虽然齿轮所承受的应力远远低于材料的屈服点(材料发生永久变形即塑性变形时对应的应力),但经过较长时间工作后有可能会产生疲劳裂纹导致断裂,这种现象称为疲劳,疲劳是导致齿轮失效甚至造成重大事故的主要原因。

齿轮传动过程中,接触的两齿面会产生一定的相互滑动,发生滑动摩擦,导致齿面发生磨损。

磨损严重时,会加大齿侧间隙而引起传动不平稳和冲击,甚至会因齿厚被过度磨损,在受载时发生轮齿折断现象。

齿轮在传动过程中,由于换档、起动或啮合不良,轮齿可能会受到冲击载荷的作用,当冲击载荷较大时,有可能导致齿轮变形甚至断裂。

3.车床主轴箱齿轮材料的性能力学性能要求;为了满足齿轮的工作的条件,防止出现疲劳、磨损以及断裂等情况的出现,需要求齿轮必须有较高的硬度及好的耐磨性,齿面有较高的疲劳强度,齿轮心部要有足够的强度和韧度,通常情况下要求齿轮心部的硬度达170-217HB齿面硬度达45-50HRC。

根据齿轮的受力情况和失效分析可知,齿轮一般都需经过适当的热处理,以提高承载能力和延长使用寿命,齿轮在热处理后应满足下列性能要求: 1)高的弯曲疲劳强度和接触疲劳强度(抗疲劳点蚀)。

2)齿面具有较高的硬度和耐磨性。

3)齿轮心部具有足够的强度和韧性。

4.车床主轴箱齿轮材料的选择4.1选材原则1)材料的使用性能应满足零件的使用要求。

使用性能是指零件在正常使用状态下,材料应具备的性能,包括力学性能、物理性能和化学性能。

使用性能是保证零件工作安全可靠、经久耐用的必要条件。

不同机械零件要求材料的使用性能是不一样的。

选材时,首先要根据零件的工作条件和失效形式,正确地判断所要求的主要性能,然后根据主要的使用性能指标来选择较为合理的材料;有时还需要进行一定的模拟试验来最后确定零件的材料。

对于一般的机械零件,则主要以其力学性能作为选材依据。

在对零件的工作条件、失效形式进行全面分析,并根据零件的几何形状和尺寸、工作中所受的载荷及使用寿命,通过力学计算确定出零件应具有的主要力学性能指标及其数值后,即可利用手册选材。

2)材料的工艺性应满足加工要求。

材料的工艺性是指材料适应某种加工的能力。

在选材中,与使用性能相比,材料的工艺性能常处于次要地位。

但在某些特殊情况下,工艺性能也会成为选材的主要依据。

金属材料如果用铸造成形,最好选择共晶成分或接近共晶成分的合金;如果用锻造成形,最好选用组织呈固溶体的合金;如果是焊接成形,最适宜的材料是低碳钢或低碳合金钢;为了便于切削加工,一般希望钢铁材料的硬度控制在170~230 HB(这可通过热处理来调整其组织和性能)。

3)选材时应充分考虑经济性。

选材时应注意降低零件的总成本。

零件的总成本包括材料本身的价格、加工费、管理费及其它附加费用(如零件的维修费等)。

据资料统计,在一般的工业部门中,材料的价格要占产品价格的30%~70%。

因此,在保证使用性能的前提下,应尽可能选用价廉、货源充足、加工方便、总成本低的材料,以取得最大的经济效益,提高产品在市场上的竞争力。

4.2 齿轮的选材根据对齿轮力学性能的要求,应从具有好的综合力学性能指标这个要素选择材料.工业生产中常用的金属材料主要是钢、铸铁及合金。

铸铁的含碳量比较高(C>2.11%),因此有高的硬度和好的耐磨性,但塑性、韧性差,价格相对便宜,对于一些低速、低冲击载荷条件下工作的齿轮,可选用铸铁。

钢按含碳量分为低碳钢C≤0.25% ;中碳钢0.25%<C<0.60%;高碳钢0.60%≤C<2.11%。

低碳钢含碳量低,所以塑性、韧性好,但强度、硬度低,易变形,不能满足齿轮的性能要求。

高碳钢含碳量高,因此有较高的强度、硬度和好的耐磨性。

但塑性、韧性差,易断裂,也不太适合。

中碳钢的含碳量在低碳钢和高碳钢之间,兼具有低碳钢和高碳钢的性能,有较好的综合力学性能,能满足齿轮的性能要求,因此选用中碳钢比较合适,价格相对于合金钢便宜。

生产中通常选用45#钢。

此外,在生产中也常常选用40Cr 合金钢制造齿轮,但合金钢相对碳钢而言价格要贵。

5.车床主轴箱齿轮毛坯的选择毛坯的选择一定要满足以下原则:(1)满足齿轮的使用要求,防止出现选用的毛坯的性能不符合齿轮的工作要求。

(2)降低生产成本,它包括本身的材料费用、损耗的燃料和动力费用、工资、设备的折旧费等(3)要结合具体的生产条件,也就是本企业的设备条件和技术水平。

生产中齿轮的毛坯类型通常是模锻件,这种模锻件的尺寸和精度都比较高,机械加工的余地较小,节省加工工时并且材料的利用率也较高,更重要的是这种材料的晶粒细小、组织致密,综合性能最符合齿轮的工作要求。

6.车床主轴箱齿轮的加工工艺过程分析6.1.基准的选择为了减少定位误差,提高齿轮加工精度,在加工时应满足以下要求:(1)应选择基准重合、统一的定位方式;(2)内孔定位时,配合间隙应尽可能减少;(3)定位端面与定位孔或外圆应在一次装夹中加工出来,以保证垂直度要求。

6.2齿轮毛坯的加工齿面加工前的齿轮毛坯加工,在整个齿轮加工过程中占有很重要的地位。

因为齿面加工和检测所用的基准必须在此阶段加工出来,同时齿坯加工所占工时的比例较大,无论从提高生产率,还是从保证齿轮的加工质量,都必须重视齿轮毛坯的加工。

在齿轮图样的技术部要求中,如果规定以分度圆选齿厚的减薄量来测定齿侧间隙时,应注意齿顶圆的精度要求,因为齿厚的检测是以齿顶圆为测量基准的。

齿顶圆精度太低,必然使测量出的齿厚无法正确反映出齿侧间隙的大小,所以在加工过程中应注意以下问题:1)当以齿顶圆作为测量基准时,应严格控制齿顶圆的尺寸精度;2)保证定位端面和定位孔或外圆间的垂直度;3)提高齿轮内孔的制造精度,减少与夹具心轴的配合间隙;6.3齿形及齿端加工齿形加工是齿轮加工的关键,其方案的选择取决于多方面的因素,如设备条件、齿轮精度等级、表面粗糙度、硬度等。

齿轮的齿端加工有倒圆、倒尖、倒棱和去毛刺等方式如下图:经倒圆、倒尖后的齿轮在换档时容易进入啮合状态,减少撞击现象。

倒棱可除去齿端尖角和毛刺。

用铣刀对齿端进行倒圆时,铣刀高速旋转,沿圆弧做摆动,加工完一个齿后,工件退离铣刀,经分度再快速向铣刀靠近加工下一个齿的齿端。

7.车床主轴箱齿轮加工的热处理工艺齿轮的加工工艺路线:下料锻造正火机加工表面淬火+回火精磨8.各工序的作用分析8.1锻造齿轮通常是锻造成形。

通过锻造能消除齿轮在冶炼过程中产生的铸态疏松等缺陷,齿轮经过锻造加工后能改善其组织结构和力学性能。

铸造组织经过锻造方法热加工变形后由于金属的变形和再结晶,使原来的粗大枝晶和柱状晶粒变为晶粒较细、大小均匀的等轴再结晶组织,使钢锭内原有的偏析、疏松、气孔、夹渣等压实和焊合,其组织变得更加紧密,提高了金属的塑性和力学性能。

8.2正火将齿轮放入炉中加热到840—880o C,保温约3h,出炉在空气中分散冷却。

目的是充分消除锻造引起的内应力,细化晶粒,适当提高齿轮的硬度,防止“粘刀”,改善齿轮性能,为以后的机加工做性能准备,同时为后序的热处理做准备工作。

选择正火可以细化晶粒,提高钢的硬度,改善低碳钢的切削加工性能。

正火与退火的不同点是正火冷却速度比退火冷却速度稍快,因而正火组织要比退火组织更细一些,其机械性能也有所提高。

另外,正火炉外冷却不占用设备,生产率较高,因此生产中尽可能采用正火来代替退火。

由于正火后工件比退火状态具有更好的综合力学性能,对于一些受力不大、性能要求不高的普通结构零件可将正火作为最终热处理,以减少工序、节约能源、提高生产效率。

8.3机加工主要是车外圆和滚齿。

车外圆是指用车削方法加工工件的外圆表面,滚齿是指用齿轮滚刀或蜗轮滚刀按展成法加工齿轮或蜗轮等的齿面。

在制订机加工工艺规程的过程中,往往要对前面已初步确定的内容进行调整,以提高经济效益。

在执行工艺规程过程中,可能会出现前所未料的情况,如生产条件的变化,新技术、新工艺的引进,新材料、先进设备的应用等,都要求及时对工艺规程进行修订和完善。

8.4表面淬火+回火表面淬火:通常利用感应加热淬火装置,只对轮齿部位进行局部感应加热表面淬火。

其做法是将齿轮置于感应器内,通入交流电,齿轮温度达到860—900℃后,随后用水快速冷却,淬火后表面不得有裂纹,淬火可以提高轮齿表面硬度和耐磨性,淬火后表面硬度可达到48—53HRC,淬硬层可达3—4mm。

表面淬火的目的在于获得高硬度,高耐磨性的表面,而心部仍然保持原有的良好韧性。

表面淬火采用的快速加热方法有多种,如电感应,火焰,电接触,激光等,目前应用最广的是电感应加热法。

回火:将齿轮放入回火炉中加热到200—240o C,保温约1h,出炉空气中冷却。

回火一般紧接着淬火进行,其目的是消除在淬火时产生的内应力,防止齿轮在工作中变形和开裂;调整工件的硬度、强度、塑性和韧性,达到使用性能要求;获得稳定的组织,保证尺寸的稳定性;改善和提高加工性能;提高齿轮的韧性,调整齿轮的强度和硬度,获得较好的综合力学性能。

8.5精磨主要是磨齿、推孔等处理:回火过程中轮齿、孔径会发生微变形,因此要进行精磨处理,保证齿轮尺寸的精确,以满足精度要求。

经过这样的热处理以后,齿轮的轮齿表面可以获得高的硬度和耐磨性,而心部仍有较好的塑性和韧性,从而满足齿轮的工作性能要求。

9.润滑油种类的推荐和选择滑油又直接影响减速器的运行,因此,必须根据实际条件反复试验提出润滑油的技术要求,即适当的粘度,良好的抗磨性,一定的油膜强度和稳定性、无腐蚀作用等。

相关文档
最新文档