立体几何篇(空间角之二面角)
高中立体几何二面角和距离求法

四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:通过直线的平移,把异面直线所成的角转化为平面内相交直线所o o注意:若异面直线中一条直线是三角形的一边,则平移时可找三角形的中位线。
有的还可以通过补形,如:将三棱柱补成四棱柱;将正方体再加上三个同样的正方体,补成一个底面是正方形的长方体。
(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90;③斜线与平面所成的角:o o α即也就是斜线与它在平面内的射影所成的角。
(3)二面角:关键是找出二面角的平面角。
方法有:①定义法;②三垂线定理法;③垂面法;注意:还可以用射影法:SS 'cos =θ;其中θ为二面角βα--l 的大小,S 为α内的一个封闭几何图形的面积;'S 为α内的一个封闭几何图形在β内射影图形的面积。
一般用于解选择、填空题。
五、距离的求法: (1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长。
求它们首先要找到表示距离的线段,然后再计算。
注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质);③体积法:利用三棱锥体积公式。
(2)线线距离:关于异面直线的距离,常用方法有:①定义法,关键是确定出b a ,的公垂线段;②转化为线面距离,即转化为a 与过b 而平行于a 的平面之间的距离,关键是找出或构造出这个平面;③转化为面面距离;(3)线面、面面距离:线面间距离面面间距离与线线间、点线间距离常常相互转化;。
立体几何中二面角和线面角

立体几何中的角度问题一、 异面直线所成的角1、如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小。
2、如图6,已知正方体1111ABCD A B C D -的棱长为2,点E是正方形11BCC B 的中心,点F、G分别是棱111,C D AA 的中点.设点11,E G 分别是点E,G在平面11DCC D 内的正投影. (1)求以E为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积; (2)证明:直线11FG FEE ⊥平面; (3)求异面直线11E G EA 与所成角的正弦值二、直线与平面所成夹角1、如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ∠=,PA ⊥ 底面ABCD ,且2PA AD AB BC ===,M N 、分别为PC 、PB 的中点。
求CD 与平面ADMN 所成的角的正弦值。
2、长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角的正弦值。
三、二面角与二面角的平面角问题1、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60︒,2PA PD ==,PB=2,E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值.2、如图5,AEC 是半径为a 的半圆,AC 为直径,点E 为AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足5FB FD a ==,6EF a =。
(1)证明:EB FD ⊥;(2已知点,Q R 为线段,FE FB 上的点,23FQ FE =,23FR FB =,求平面BED 与平面RQD 所成二面角的正弦值。
专题35 空间中线线角、线面角,二面角的求法-

专题35 空间中线线角、线面角、二面角的求法【高考地位】立体几何是高考数学命题的一个重点,空间中线线角、线面角的考查更是重中之重. 其求解的策略主要有两种方法:其一是一般方法,即按照“作——证——解”的顺序进行;其一是空间向量法,即建立直角坐标系进行求解. 在高考中常常以解答题出现,其试题难度属中高档题.类型一 空间中线线角的求法方法一 平移法例1正四面体ABCD 中, E F ,分别为棱AD BC ,的中点,则异面直线EF 与CD 所成的角为 A.6π B. 4π C. 3π D. 2π 【变式演练1】【2021届全国著名重点中学新高考冲刺】如图,正方体1111ABCD A B C D -,的棱长为6,点F 是棱1AA 的中点,AC 与BD 的交点为O ,点M 在棱BC 上,且2BM MC =,动点T (不同于点M )在四边形ABCD 内部及其边界上运动,且TM OF ⊥,则直线1B F 与TM 所成角的余弦值为( )A B C D .79【变式演练2】【江苏省南通市2020-2021学年高三上学期9月月考模拟测试】当动点P 在正方体1111ABCD A B C D -的棱DC 上运动时,异面直线1D P 与1BC 所成角的取值范围( )A .,64ππ⎡⎤⎢⎥⎣⎦B .,63ππ⎡⎤⎢⎥⎣⎦C .,43ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎫⎪⎢⎣⎭【变式演练3】【甘肃省白银市靖远县2020届高三高考数学(文科)第四次联考】在四面体ABCD 中,2BD AC ==,AB BC CD DA ====E ,F 分别为AD ,BC 的中点,则异面直线EF 与AC 所成的角为( )A .π6B .π4C .π3D .π2【变式演练4】【2020年浙江省名校高考押题预测卷】如图,在三棱锥S ABC -中,SA ⊥平面ABC ,4AB BC ==,90ABC ∠=︒,侧棱SB 与平面ABC 所成的角为45︒,M 为AC 的中点,N 是侧棱SC上一动点,当BMN △的面积最小时,异面直线SB 与MN 所成角的余弦值为( )A .16B .3C D .6方法二 空间向量法例2、【重庆市第三十七中学校2020-2021学年高三上学期10月月考】在长方体1111ABCD A B C D -中,E ,F ,G 分别为棱1AA ,11C D ,1DD 的中点,12AB AA AD ==,则异面直线EF 与BG 所成角的大小为( ) A .30B .60︒C .90︒D .120︒例3、【四川省泸县第四中学2020-2021学年高三上学期第一次月考】在长方体1111ABCD A B C D -中,2BC =,14AB BB ==,E ,F 分别是11A D ,CD 的中点,则异面直线1A F 与1B E 所成角的余弦值为( )A .34B .34-C D .6【变式演练5】【2021届全国著名重点中学新高考冲刺】《九章算术》是古代中国乃至东方的第一部自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 【变式演练6】【云南省云天化中学、下关一中2021届高三复习备考联合质量检测卷】如图所示,在正方体1111ABCD A B C D -中,点E 为线段AB 的中点,点F 在线段AD 上移动,异面直线1B C 与EF 所成角最小时,其余弦值为( )A .0B .12C D .1116类型二 空间中线面角的求法方法一 垂线法第一步 首先根据题意找出直线上的点到平面的射影点;第二步 然后连接其射影点与直线和平面的交点即可得出线面角; 第三步 得出结论.例3如图,四边形ABCD是矩形,1,AB AD ==E 是AD 的中点,BE 与AC 交于点F ,GF ⊥平面ABCD .(Ⅰ)求证:AF ⊥面BEG ;(Ⅰ)若AF FG =,求直线EG 与平面ABG 所成角的正弦值.【变式演练7】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC 的中心,则1AB 与底面ABC 所成角的正弦值为( )A .13 B. C.3 D .23【变式演练8】【北京市朝阳区2020届高三年级下学期二模】如图,在五面体ABCDEF 中,面ABCD 是正方形,AD DE ⊥,4=AD ,2DE EF ==,且π3EDC ∠=.(1)求证:AD ⊥平面CDEF ;(2)求直线BD 与平面ADE 所成角的正弦值;GFEDCBA(3)设M 是CF 的中点,棱AB 上是否存在点G ,使得//MG 平面ADE ?若存在,求线段AG 的长;若不存在,说明理由.方法二 空间向量法第一步 首先建立适当的直角坐标系并写出相应点的空间直角坐标; 第二步 然后求出所求异面直线的空间直角坐标以及平面的法向量坐标;第三步 再利用a bsin a bθ→→→→⋅=即可得出结论.例4 【内蒙古赤峰市2020届高三(5月份)高考数学(理科)模拟】在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//BC AD ,222AD BC CD ===,O 是AD 的中点,PO ⊥平面ABCD ,过AB 的平面交棱PC 于点E (异于点C ,P 两点),交PO 于F .(1)求证://EF 平面ABCD ;(2)若F 是PO 中点,且平面EFD 与平面ABCD 求PC 与底面ABCD 所成角的正切值.【变式演练9】【2020年浙江省名校高考仿真训练】已知三棱台111ABC A B C -的下底面ABC 是边长为2的正三角形,上地面111A B C △是边长为1的正三角形.1A 在下底面的射影为ABC 的重心,且11A B A C ⊥.(1)证明:1A B ⊥平面11ACC A ;(2)求直线1CB 与平面11ACC A 所成角的正弦值.类型三 空间二面角的求解例4【江西省部分省级示范性重点中学教科研协作体2021届高三统一联合考试】三棱锥S ABC -中,2SA BC ==,SC AB ==,SB AC ==记BC 中点为M ,SA 中点为N(1)求异面直线AM 与CN 的距离; (2)求二面角A SM C --的余弦值.【变式演练10】【2021年届国著名重点中学新高考冲刺】如图,四边形MABC 中,ABC 是等腰直角三角形,90ACB ∠=︒,MAC △是边长为2的正三角形,以AC 为折痕,将MAC △向上折叠到DAC △的位置,使D 点在平面ABC 内的射影在AB 上,再将MAC △向下折叠到EAC 的位置,使平面EAC ⊥平面ABC ,形成几何体DABCE .(1)点F 在BC 上,若//DF 平面EAC ,求点F 的位置; (2)求二面角D BC E --的余弦值. 【高考再现】1.【2020年高考山东卷4】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为 ( )A .20︒B .40︒C .50︒D .90︒2. 【2017课标II ,理10】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A B C D 3.【2020年高考全国Ⅰ卷理数16】如图,在三棱锥P ABC -的平面展开图中,1,3,,,30AC AB AD AB AC AB AD CAE ===⊥⊥∠=︒,则cos FCB ∠=_____________.4.【2020年高考全国Ⅱ卷理数20】如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1AA //MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为Ⅰ111C B A 的中心,若F C EB AO 11平面∥,且AB AO =,求直线E B 1与平面AMN A 1所成角的正弦值.5.【2020年高考江苏卷24】在三棱锥A —BCD 中,已知CB =CD BD =2,O 为BD 的中点,AO Ⅰ平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=14BC,设二面角F—DE—C的大小为θ,求sinθ的值.6.【2020年高考浙江卷19】如图,三棱台DEF—ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,DC =2BC.(I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.7.【2020年高考山东卷20】如图,四棱锥P ABCD-的底面为正方形,PD⊥底面ABCD,设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知1PD AD==,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【反馈练习】1.【江西省乐平市第一中学2021届高三上学期联考理科】已知正方体1111ABCD A B C D -中,点E ,F 分别是线段BC ,1BB 的中点,则异面直线DE 与1D F 所成角的余弦值为( )A B C .35 D .452.【湖南省永州市宁远、道县、东安、江华、蓝山、新田2020届高三下学期六月联考】某四棱锥的三视图如图所示,点E 在棱BC 上,且2BE EC =,则异面直线PB 与DE 所成的角的余弦值为( )A .BCD .153.【2020届河北省衡水中学高三下学期第一次模拟】如图,在棱长为3的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足12DP PB +=1B P 与直线1AD 所成角的余弦值的取值范围为( )A .10,2⎡⎤⎢⎥⎣⎦B .10,3⎡⎤⎢⎥⎣⎦C .12⎡⎢⎣⎦D .1,22⎡⎢⎣⎦4.【广西玉林市2021届高三11月教学质量监测理科】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AD ,CC 1的中点,则异面直线A 1E 与BF 所成角的大小为( )A .6πB .4πC .3πD .2π 5.【山东省泰安市2020届高三第四轮模拟复习质量】如图,在三棱锥A —BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是( )A .58B .8C .78D .86.【福建省厦门市2020届高三毕业班(6月)第二次质量检查(文科)】如图,圆柱1OO 中,12OO =,1OA =,1OA O B ⊥,则AB 与下底面所成角的正切值为( )A .2BC .2D .127.【内蒙古赤峰市2020届高三(5月份)高考数学(理科)】若正方体1AC 的棱长为1,点P 是面11AA D D 的中心,点Q 是面1111D C B A 的对角线11B D 上一点,且//PQ 面11AA B B ,则异面直线PQ 与1CC 所成角的正弦值为__.8.【吉林省示范高中(四平一中、梅河口五中、白城一中等)2020届高三第五次模拟联考】如图,已知直三棱柱ADF BCE -,AD DF ⊥,2AD DF CD ===,M 为AB 上一点,四棱锥F AMCD -的体积与该直三棱柱的体积之比为512,则异面直线AF 与CM 所成角的余弦值为________.9.【湖北省华中师大附中2020届高三下学期高考预测联考文科】如图,AB 是圆O 的直径,点C 是圆O 上一点,PA ⊥平面ABC ,E 、F 分别是PC 、PB 边上的中点,点M 是线段AB 上任意一点,若2AP AC BC ===.(1)求异面直线AE 与BC 所成的角:(2)若三棱锥M AEF -的体积等于19,求AM BM10.【广东省湛江市2021届高三上学期高中毕业班调研测试】如图,三棱柱111ABC A B C -中,底面ABC 是边长为2的等边三角形,侧面11BCC B 为菱形,且平面11BCC B ⊥平面ABC ,160CBB ∠=︒,D 为棱1AA 的中点.(1)证明:1BC ⊥平面1DCB ;(2)求二面角11B DC C --的余弦值.11.【河南省焦作市2020—2021学年高三年级第一次模拟考试数学(理)】如图,四边形ABCD 为菱形,120ABC ∠=︒,四边形BDFE 为矩形,平面BDFE ⊥平面ABCD ,点P 在AD 上,EP BC ⊥.(1)证明:AD ⊥平面BEP ;(2)若EP 与平面ABCD 所成角为60°,求二面角C PE B --的余弦值.12.【广西南宁三中2020届高三数学(理科)考试】如图1,在直角ABC 中,90ABC ∠=︒,AC =AB =D ,E 分别为AC ,BD 的中点,连结AE 并延长交BC 于点F ,将ABD △沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示.(1)求证:AE CD ⊥;(2)求平面AEF 与平面ADC 所成锐二面角的余弦值.13.【广西柳州市2020届高三第二次模拟考试理科】已知三棱锥P ABC -的展开图如图二,其中四边形ABCD ABE △和BCF △均为正三角形,在三棱锥P ABC -中:(1)证明:平面PAC ⊥平面ABC ;(2)若M 是PA 的中点,求二面角P BC M --的余弦值.14.【浙江省“山水联盟”2020届高三下学期高考模拟】四棱锥P ABCD -,底面ABCD 为菱形,侧面PBC 为正三角形,平面PBC ⊥平面ABCD ,3ABC π∠=,点M 为AD 中点.;(1)求证:CM PB(2)若点N是线段PA上的中点,求直线MN与平面PCM所成角的正弦值.。
二面角说课

教学过程 基础知识回顾
具体设计
设计图
二面角的定义,二面角的平面角定义,二面角的度量, 直二面角以及法向量求二面角公式。目的是应用这些知识求 二面角。 五个求二面角小 题,题目较易,包含了 求二面角的各种方法, 在教学过程中以抢答形 反馈体验 1、已知正三棱锥 V-ABC 的所有棱长均相等,则二面角 A式让学生回答,对于出 现问题的题目还可以让 其他学生抢答补充或纠 正。通过这种“竞争进 学生的学习热情,将课 堂作为学生发展学习成 果的阵地,从而调动学 使他们主动参与到教学 实践活动中。
《二面角》说课
总体分析
本节课为高三年级立体几何复习《二面角》的第一课时的内容。它是在学生学过平 面几何中的角、空间中两异面直线所成的角、直线和平面所成的角之后,又要重点研究 的一种空间的角,它是学生进一步研究多面体和旋转体的基础,因此,它起着承上启下 分析教材 的作用。同时,也是培养学生的空间想象力和逻辑思维能力的重要素材,为培养学生的 创新意识和创新能力提供了一个良好的契机。 值得一提的是本节知识点也是高考命题的一个热点。
2 ,则这个 3
2
例 : 在 底 面 是 直 角 梯 形 的 四 棱 锥 S-ABCD 中 , ∠ ABC=90° ,SA⊥面 ABCD,SA=AB=BC=2,AD=1,求面 SCD 与面 SBA 所成的二面角的正切值。 通过演板来检验学 由于反馈体验的五个小题包括了求二面角的基本方法, 课前学生也已对该题提前预习过,所以提出问题:请一位同 学说出求此二面角可以用哪些方法? 生掌握情况,锻炼学生 的心理素质,激发他们 的自信心和表现欲,调 动学生的学习积极性 。 同时通过演板进一步加 强学生解题格式的规范 化。
让学生通过不同角 度思考问题,提高知识 迁移能力,寻找解决问 题的多种途径及多种可 能的结论,这样能促进 思维的灵活性。同时多 解中的新思路、新方 法,又有利于创新思维 的形成,而在应用多种 解法中选择更简、更优 的解法,有利于优化思 维品质。
高二数学 空间角——二面角

03《空间角——二面角》课后练习一、选择题1.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12B.23C.33D.222.正△ABC 与正△BCD 所在平面垂直,则二面角A -BD -C 的正弦值为( ) A.55B.33 C.255D.63二、填空题 3. 若已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为__________. 4. P 是二面角α-AB -β棱上的一点,分别在平面α,β上引射线PM ,PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么二面角α-AB -β的大小为__________.三、解答题5.如图,在四棱锥A -BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC = 2.(1)证明:DE ⊥平面ACD ; (2)求二面角B -AD -E 的大小.6.如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点. (1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -P 的余弦值.03《空间角——二面角》课后练习答案一、选择题1.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12B.23C.33D.22解析 以A 为原点建立如图所示的空间直角坐标系A -xyz ,设棱长为1,则A 1(0,0,1), E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1),A 1E →=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),所以有⎩⎪⎨⎪⎧A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,解得⎩⎪⎨⎪⎧ y =2,z =2.∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴ cos 〈n 1,n 2〉=23×1=23.即所成的锐二面角的余弦值为23.答案 B2.正△ABC 与正△BCD 所在平面垂直,则二面角A -BD -C 的正弦值为( ) A.55B.33C.255D.63解析 取BC 中点O ,连接AO ,DO .建立如图所示坐标系,设BC =1,则A ⎝⎛⎭⎫0,0,32,B ⎝⎛⎭⎫0,-12,0, D ⎝⎛⎭⎫32,0,0.∴OA →=⎝⎛⎭⎫0,0,32,BA →=⎝⎛⎭⎫0,12,32,BD →=⎝⎛⎭⎫32,12,0.由于OA →=⎝⎛⎭⎫0,0,32为平面BCD 的一个法向量,可进一步求出平面ABD 的一个法向量n =(1,-3,1),∴ cos 〈n ,OA →〉=55,∴ sin 〈n ,OA →〉=255. 答案 C二、填空题3. 若已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为__________.解析 cos 〈m ,n 〉=m ·n |m ||n |=22,∴〈m ,n 〉=π4.∴两平面所成二面角的大小为π4或3π4.答案π4或3π44. P 是二面角α-AB -β棱上的一点,分别在平面α,β上引射线PM ,PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么二面角α-AB -β的大小为__________.解析 不妨设PM = a ,PN =b ,如图,作ME ⊥AB 于E ,NF ⊥AB 于F , ∵∠EPM =∠FPN =45°, ∴PE =22a ,PF =22b , ∴EM →·FN →=(PM →-PE →)·(PN →-PF →)=PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF →=ab cos 60°-a ×22b cos 45°-22a ×b cos 45°+22a ×22b =ab 2-ab 2-ab 2+ab2=0. ∴EM →⊥FN →,∴二面角α-AB -β的大小为90°. 答案 90° 三、解答题5. 如图,在四棱锥A -BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC = 2. (1)证明:DE ⊥平面ACD ; (2)求二面角B -AD -E 的大小.解析 (1)证明 在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2,由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC , 又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE ,所以AC ⊥DE .又DE ⊥DC ,DC ∩AC =C ,从而DE ⊥平面ACD .(2)解 以D 为原点,分别以射线DE ,DC 为x 轴,y 轴的正半轴,建立空间直角坐标系D -xyz ,如图所示.由题意知各点坐标如下:D (0,0,0),E (1,0,0),C (0,2,0),A (0,2,2),B (1,1,0). 设平面ADE 的法向量为m =(x 1,y 1,z 1),平面ABD 的法向量为n =(x 2,y 2,z 2),可算得AD →=(0,-2,-2),AE →=(1,-2,-2),DB →=(1,1,0),由⎩⎪⎨⎪⎧m ·AD →=0,m ·AE →=0,即⎩⎨⎧-2y 1-2z 1=0,x 1-2y 1-2z 1=0,可取m =(0,1,-2).由⎩⎪⎨⎪⎧n ·AD →=0,n ·BD →=0,即⎩⎨⎧-2y 2-2z 2=0,x 2+y 2=0,可取n =(1,-1,2).于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=33·2=32,由题意可知,所求二面角是锐角,故二面角B -AD -E 的大小是π6.6.如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点. (1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -P 的余弦值.解析 (1)证明 依题意,以点A 为原点建立空间直角坐标系(如图), 可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2). 由E 为棱PC 的中点,得E (1,1,1).向量BE →=(0,1,1),DC →=(2,0,0),故BE →·DC →=0.所以BE ⊥DC .(2)解 向量BD →=(-1,2,0),PB →=(1,0,-2),设n =(x ,y ,z )为平面PBD 的法向量,则⎩⎪⎨⎪⎧n ·BD →=0,n ·PB →=0,即⎩⎪⎨⎪⎧-x +2y =0,x -2z =0.不妨令y =1,可得n =(2,1,1)为平面PBD 的一个法向量,于是有 cos 〈n ,BE →〉=n ·BE →|n |·|BE →|=26×2=33.所以直线BE 与平面PBD 所成角的正弦值为33. (3)解 向量BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0).由点F 在棱PC 上,设CF → =λCP →,0≤λ≤1.故BF →=BC →+CF →=BC →+λ CP →=(1-2λ,2-2λ,2λ).由 BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ)=0,解得λ=34.即BF →=(23,21,21-).设n 1=(x ,y ,z )为平面F AB 的法向量, 则⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BF →=0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0.不妨令z =1,可得n 1=(0,-3,1)为平面F AB 的一个法向量.取平面ABP 的法向量n 2=(0,1,0),则: cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-310×1=-31010.易知,二面角F -AB -P 是锐角, 所以其余弦值为31010.。
立体几何向量法求二面角

立体几何向量法求二面角一、引言在几何学中,二面角是指两个平面或者一个平面和一个直线之间的夹角。
它是描述多面体中相邻两个面之间的夹角的重要参数。
在工程学、物理学和化学等领域,求解二面角是非常常见的问题。
本文将介绍立体几何向量法求解二面角的方法。
二、立体几何向量法立体几何向量法是一种非常有效的求解二面角的方法。
它基于向量叉积和点积的运算,通过将多面体分解成若干个三角形来计算二面角。
1. 向量叉积向量叉积是两个向量所构成的新向量,其大小等于两个向量所构成平行四边形的面积,方向垂直于这两个向量所构成平行四边形所在平面。
设有两个三维向量a = (a1, a2, a3)和b = (b1, b2, b3),则它们的叉积c = a × b定义为:c = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)其中c表示a和b所构成平行四边形所在平面上一条垂直这个平行四边形的向量。
2. 向量点积向量点积是两个向量所构成的标量,其大小等于两个向量夹角的余弦值乘以两个向量的模长之积。
设有两个三维向量a = (a1, a2, a3)和b = (b1, b2, b3),则它们的点积c = a · b定义为:c = a1b1 + a2b2 + a3b3其中c表示a和b之间夹角的余弦值乘以它们的模长之积。
3. 二面角计算公式二面角可以通过计算相邻两个面法线向量之间夹角的余弦值来求解。
具体地,设有一个多面体,其中相邻两个面A和B所对应的法线分别为nA和nB,则它们之间的二面角θAB可以通过以下公式计算:cosθAB = -nA·nB / |nA||nB|其中“·”表示向量点积,“| |”表示向量模长。
4. 多面体分解在实际问题中,通常需要将多面体分解成若干个三角形来计算二面角。
具体地,考虑一个四面体(如图1),其中相邻两个三角形ABC和ABD所对应的法线分别为nABC和nABD,则它们之间的二面角θABC-D可以通过以下公式计算:cosθABC-D = -nABC·nABD / |nABC||nABD|其中“·”表示向量点积,“| |”表示向量模长。
立体几何(几何法)—二面角(模型一)
立体几何(几何法)—二面角(模型一)例1(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC中,90A ∠=︒,6BC =,,D E分别是,A C A B上的点,CD BE ==O为BC的中点.将ADE∆沿DE折起,得到如图2所示的四棱锥A BCDE'-,其中A O '=.(Ⅰ) 证明:A O '⊥平面B C;(Ⅱ) 求二面角A CD B'--的平面角的余弦值.【答案】(Ⅰ) 在图1中,易得3,2,22O C A=连结,OD OE,在OCD∆中,由余弦定理可得由翻折不变性可知A D'=,所以222A O OD A D''+=,所以A O OD'⊥,理可证A O OE'⊥, 又OD OE O =,所以A O'⊥平面BCDE.C D O BEH.C O BD EA C D O BE图图(Ⅱ) 传统法:过O作OH CD⊥交CD的延长线于H,连结A H',因为A O '⊥平面BCDE,所以A H CD'⊥,所以A H O'∠为二面角A CD B'--的平面角.结合图1可知,H为AC中点,故2OH =,从而2A H '==所以cos OH A HO A H '∠=='CD B-向量法:以O直角坐标系O xyz-如图所示,则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=-设(),,n x y z =为平面A CD'的法向量,则n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧=⎪⎨-++=⎪⎩,解得y xz =-⎧⎪⎨=⎪⎩,令1x =,得(1,n =-由(Ⅰ) 知,(OA '=为平面CDB 的一个法向量,所以5c o s ,3n OA n OA n OA '⋅'===',即二面角A C DB'--例2(2012高考真题广东理18)(本小题满分13分)如图1-5所示,在四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE .(1)证明:BD ⊥平面PAC ;(2)若PA =1,AD =2,求二面角B -PC -A 的正切值.图1-5【答案】证明:(1)⎭⎬⎫PC ⊥平面BDE BD ⊂平面BDE ⇔PC ⊥BD .⎭⎬⎫PA ⊥平面ABCD BD ⊂平面ABCD ⇒PA ⊥BD .∵PA ∩PG =P ,PA ⊂平面PAC ,PC ⊂平面PAC , ∴BD ⊥平面PAC .(2)法一:如图所示,记BD 与AC 的交点为F ,连接EF .由PC ⊥平面BDE ,BE ⊂平面BDE ,EF ⊂平面BDE , ∴PC ⊥BE ,PC ⊥EF .即∠BEF 为二面角B -PC -A 的平面角. 由(1)可得BD ⊥AC ,所以矩形ABCD 为正方形,AB =AD =2, AC =BD =22,FC =BF = 2.在Rt △PAC 中,PA =1,PC =PA 2+AC 2=3, 即二面角B -PC -A 的正切值为3.法二:以A 为原点,AB →AD →AP →的方向分别作为xyz 轴的正方向建立空间直角坐标系,如图所示.设AB =b ,则:A (0,0,0),B (b,0,0),C (b,2,0),D (0,2,0),P (0,0,1). 于是PC→=(b,2,-1),DB →=(b ,-2,0). 因为PC ⊥DB ,所以PC →·DB→=b 2-4=0,从而b =2.结合(1)可得DB→=(2,-2,0)是平面APC 的法向量.现设=(x ,y ,z )是平面BPC 的法向量,则 ⊥BC →,⊥PC →,即·BC →=0,·PC →=0. 因为BC→=(0,2,0),PC →=(2,2,-1), 所以2y =0,2x -z =0. 取x =1,则z =2,=(1,0,2). 令θ=〈,DB →〉,则cos θ=n ·DB →|n ||DB →|=25·22=110,sin θ=310,tan θ=3. 由图可得二面角B -PC -A 的正切值为3.例3(2012高考真题山东理18)(18)(本小题满分12分) 在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,60,DAB FC ∠=⊥平面,,ABCD AE BD CB CD CF⊥==.(Ⅰ)求证:BD ⊥平面AED; (Ⅱ)求二面角F BD C--的余弦值.【答案】解:(1)证明:因为四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,所以∠ADC=∠BCD=120°.又CB=CD,所以∠CDB=30°,因此∠ADB=90°,AD⊥BD,又AE⊥BD,且AE∩AD=A,AE,AD⊂平面AED,所以BD⊥平面AED.(2)解法一:取BD的中点G,连接CG,FG,由于CB=CD,因此CG⊥BD,又FC⊥平面ABCD,BD⊂平面ABCD,所以FC⊥BD,由于FC∩CG=C,FC,CG⊂平面FCG,所以BD⊥平面FCG,故BD⊥FG,所以∠FGC为二面角F-BD-C的平面角.在等腰三角形BCD中,由于∠BCD=120°,因此CG=12 CB.又CB=CF,所以GF=CG2+CF2=5CG,故cos ∠FGC =55,因此二面角F -BD -C 的余弦值为55.解法二:由(1)知AD ⊥BD ,所以AC ⊥BC . 又FC ⊥平面ABCD , 因此CA ,CB ,CF 两两垂直,以C 为坐标原点,分别以CA ,CB ,CF 所在的直线为x 轴,y 轴,z 轴, 建立如图所示的空间直角坐标系, 不妨设CB =1.则C (0,0,0),B (0,1,0),D ⎝ ⎛⎭⎪⎪⎫32,-12,0,F (0,0,1).因此BD →=⎝⎛⎭⎪⎪⎫32,-32,0,BF →=(0,-1,1). 设平面BDF 的一个法向量为=(x ,y ,z ), 则·BD →=0,·BF →=0, 所以x =3y =3z ,取z =1,则=(3,1,1).由于CF→=(0,0,1)是平面BDC 的一个法向量, 则cos 〈,CF →〉=m ·CF→|m ||CF →|=15=55, 所以二面角F -BD -C 的余弦值为55.例4(2013年高考浙江卷(文))如图,在在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=7,PA=3,∠ABC=120°,G 为线段PC上的点.(Ⅰ)证明:BD⊥面PAC ; (Ⅱ)若G 是PC 的中点,求DG 与APC 所成的角的正切值; (Ⅲ)若G 满足PC⊥面BGD,求PG GC的值.【答案】解:证明:(Ⅰ)由已知得三角形ABC 是等腰三角形,且底角等于30°,且6030AB CB AD CD ABD CBD ABD CBD BAC BD DB =⎫⎪=⇒∆≅∆⇒∠=∠=∠=⎬⎪=⎭且,所以;、BD AC⊥,又因为P A A BC D BDB D P ACB DA C⊥⇒⊥⎫⇒⊥⎬⊥⎭; (Ⅱ)设ACBD O=,由(1)知DO PAC ⊥,连接GO ,所以DG 与面APC 所成的角是DGO∠,由已知及(1)知:1,2BO AO CO DO =====,12tan 12OD GO PA DGO GO ==⇒∠===,所以DG与面APC(Ⅲ)由已知得到:PC ===,因为P CB G D ⊥∴⊥,在PDC ∆中,PD CD PC ====,设。
立体几何二面角余弦值公式
立体几何二面角余弦值公式
在立体几何中,二面角是一个重要概念,它指的是两个平面相交所形成的角。
求解二面角的余弦值是立体几何中的一个常见问题。
接下来,我们将介绍二面角余弦值公式的应用、规则、适用场景以及延申。
一、二面角余弦值公式的应用
在求解二面角余弦值时,常用的方法包括定义法、三垂线法、垂面法、面积法以及找棱法等。
这些方法在实际应用中可以相互转化,以适应不同问题的需求。
二、二面角余弦值公式的规则
1. 当两个法向量夹角为锐角或钝角时(即点乘后所得结果同号),二面角的大小与两个法向量的夹角相等。
2. 当两个法向量夹角为钝角时(即点乘后所得结果异号),二面角的大小与两个法向量的夹角互补。
三、二面角余弦值公式的适用场景
1.求解二面角的余弦值:当需要求解二面角的余弦值时,可以使用二面角余弦值公式进行计算。
2.判断二面角的性质:通过计算二面角的余弦值,可以判断二面角是锐角还是钝角。
3. 在几何模型中应用:二面角余弦值公式在各种几何模型中都有广泛的应用,如棱锥、棱柱、平面凸轮等。
四、二面角余弦值的延申
1.空间向量的应用:二面角余弦值的求解可以扩展到空间向量的应用,如求
解空间向量的模、夹角、投影等。
2.空间几何中的其他问题:二面角余弦值的求解方法可以延申到空间几何的其他问题,如求解空间直线与平面的夹角、求解空间两个平面的夹角等。
总之,二面角余弦值公式在立体几何中具有重要的应用价值。
通过掌握二面角余弦值公式的求解方法,可以更好地解决立体几何中的相关问题。
同时,了解二面角余弦值公式的适用场景和延申,有助于提高解决实际问题的能力。
二面角的求法和利用空间向量解决立体几何问题
二面角的定义:
1、定义
从一条直线出发的两个半平面所组成
的图形叫做二面角, 这条直线叫做二面角
l
的棱, 这两个半平面叫做二面角的面.
2、二面角的表示方法
二面角-AB-
A
C
B
二面角- l-
D
l
B
A
二面角C-AB- D
F
E
A
B
D
C
二面角C-AB- E
二面角的平面角:
以二面角的棱上任意一点为端
点, 在两个面内分别作垂直于棱的 两条射线, 这两条射线所成的角叫 做二面角的平面角。
面面平行
∥ n1 ∥ n2 n1 kn2
二、垂直关系:
设直线 l, m 的方向向量分别为 AB,CD ,
平面 , 的法向量分别为 n1 , n2 , 线线垂直:
l ⊥ m AB ⊥ CD AB • CD 0 ;
Bl
A
平面 内的两个相交向量垂直
(4)解方程组,令其中一个量的值求另外两个, 即得法向量。
一、平行关系:
设直线 l, m 的方向向量分别为 AB,CD ,
lm
BD
平面 , 的法向量分别为
线线平行:
n1
, n2
,
l ∥ m AB ∥ CD AB kCD
;
x1 y1
=
A
x2 y2
=
C
x3 y3
线面平行
AB
l ∥ AB n1 AB n1 0 ;
分别作垂直于a 的两条射线OA,OB,则∠AOB就 是此二面角的平面角。
2、垂线法: 在一个平面 内选一点A向另一平面 作 垂线AB,
垂足为B,再过点B向棱a作垂线BO,垂足 为O, 连结AO,则∠AOB就是二面角的平面角。
二面角求解方法
教师: 学生: 年级: 科目: 课次: 时间: 年 月 日 内容: 二面角求解方法总结二面角的作与求求角是每年高考必考内容之一,可以做为选择题,也可作为填空题,时常作为解答题形式出现,重点把握好二面角,它一般出现在解答题中。
下面就对求二面角的方法总结如下:1、定义法:在棱上任取一点,过这点在两个面内分别引棱的垂线,这两条射线所成的角就是二面角的平面角。
2、三垂线定理及逆定理法:自二面角的一个面上的一点向另一个面引垂线,再由垂足向棱作垂线得到棱上的点。
斜足与面上一点连线,和斜足与垂足连线所夹的角即为二面角的平面角。
3、作棱的垂面法:自空间一点作与棱垂直的平面,截二面角的两条射线所成的角就是二面角的平面角。
4、投影法:利用s投影面=s被投影面θcos 这个公式对于斜面三角形,任意多边形都成立,是求二面角的好方法。
尤其对无棱问题5异面直线距离法: EF 2=m 2+n 2+d 2-2mn θcos例1:若p 是ABC ∆所在平面外一点,而PBC ∆和ABC ∆都是边长为2的正三角形,PA=6,求二面角P-BC-A 的大小。
分析:由于这两个三角形是全等的三角形, 故采用定义法解:取BC 的中点E ,连接AE 、PEAC=AB ,PB=PC ∴AE ⊥ BC ,PE ⊥BC∴PEA ∠为二面角P-BC-A 的平面角PCBAE在PAE ∆中AE=PE=3,PA=6∴PEA ∠=900∴二面角P-BC-A 的平面角为900。
例2:已知ABC ∆是正三角形,⊥PA 平面ABC 且PA=AB=a,求二面角A-PC-B 的大小。
[思维]二面角的大小是由二面角的平面角 来度量的,本题可利用三垂线定理(逆)来作 平面角,还可以用射影面积公式或异面直线上两点 间距离公式求二面角的平面角。
解1:(三垂线定理法)取AC 的中点E ,连接BE ,过E 做EF ⊥PC,连接BF ⊥PA 平面ABC ,PA ⊂平面PAC∴平面PAC ⊥平面ABC, 平面PAC 平面ABC=AC∴BE ⊥平面PAC由三垂线定理知BF ⊥PC∴BFE ∠为二面角A-PC-B 的平面角设PA=1,E 为AC 的中点,BE=23,EF=42∴tan BFE ∠=6=EFBE∴BFE ∠=argtan 6解2:(三垂线定理法)取BC 的中点E ,连接AE ,PE 过A 做AF ⊥PE, FM ⊥PC,连接FMAB=AC,PB=PC ∴AE ⊥BC,PE ⊥BC∴ BC ⊥平面PAE,BC ⊂平面PBC∴平面PAE ⊥平面PBC, 平面PAE 平面PBC=PEPC AEF MEPCBAF图1由三垂线定理知AM ⊥PC∴FMA ∠为二面角A-PC-B 的平面角设PA=1,AM=22,AF=721.=PE AE AP∴sin FMA ∠=742=AM AF ∴FMA ∠=argsin742解3:(投影法)过B 作BE ⊥AC 于E,连结PE ⊥PA 平面ABC ,PA ⊂平面PAC∴平面PAC ⊥平面ABC, 平面PAC 平面ABC=AC∴BE ⊥平面PAC∴PEC ∆是PBC ∆在平面PAC 上的射影设PA=1,则PB=PC=2,AB=141=∆PEC S ,47=∆PBC S由射影面积公式得,77cosarg ,77=∴==∆∆θθPBC PEC S S COS , 解4:(异面直线距离法)过A 作AD ⊥PC,BE ⊥PC 交PC 分别于D 、E 设PA=1,则AD=22,PB=PC=2 ∴BE=PC S PBC 21∆=414,CE=42,DE=42由异面直线两点间距离公式得 AB 2=AD 2+BE 2+DE 2-2ADBE θCOS ,θCOS =77cos arg ,77=∴θ PCBAEEPCBA D图3图4[点评]本题给出了求平面角的几种方法,应很好掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何篇(空间角专题之二面角)
二面角的定义:
在两个平面的交线上任取一点,过该点,在各自的平面内作交线的垂线,两根射线所成的平角即为两个平面的二面角,二面角的范围为ο
≤θ或]
0≤
180
,0[π
二面角的求法:
1、定义法:
2、三垂线法:(最重要的方法)
3、面积比法:
4、垂面法:
5、向量法:(建系)
例题
1、定义法:(当等腰三角形出现的情况下,用定义法)
1、求正四面体相邻的两个平面的所成二面角余弦值的大小
2、如图,在三棱锥A BCD
-中,侧面ABD ACD
,是全等的直角三角形,AD是公共的斜边,且31
AD BD CD
===
,,另一侧面ABC是正三角形.
(1)求证:AD BC
⊥;
(2)求二面角B AC D
--的余弦值;
2、三垂线法(也叫站柱法)
三垂线定理:
(1)垂直于斜线由垂直于射线;(2)垂直于射线则垂直于斜线。
A
B
C
D
例3、如图,在三棱锥P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,平面PAB⊥平面ABC.(Ⅰ)求直线PC与平面ABC所成角的正切值;
(Ⅱ)求二面角B﹣AP﹣C所成角的正切值.
例4、在如图所示的几何体中,四边形ABCD 是等腰梯形, AB ∥CD ,∠DAB = 60,
FC ⊥平面ABCD ,AE ⊥BD ,CB =CD =CF .
(Ⅰ).求证: BD ⊥平面AED .
(Ⅱ)求二面角F -BD -C 的余弦值.
E F B
A C D
3、面积比法
原射
S S =θcos
例5、1111D C B A ABCD -是长方体,侧棱1AA 长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面DE C 1与底面CDE 所成二面角的正切值。
例6、E 为正方体1111D C B A ABCD -的棱1CC 的中点,求平面E AB 1的底面1111D C B A 所成锐角的余弦值。
4、垂面法
通过作二面角棱的垂面得到平面角的方法叫垂面法。
例7、空间的点P 到二面角βα--l 的面α、β及棱l 的距离分别为4、3、3392,求二面角βα--l 的大小.
P
β
α l
C B A。