最新高考数学专题复习立体几何重点题型空间距离空间角(师)
新教材高考数学二轮专题复习第一部分专题攻略专题四立体几何第二讲空间位置关系空间角与空间距离课件

10
2.[2022·广东茂名二模]正三棱锥S - ABC的底面边长为4,侧棱长为
2 3 , D 为 棱 AC 的 中 点 , 则 异 面 直 线 SD 与 AB 所 成 角 的 余 弦 值 为
2
________.
4
解析:取BC的中点E,连接SE,DE,则∠SDE(或其补
角)为异面直线SD与AB所成的角,
解决问题;
2.必要时可以借助空间几何模型,如从长方体、四面体等模型中观
察线面位置关系,并结合有关定理来进行判断.
巩固训练1
1.[2022·湖南衡阳二模]设m、n是空间中两条不同的直线,α、β是两
个不同的平面,则下列说法正确的是(
)
A.若m⊥α,n⊥β,m⊥n,则α⊥β
B.若m⊂α,n⊂β,α∥β,则m∥n
面ABCD,且PA=AB,AD=3AB,则PC与底面ABCD所成角的正切值为
(
)
1
A.
B.3
3
C.
10
10
D. 10
答案:C
解析:因为PA⊥底面ABCD,AC⊂底面ABCD,
所以PA⊥AC,则PC与底面ABCD所成角为∠PCA.
设AB=1,则PA=1,AD=3,AC= 10.
所以tan
PA
10
∠PCA= = .
1 ·2
为θ.则sin θ=|cos 〈n1,n2〉|=
.
1 2
3.平面与平面的夹角
若n1,n2分别为平面α,β的法向量,θ为平面α,β的夹角,则cos θ=
1 ·2
|cos 〈n1,n2〉|=
.
1 2
4.点到直线的距离:已知A,B是直线l上任意两点, P是l外一点,
2024高考数学基础知识综合复习第21讲空间角与距离课件

3
A.-4
3
B.4
1
C.8
1
D.-8
解析 如图,取 CC1 中点 M,AC 中点 N,连接 MN,MB1,NB1,NB.
在直三棱柱 ABC-A1B1C1 中,AC=AA1=2,BC=1,所以 AA1⊥平面 A1B1C1.
设
2-
BM=t,因为△B1C1M∽△CNC1,由相似比得
2
解得
2 2 -2+4
AN=
,由等面积法得
2-
2 -2+4
≥1(当且仅当
3
CG=
2 3
2 -2+4
=
2
4
,CN= ,由余弦定理可
2-
,所以
1
tan∠C1GC=
t=1 时,等号成立),故(cos∠C1GC)max=
求解.
考向3
二面角
典例4直三棱柱ABC-A1B1C1中,各棱长均等于2,M为线段BB1上的动点,则平
面ABC与平面AMC
1所成的二面角为锐角,则该角的余弦值的最大值为
2
___________.
2
解析 延长 C1M 交 CB 于点 N,连接 AN,则平面 AMC1∩平面 ABC=AN,作 CG
⊥AN 于点 G,连接 C1G,∠C1GC 为所求的二面角的平面角.
1.空间角
(1)异面直线所成的角
①定义:已知两条异面直线 a,b 经过空间任一点 O 分别作直线 a'∥a,b'∥b,
我们把直线 a'与 b'所成的角叫做异面直线 a 与 b 所成的角(或夹角).
立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。
考题难度中等,常结合空间向量知识进行考查。
2024年高考有很大可能延续往年的出题方式。
题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。
高中数学高考复习专题《立体几何》微专题1 空间中的距离

1.典型例题
题型一、点到直线的距离
例 1 已知正方体 ABCD-A1B1C1D1 的棱长为 2,E 为棱 A1B1 的中点,F 为棱 C1D1 的中点,
则 BF=
,点 A 到直线 BE 的距离为
.
【答案】3,45 5
【解析】如图 2 所示,连结 B1F,在△BB1F 中可得 BF=3.作 AH⊥BE 于 H,连结 AE,
E
A
F
B
图4
D
C
E O
A
F
B
图5
【答案】(1)2
2;(2)2
1111;(3)2
11. 11
【解析】如图 5 所示,连结 AC 交 BD 于 O.
(1)可证 OC⊥BD,OC⊥PC,又 OC=2 2,∴异面直线 PC、BD 间的距离为
2 2.
(2)法一 可证 BD∥平面 PEF,∴点 O 到平面 PEF 的距离等于点 B 到平面 PEF 的距
(4)两条异面直线间的距离
和两条异面直线分别垂直相交的直线,叫两条异面直线的公垂线;公垂线上夹在两异
面直线间的线段的长度,叫两异面直线间的距离.
如图 1 所示,AA1 与 BC 为异面直线.易知 AB⊥AA1,AB⊥BC,因此异面直线 AA1 与 BC 间的距离为 1.
(5)直线和平面的距离
一条直线和一个平面平行,这条直线上任意一点到这个平面的距离,叫做这条直线和这
D1
C1
A1
B1
D
C
A (2)点到平面的距离
B 图1
从平面外一点引平面的垂线,这个点和垂足间的距离,叫做这个点到这个平面的距离.
如图 1 所示,易知 AA1⊥平面 A1C1,因此点 A 到平面 A1C1 的距离为 1. (3)两条平行直线间的距离
高考数学总复习考点知识专题讲解43---空间角与距离

如图,以 O 为坐标原点,射线 OB,OC 分别为 x 轴,y 轴的正半轴建立空间直角坐标系 O-xyz,
则 P(0,- 3,2),A(0,- 3,0),B(1,0,0),C(0, 3,
0),
→
→
|AB·n|
的法向量,则 B 到平面 α 的距离为|BO|=
|n|
.
两个提醒 (1)线面角 θ 的正弦值等于直线的方向向量 a 与平面的法 向量 n 所成角的余弦值的绝对值,即 sinθ=|cos〈a,n〉|,
不要误记为 cosθ=|cos〈a,n〉|.
(2)二面角与法向量的夹角:利用平面的法向量求二面角 的大小时,当求出两半平面 α,β 的法向量 n1,n2 时,要根 据向量坐标在图形中观察法向量的方向,来确定二面角与向 量 n1,n2 的夹角是相等,还是互补.
BB1 为 z 轴,建立空间直角坐标系如图所示,设 AB=BC=AA1
→ =2,则 C1(2,0,2),E(0,1,0),F(0,0,1),∴EF=(0,-1,1),
→
→→
BC1=(2,0,2),∴EF·BC1=2,
∴cos〈E→F,B→C1〉=
2 2×2
2=12,
则 EF 和 BC1 所成的角是 60°,故选 C.
(2020·大连外国语学校月考)如图所示,在三棱柱 ABC- A1B1C1 中,AA1⊥底面 ABC,AB=BC=AA1,∠ABC=90°, Байду номын сангаас E,F 分别是棱 AB,BB1 的中点,则直线 EF 和 BC1 所成 的角是( C )
A.30° C.60°
2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离

形,则在正四棱柱 ABCD - A 1 B 1 C 1 D 1中,异面直线 AK 和 LM 所成的角的大小为
(
D )
A. 30°
B. 45°
C. 60°
D. 90°
[解析] 根据题意还原正四棱柱的直观图,如图所示,取 AA 1的中点 G ,连接 KG ,
则有 KG ∥ LM ,所以∠ AKG 或其补角为异面直线 AK 和 LM 所成的角.由题知 AG =
A 1 C 1=5, BC 1=4 2 ,所以 cos
52 +52 −(4 2)2
9
1
∠ BA 1 C 1=
= < ,所以60°<
2×5×5
25
2
∠ BA 1 C 1<90°,则过点 D 1作直线 l ,与直线 A 1 B , AC 所成的角均为60°,即过一
点作直线,使之与同一平面上夹角大于60°的锐角的两边所在直线所成的角均成
2 z -1=0的交线,试写出直线 l 的一个方向向量 (2,2,1)
的余弦值为
65
9
.
,直线 l 与平面α所成角
[解析] 由平面α的方程为 x +2 y -2 z +1=0,可得平面α的一个法向量为 n =(1,
⑫ [0, ] ,二面角的
2
n1,n2>|.
范围是⑬
[0,π] .
易错警示
1. 线面角θ与向量夹角< a , n >的关系
π
2
π
2
如图1(1),θ=< a , n >- ;如图1(2),θ= -< a , n >.
图1
2. 二面角θ与两平面法向量夹角< n 1, n 2>的关系
图2(2)(4)中θ=π-< n 1, n 2>;图2(1)(3)中θ=< n 1, n 2>.
高考数学复习考点题型专题讲解15 空间角、距离的计算(几何法、向量法)

高考数学复习考点题型专题讲解专题15 空间角、距离的计算(几何法、向量法) 高考定位 1.以空间几何体为载体考查空间角(以线面角为主)是高考命题的重点,常与空间线面位置关系的证明相结合,热点为空间角的求解,常以解答题的形式进行考查.高考注重利用向量方法解决空间角问题,但也可利用几何法来求解;2.空间距离(特别是点到面的距离)也是高考题中的常见题型,多以解答题的形式出现,难度中等.1.(多选)(2022·新高考Ⅰ卷)已知正方体ABCD-A1B1C1D1,则( )A.直线BC1与DA1所成的角为90°B.直线BC1与CA1所成的角为90°C.直线BC1与平面BB1D1D所成的角为45°D.直线BC1与平面ABCD所成的角为45°答案ABD解析如图,连接AD1,在正方形A1ADD1中,AD1⊥DA1,因为AD1∥BC1,所以BC1⊥DA1,所以直线BC1与DA1所成的角为90°,故A正确;在正方体ABCD-A1B1C1D1中,CD⊥平面BCC1B1,又BC1⊂平面BCC1B1,所以CD⊥BC1.连接B1C,则B1C⊥BC1.因为CD∩B1C=C,CD,B1C⊂平面DCB1A1,所以BC1⊥平面DCB1A1,又CA1⊂平面DCB1A1,所以BC1⊥CA1,所以直线BC1与CA1所成的角为90°,故B正确;连接A1C1,交B1D1于点O,则易得OC1⊥平面BB1D1D,连接OB. 因为OB⊂平面BB1D1D,所以OC1⊥OB,∠OBC1为直线BC1与平面BB1D1D所成的角.设正方体的棱长为a,则易得BC1=2a,OC1=2a 2,所以在Rt△BOC1中,OC1=12BC1,所以∠OBC1=30°,故C错误;因为C1C⊥平面ABCD,所以∠CBC1为直线BC1与平面ABCD所成的角,易得∠CBC1=45°,故D正确.故选ABD.2.(2019·全国Ⅰ卷)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为3,那么P到平面ABC的距离为________.答案 2解析如图,过点P作PO⊥平面ABC于O,则PO为P到平面ABC的距离.再过O作OE⊥AC于E,OF⊥BC于F,连接OC,PE,PF,则PE⊥AC,PF⊥BC.所以PE=PF=3,所以OE=OF,所以CO为∠ACB的平分线,即∠ACO=45°.在Rt△PEC中,PC=2,PE=3,所以CE=1,所以OE=1,所以PO=PE2-OE2=(3)2-12= 2.3.(2022·新高考Ⅱ卷)如图,PO是三棱锥P-ABC的高,PA=PB,AB⊥AC,E为PB的中点.(1)证明:OE∥平面PAC;(2)若∠ABO=∠CBO=30°,PO=3,PA=5,求二面角C-AE-B的正弦值.(1)证明如图,取AB的中点D,连接DP,DO,DE.因为AP=PB,所以PD⊥AB.因为PO为三棱锥P-ABC的高,所以PO⊥平面ABC.因为AB⊂平面ABC,所以PO⊥AB.又PO,PD⊂平面POD,且PO∩PD=P,所以AB⊥平面POD.因为OD⊂平面POD,所以AB⊥OD,又AB⊥AC,AB,OD,AC⊂平面ABC,所以OD∥AC.因为OD⊄平面PAC,AC⊂平面PAC,所以OD∥平面PAC.因为D,E分别为BA,BP的中点,所以DE∥PA.因为DE⊄平面PAC,PA⊂平面PAC,所以DE∥平面PAC.又OD,DE⊂平面ODE,OD∩DE=D,所以平面ODE∥平面PAC.又OE⊂平面ODE,所以OE∥平面PAC.(2)解连接OA,因为PO⊥平面ABC,OA,OB⊂平面ABC,所以PO⊥OA,PO⊥OB,所以OA=OB=PA2-PO2=52-32=4.易得在△AOB中,∠OAB=∠ABO=30°,所以OD=OA sin 30°=4×12=2,AB=2AD=2OA cos 30°=2×4×32=4 3.又∠ABC=∠ABO+∠CBO=60°,所以在Rt△ABC 中,AC =AB tan 60°=43×3=12.以A 为坐标原点,AB ,AC 所在直线分别为x ,y 轴,以过A 且垂直于平面ABC 的直线为z 轴建立空间直角坐标系,如图所示,则A (0,0,0),B (43,0,0),C (0,12,0), P (23,2,3),E ⎝⎛⎭⎪⎫33,1,32,所以AE →=⎝ ⎛⎭⎪⎫33,1,32,AB →=(43,0,0),AC →=(0,12,0).设平面AEC 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AE →=0,n ·AC →=0,即⎩⎨⎧33x +y +32z =0,12y =0,令z =23,则n =(-1,0,23).设平面AEB 的一个法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AE →=0,m ·AB →=0,即⎩⎨⎧33x 1+y 1+32z 1=0,43x 1=0,令z 1=2,则m =(0,-3,2),所以|cos 〈n ,m 〉|=⎪⎪⎪⎪⎪⎪n ·m |n |·|m |=4313.设二面角C -AE -B 的大小为θ,则sin θ=1-⎝⎛⎭⎪⎫43132=1113.4.(2021·浙江卷)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠ABC=120°,AB=1,BC=4,PA=15,M,N分别为BC,PC的中点,PD⊥DC,PM⊥MD.(1)证明:AB⊥PM;(2)求直线AN与平面PDM所成角的正弦值.(1)证明因为底面ABCD是平行四边形,∠ABC=120°,BC=4,AB=1,且M为BC的中点,所以CM=2,CD=1,∠DCM=60°,易得CD⊥DM.又PD⊥DC,且PD∩DM=D,PD,DM⊂平面PDM,所以CD⊥平面PDM.因为AB∥CD,所以AB⊥平面PDM.又PM⊂平面PDM,所以AB⊥PM.(2)解法一由(1)知AB⊥平面PDM,所以∠NAB为直线AN与平面PDM所成角的余角.连接AM,因为PM⊥MD,由(1)知PM⊥DC,又MD,DC⊂平面ABCD,MD∩DC=D,所以PM⊥平面ABCD,又AM⊂平面ABCD,所以PM⊥AM.因为∠ABC=120°,AB=1,BM=2,所以由余弦定理得AM=7,又PA=15,所以PM=22,所以PB=PC=2 3.连接BN,结合余弦定理得BN=11.连接AC,则由余弦定理得AC=21,在△PAC中,结合余弦定理得PA2+AC2=2AN2+2PN2,所以AN=15.所以在△ABN中,cos∠BAN=AB2+AN2-BN22AB·AN=1+15-11215=156.设直线AN与平面PDM所成的角为θ,则sin θ=cos ∠BAN=15 6.故直线AN与平面PDM所成角的正弦值为15 6.法二因为PM⊥MD,由(1)知PM⊥DC,又MD,DC⊂平面ABCD,MD∩DC=D,所以PM ⊥平面ABCD . 连接AM ,则PM ⊥AM .因为∠ABC =120°,AB =1,BM =2, 所以AM =7,又PA =15,所以PM =2 2. 由(1)知CD ⊥DM ,过点M 作ME ∥CD 交AD 于点E , 则ME ⊥MD.故可以以M 为坐标原点,MD ,ME ,MP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (-3,2,0),P (0,0,22),C (3,-1,0), 所以N ⎝ ⎛⎭⎪⎫32,-12,2,所以AN →=⎝ ⎛⎭⎪⎫332,-52,2.易知平面PDM 的一个法向量为n =(0,1,0). 设直线AN 与平面PDM 所成的角为θ,则sin θ=|cos 〈AN →,n 〉|=|AN →·n ||AN →|·|n |=5215=156.故直线AN 与平面PDM 所成角的正弦值为156.热点一 异面直线所成的角求异面直线所成角的方法方法一:综合法.步骤为:①利用定义构造角,可固定一条直线,平移另一条直线,或将两条直线同时平移到某个特殊的位置;②证明找到(或作出)的角即为所求角;③通过解三角形来求角.方法二:空间向量法.步骤为:①求出直线a ,b 的方向向量,分别记为m ,n ;②计算cos 〈m ,n 〉=m ·n |m ||n |;③利用cos θ=|cos 〈m ,n 〉|,以及θ∈⎝⎛⎦⎥⎤0,π2,求出角θ.例1 在正方体ABCD -A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( ) A.π2B.π3C.π4D.π6 答案 D解析 法一 如图,连接C 1P ,因为ABCD -A 1B 1C 1D 1是正方体,且P 为B 1D 1的中点,所以C 1P ⊥B 1D 1,又C 1P ⊥BB 1,B 1D 1∩BB 1=B 1,B 1D 1,BB 1⊂平面B 1BP , 所以C 1P ⊥平面B 1BP . 又BP ⊂平面B 1BP , 所以有C 1P ⊥BP .连接BC 1, 则AD 1∥BC 1,所以∠PBC 1为直线PB 与AD 1所成的角. 设正方体ABCD -A 1B 1C 1D 1的棱长为2,则在Rt△C 1PB 中,C 1P =12B 1D 1=2,BC 1=22,sin ∠PBC 1=PC 1BC 1=12,所以∠PBC 1=π6,故选D. 法二 如图,以A 为坐标原点,AB ,AD ,AA 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体ABCD -A 1B 1C 1D 1的棱长为2,则A (0,0,0),B (2,0,0),P (1,1,2),D 1(0,2,2),PB →=(1,-1,-2),AD →1=(0,2,2). 设直线PB 与AD 1所成的角为θ, 则cos θ=⎪⎪⎪⎪⎪⎪⎪⎪PB →·AD →1|PB →||AD →1|=|-6|6×8=32. 因为θ∈⎝⎛⎦⎥⎤0,π2,所以θ=π6,故选D.法三如图,连接BC1,A1B,A1P,PC1,则易知AD1∥BC1,所以直线PB与AD1所成的角等于直线PB与BC1所成的角.由P为正方形A1B1C1D1的对角线B1D1的中点,知A1,P,C1三点共线,且P为A1C1的中点.易知A1B=BC1=A1C1,所以△A1BC1为等边三角形,所以∠A1BC1=π3,又P为A1C1的中点,所以可得∠PBC1=12∠A1BC1=π6,故直线PB与AD1所成的角为π6,故选D.易错提醒 1.利用几何法求异面直线所成的角时,通过平移直线所得的角不一定就是两异面直线所成的角,也可能是其补角.2.用向量法时,要注意向量夹角与异面直线所成角的范围不同.训练1 (1)(2022·湖州质检)在长方体ABCD-A1B1C1D1中,BB1=2AB=2BC,P,Q分别为B 1C1,BC的中点,则异面直线AQ与BP所成角的余弦值是( )A.55B.21717C.8585D.28585 答案 C解析法一 不妨设AB =2,则BC =2,BB 1=4,连接A 1P ,A 1B (图略),则A 1P ∥AQ , ∴∠A 1PB (或其补角)为异面直线AQ 与BP 所成的角.由勾股定理得BP =17,A 1P =5,A 1B =25,在△A 1BP 中,由余弦定理的推论得,cos∠A 1PB =(17)2+(5)2-(25)22×17×5=8585.故选C.法二 如图建立空间直角坐标系, 设直线AQ 与BP 所成的角为θ, 不妨设AB =2, 则BC =2,BB 1=4.故B (2,0,0),P (2,1,4),Q (2,1,0), 所以BP →=(0,1,4),AQ →=(2,1,0),所以cos θ=|cos 〈BP →,AQ →〉|=⎪⎪⎪⎪⎪⎪117×5=8585. (2)(2022·河南顶尖名校联考)如图,圆锥的底面直径AB =2,其侧面展开图为半圆,底面圆的弦AD =3,则异面直线AD 与BC 所成的角的余弦值为( )A.0B.3 3C.34D.22答案 C解析法一如图,延长DO交圆于E,连接BE,CE,易知AD=BE=3,AD∥BE,∴∠EBC(或其补角)为异面直线AD与BC所成的角.由圆锥侧面展开图为半圆,易得BC=2,在△BEC中,BC=CE=2,BE=3,∴cos∠EBC=22+(3)2-222×2×3=34.法二由圆锥侧面展开图为半圆,易得BC=2,又BO=1,所以CO=3,在△AOD中,AO=DO=1,AD=3,由余弦定理得cos∠AOD=12+12-(3)22×1×1=-12,则∠AOD=2π3,以O 为坐标原点,OB 所在直线为y 轴,OC 所在直线为z 轴,建立空间直角坐标系如图,则A (0,-1,0),D ⎝ ⎛⎭⎪⎫32,12,0,B (0,1,0),C (0,0,3),所以AD →=⎝ ⎛⎭⎪⎫32,32,0,BC →=(0,-1,3),故cos 〈AD →,BC →〉=-323×2=-34,又异面直线所成角的范围是⎝ ⎛⎦⎥⎤0,π2,故直线AD 与BC 所成角的余弦值为34. 热点二 直线与平面所成的角求直线与平面所成角的方法方法一:几何法.步骤为:①找出直线l 在平面α上的射影;②证明所找的角就是所求的角;③把这个角置于一个三角形中,通过解三角形来求角.方法二:空间向量法.步骤为:①求出平面α的法向量n 与直线AB 的方向向量AB →;②计算cos 〈AB →,n 〉=AB →·n |AB →||n |;③利用sin θ=|cos 〈AB →,n 〉|,以及θ∈⎣⎢⎡⎦⎥⎤0,π2,求出角θ.例2(2022·南京模拟)如图,在三棱柱ABC-A1B1C1中,AA1=13,AB=8,BC=6,AB⊥BC,AB=B1C,D为AC的中点,平面AB1C⊥平面ABC.1(1)求证:B1D⊥平面ABC;(2)求直线C1D与平面AB1C所成角的正弦值.(1)证明因为AB1=B1C,D为AC的中点,所以B1D⊥AC.又平面AB1C⊥平面ABC,平面AB1C∩平面ABC=AC,B1D⊂平面AB1C,所以B1D⊥平面ABC.(2)解法一在平面ABC内,过点D作BC的平行线,交AB于点E,过点D作AB的平行线,交BC于点F,连接DE,DF,BD.由(1)知B 1D ⊥平面ABC , 所以B 1D ⊥AC ,B 1D ⊥BD . 因为AB ⊥BC ,所以DE ⊥DF ,故以{DE →,DF →,DB 1→}为基底建立如图所示的空间直角坐标系D -xyz .因为AB =8,BC =6,AB ⊥BC ,所以AC =AB 2+BC 2=10,BD =12AC =5.又AA 1=BB 1=13,AB ⊥BC , 所以B 1D =BB 21-BD 2=12.易得D (0,0,0),A (3,-4,0),B (3,4,0),C (-3,4,0),B 1(0,0,12), 则AC →=(-6,8,0),BC →=(-6,0,0),B 1C →=(-3,4,-12). 设点C 1(x ,y ,z ), 则B 1C 1→=(x ,y ,z -12), 由BC →=B 1C 1→,得(-6,0,0)=(x ,y ,z -12),所以⎩⎨⎧x =-6,y =0,z =12,即C 1(-6,0,12),所以C 1D →=(6,0,-12).设平面AB 1C 的法向量为n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n ·AC →=-6x 1+8y 1=0,n ·B 1C →=-3x 1+4y 1-12z 1=0,得3x 1=4y 1,z 1=0.不妨取x 1=4,则y 1=3,得平面AB 1C 的一个法向量为n =(4,3,0). 设直线C 1D 与平面AB 1C 所成的角为θ, 则sin θ=|cos 〈n ,C 1D →〉|=|n ·C 1D →||n |·|C 1D →|=|4×6+3×0+0×(-12)|42+32+02×62+02+(-12)2=4525. 所以直线C 1D 与平面AB 1C 所成角的正弦值为4525. 法二 连接BC 1,交B 1C 于点M ,易知BM =MC 1,所以点C 1到平面AB 1C 的距离d 和点B 到平面AB 1C 的距离相等.过点B 作BH ⊥AC ,垂足为H .又平面AB 1C ⊥平面ABC ,平面AB 1C ∩平面ABC =AC ,BH ⊂平面ABC , 所以BH ⊥平面AB 1C ,则BH 为点B 到平面AB 1C 的距离. 在Rt△ABC 中,因为AB =8,BC =6,AB ⊥BC , 所以AC =10,则BH =6×810=245, 所以d =BH =245.由(1)知B 1D ⊥平面ABC , 又BC ⊂平面ABC ,所以B 1D ⊥BC . 又B 1C 1∥BC ,所以B 1D ⊥B 1C 1, 则△DB 1C 1为直角三角形. 连接BD ,则B 1D ⊥BD .因为D 为AC 的中点,所以BD =12AC =5.又AA 1=BB 1=13,所以B 1D =12. 又B 1C 1=BC =6,所以C 1D =6 5. 设直线C 1D 与平面AB 1C 所成的角为θ,则sin θ=d C 1D =24565=4525. 所以直线C 1D 与平面AB 1C 所成角的正弦值为4525. 规律方法 1.几何法求线面角的关键是找出线面角(重点是找垂线与射影),然后在三角形中应用余弦定理(勾股定理)求解;2.向量法求线面角时要注意:线面角θ与直线的方向向量a 和平面的法向量n 所成的角〈a ,n 〉的关系是〈a ,n 〉+θ=π2或〈a ,n 〉-θ=π2,所以应用向量法求的是线面角的正弦值,而不是余弦值.训练2(2022·湖北十校联考)如图,在四棱锥A-BCDE中,CD∥BE,CD=12EB=1,CB⊥BE,AE=AB=BC=2,AD=3,O是AE的中点.(1)求证:DO∥平面ABC;(2)求DA与平面ABC所成角的正弦值. (1)证明取AB的中点为F,连接CF,OF,因为O,F分别为AE,AB的中点,所以OF∥BE,且OF=12 BE.又CD∥BE,CD=12 EB,所以OF∥CD,且OF=CD,所以四边形OFCD为平行四边形,所以DO∥CF,又CF⊂平面ABC,DO⊄平面ABC,所以DO∥平面ABC.(2)解法一取EB的中点为G,连接AG,DG,易得DG綊BC.因为AE=AB=2,BE=2,所以AE2+AB2=BE2,所以AB⊥AE,△ABE为等腰直角三角形,所以AG⊥BE,AG=1,又AD=3,DG=BC=2,所以AG2+DG2=AD2,所以DG⊥AG.又BE⊥AG,BE∩DG=G,BE,DG⊂平面BCDE,所以AG⊥平面BCDE. 记h为点D到平面ABC的距离,连接BD,则V D-ABC=V A-BCD,即13S△ABC·h=13S△BCD·AG,因为BC⊂平面BCDE,所以BC⊥AG,又CB⊥BE,BE∩AG=G,BE,AG⊂平面ABE,所以BC⊥平面ABE,又AB⊂平面ABE,所以BC⊥AB,所以S△ABC=12×AB×BC=12×2×2=1,又S△BCD=12×BC×CD=12×2×1=22,所以h=2 2,设DA与平面ABC所成的角为θ,则sin θ=h AD =223=66.所以DA 与平面ABC 所成角的正弦值为66. 法二 如图,取EB 的中点为G ,连接AG ,OG ,DG ,由(2)法一可知AG ⊥BE ,AB ⊥AE ,BC ⊥平面ABE ,BC ∥DG ,所以DG ⊥平面ABE .以G 为坐标原点,以GA →,GB →,GD →的方向分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则G (0,0,0),A (1,0,0),D (0,0,2),E (0,-1,0),AD →=(-1,0,2). 因为AE ⊂平面ABE ,所以BC ⊥AE ,又AB ⊥AE ,BC ∩AB =B ,BC ,AB ⊂平面ABC ,所以AE ⊥平面ABC , 故平面ABC 的一个法向量为AE →=(-1,-1,0). 设DA 与平面ABC 所成角为θ,则sin θ=|cos 〈AD →,AE →〉|=|AD →·AE →||AD →|·|AE →|=16=66.所以DA 与平面ABC 所成角的正弦值为66.热点三平面与平面的夹角求平面与平面的夹角方法方法一:几何法.步骤为:①找出二面角的平面角(以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角就是二面角的平面角);②证明所找的角就是要求的角;③把这个平面角置于一个三角形中,通过解三角形来求角.求二面角的平面角的口诀:点在棱上,边在面内,垂直于棱,大小确定.方法二:空间向量法.步骤为:①求两个平面α,β的法向量m,n;②计算cos〈m,n〉=m·n|m|·|n|;③设两个平面的夹角为θ,则cos θ=|cos〈m,n〉|.例3(2022·济南质测)如图,在三棱锥D-ABC中,DA⊥底面ABC,AC=BC=DA=1,AB =2,E是CD的中点,点F在DB上,且EF⊥DB.(1)证明:DB⊥平面AEF;(2)求平面ADB与平面DBC夹角的大小.法一(1)证明∵DA⊥平面ABC,且BC⊂平面ABC,∴DA⊥BC.∵AC=BC=1,AB=2,∴AC2+BC2=AB2,∴AC⊥BC.∵DA∩AC=A,DA,AC⊂平面DAC,∴BC ⊥平面DAC , 又AE ⊂平面DAC , ∴BC ⊥AE .∵DA =AC ,E 是CD 的中点, ∴DC ⊥AE ,又BC ∩DC =C ,BC ,DC ⊂平面DBC , ∴AE ⊥平面DBC ,又DB ⊂平面DBC ,∴DB ⊥AE , 又EF ⊥DB ,EF ∩AE =E ,EF ,AE ⊂平面AEF , ∴DB ⊥平面AEF .(2)解∵EF ⊥DB ,由(1)得DB ⊥AF , ∴∠AFE 为平面ADB 与平面DBC 的夹角. ∵DA ⊥平面ABC , ∴DA ⊥AC ,DA ⊥AB ,又AC =DA =1,E 为CD 的中点, ∴AE =12DC =22.∵AB =2,∴S △DAB =12×DA ×AB =12×DB ×AF ,∴AF =DA ×AB DB =1×212+(2)2=63. 由(1)知,AE ⊥平面DBC ,∵EF ⊂平面DBC ,∴AE ⊥EF ,∴sin∠AFE =AE AF =2263=32. ∵∠AFE 为锐角,∴∠AFE =π3, ∴平面ADB 与平面DBC 夹角的大小为π3.法二 (1)证明∵DA ⊥平面ABC ,且BC ⊂平面ABC ,∴DA ⊥BC . ∵AC =BC =1,AB =2, ∴AC 2+BC 2=AB 2, ∴AC ⊥BC .∴DA ∩AC =A ,DA ,AC ⊂平面DAC , ∴BC ⊥平面DAC , 如图,过点A 作AG ∥BC , 则AG ⊥平面DAC .以A 为坐标原点,分别以向量AC →,AG →,AD →的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系A -xyz ,则A (0,0,0),B (1,1,0),D (0,0,1),E ⎝ ⎛⎭⎪⎫12,0,12,∴DB →=(1,1,-1),AE →=⎝ ⎛⎭⎪⎫12,0,12.∵DB →·AE →=1×12+1×0+(-1)×12=0,∴DB →⊥AE →,∴DB ⊥AE .又DB ⊥EF ,且AE ∩EF =E ,AE ,EF ⊂平面AEF , ∴DB ⊥平面AEF .(2)解 由(1)知AD →=(0,0,1),BD →=(-1,-1,1),CD →=(-1,0,1). 设平面ADB 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AD →=0,m ·BD →=0,∴⎩⎨⎧z 1=0,-x 1-y 1+z 1=0,令y 1=1,则m =(-1,1,0).设平面DBC 的法向量为n =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n ·CD →=0,n ·BD →=0,∴⎩⎨⎧-x 2+z 2=0,-x 2-y 2+z 2=0, 令x 2=1,则n =(1,0,1). 设平面ADB 与平面DBC 的夹角为θ, 则cos θ=|cos 〈m ,n 〉|=|-1|2×2=12.所以θ=π3,即平面ADB 与平面DBC 夹角的大小为π3.规律方法 (1)用几何法求解二面角的关键是:先找(或作)出二面角的平面角,再在三角形中求解此角.(2)利用法向量的依据是两个半平面的法向量所成的角和二面角的平面角相等或互补,在求二面角的大小时,一定要判断出二面角的平面角是锐角还是钝角,否则解法是不严谨的.训练3(2022·沈阳质检)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,四边形ABCD 是直角梯形,BC ∥AD ,AB ⊥AD ,PA =AB =2,AD =2BC =2 2.(1)求证:BD ⊥平面PAC ;(2)求平面BPC 与平面PCD 夹角的余弦值.(1)证明法一 由题意得,四边形ABCD 是直角梯形,BC ∥AD ,AB ⊥AD ,PA =AB =2,AD =2BC =22,所以tan ∠ACB =tan∠DBA =2, 可知∠ACB =∠DBA ,所以∠DBC +∠ACB =90°,则AC ⊥BD . 又PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA ⊥BD ,又AC∩PA=A,PA,AC⊂平面PAC,故BD⊥平面PAC.法二由题意PA⊥平面ABCD,AB⊥AD,分别以AB→,AD→,AP→的方向为x轴,y轴,z轴正方向建立空间直角坐标系A-xyz,如图所示,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,22,0),P(0,0,2),BD→=(-2,22,0),AP→=(0,0,2),BD→·AP→=0,即BD⊥AP,AC→=(2,2,0),BD→·AC→=-4+4=0,即BD⊥AC,又AC∩AP=A,AC,AP⊂平面PAC,故BD⊥平面PAC.(2)解由题意PA⊥平面ABCD,AB⊥AD,分别以AB→,AD→,AP→的方向为x轴,y轴,z轴正方向建立空间直角坐标系A-xyz,如图所示,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,22,0),P(0,0,2),在平面PBC中,BC→=(0,2,0),BP→=(-2,0,2),设平面PBC的法向量为n=(x1,y1,z1),则⎩⎪⎨⎪⎧n ·BC →=2y 1=0,n ·BP →=-2x 1+2z 1=0,所以y 1=0,令x 1=1,则z 1=1, 所以n =(1,0,1).在平面PCD 中,CD →=(-2,2,0), CP →=(-2,-2,2),设平面PCD 的法向量为m =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧m ·CD →=-2x 2+2y 2=0,m ·CP →=-2x 2-2y 2+2z 2=0,令x 2=1,则y 2=2,z 2=2, 所以m =(1,2,2).设平面BPC 与平面PCD 夹角的大小为θ, 则cos θ=|cos 〈m ,n 〉|=|1+0+2|2×7=31414,所以平面BPC 与平面PCD 夹角的余弦值为31414. 热点四 距离问题1.空间中点、线、面距离的相互转化关系2.空间距离的求解方法有:(1)作垂线段;(2)等体积法;(3)等价转化;(4)空间向量法.例4 在直三棱柱ABC-A1B1C1中,AB=AC=AA1=2,∠BAC=90°,M为BB1的中点,N为BC的中点.(1)求点M到直线AC1的距离;(2)求点N到平面MA1C1的距离.解法一(1)如图,连接AM,MC1,AC1,易知MC1=MB21+A1B21+A1C21=22+22+12=3,AC1=22,MA=5,在△MAC1中,由余弦定理得cos ∠MAC1=5+8-92×5×22=1010,则sin ∠MAC1=310 10,所以M到直线AC1的距离为MA·sin ∠MAC1=5×31010=322.(2)如图,S△MNC1=S矩形B1BCC1-S△B1MC1-S△BMN-S△NCC1=42-2-22-2=322,设点N到平面MA1C1的距离为h,由V N-MA1C1=V A1-MNC1,得1 3×12×2×5×h=13×322×2,得h =355,即N 到平面MA 1C 1的距离为355. 法二 (1)建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),M (2,0,1),C 1(0,2,2),直线AC 1的一个单位方向向量为s 0=⎝⎛⎭⎪⎫0,22,22,AM →=(2,0,1),故点M 到直线AC 1的距离d =|AM →|2-|AM →·s 0|2=5-12=322. (2)设平面MA 1C 1的法向量为n =(x ,y ,z ), 因为A 1C 1→=(0,2,0),A 1M →=(2,0,-1), 则⎩⎪⎨⎪⎧n ·A 1C 1→=0,n ·A 1M →=0,即⎩⎨⎧2y =0,2x -z =0,取x =1,得z =2,故n =(1,0,2)为平面MA 1C 1的一个法向量, 因为N (1,1,0),所以MN →=(-1,1,-1), 故N 到平面MA 1C 1的距离d =|MN →·n ||n |=35=355.规律方法 1.在解题过程中要对“点线距离”、“点面距离”、“线面距离”与“面面距离”进行适当转化,从而把所求距离转化为点与点的距离进而解决问题. 2.解决点线距问题注意应用等面积法,解决点面距问题注意应用等体积法.训练4 在四棱柱ABCD-A1B1C1D1中,A1A⊥平面ABCD,AA1=3,底面是边长为4的菱形,且∠DAB=60°,AC∩BD=O,A1C1∩B1D1=O1,E是O1A的中点,则点E到平面O1BC的距离为( )A.2B.1C.32D.3答案 C解析法一如图,连接OO1,则OO1⊥平面ABCD,OO1=AA1=3,∵四边形ABCD是边长为4的菱形,且∠DAB=60°,∴OB=2,OC=23,AC=2OC=43,OB⊥AC.∴O1B=13,O1C=21,又BC=4,∴cos∠BO1C=913×21,sin∠BO1C=8313×21,故S△BO1C=12×13×21×8313×21=4 3.设A到平面O1BC的距离为h,则由V A-BO1C=V O1-ABC得13×43×h=13×12×43×2×3,解得h =3,又∵E 是O 1A 的中点, ∴E 到平面O 1BC 的距离为32.法二 易得OO 1⊥平面ABCD ,所以OO 1⊥OA ,OO 1⊥OB . 又OA ⊥OB ,所以建立如图所示的空间直角坐标系Oxyz . 因为底面ABCD 是边长为4的菱形,∠DAB =60°, 所以OA =23,OB =2,则A (23,0,0),B (0,2,0),C (-23,0,0),O 1(0,0,3), 所以O 1B →=(0,2,-3),O 1C →=(-23,0,-3). 设平面O 1BC 的法向量为n =(x ,y ,z ). 则⎩⎪⎨⎪⎧n ·O 1B →=0,n ·O 1C →=0,所以⎩⎨⎧2y -3z =0,-23x -3z =0,取z =2,则x =-3,y =3,则n =(-3,3,2)是平面O 1BC 的一个法向量. 设点E 到平面O 1BC 的距离为d .因为E 是O 1A 的中点,所以E ⎝⎛⎭⎪⎫3,0,32,EO 1→=⎝⎛⎭⎪⎫-3,0,32, 则d =|EO 1→·n ||n |=⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫-3,0,32·(-3,3,2)(-3)2+32+22=32, 所以点E 到平面O 1BC 的距离为32.一、基本技能练1.如图,四棱锥P -ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△PAB 和△PAD 都是边长为2的等边三角形.(1)证明:PB ⊥CD ;(2)求点A 到平面PCD 的距离.(1)证明 取BC 的中点E ,连接DE ,则ABED 为正方形.过P 作PO ⊥平面ABCD ,垂足为O . 连接OA ,OB ,OD ,OE .由△PAB 和△PAD 都是等边三角形知PA =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点, 所以OE ∥CD .因此PB ⊥CD . (2)解 取PD 的中点F ,连接OF , 则OF ∥PB .由(1)知,PB ⊥CD ,故OF ⊥CD .又OD =12BD =2,OP =PD 2-OD 2=2,故△POD 为等腰三角形,因此OF ⊥PD . 又PD ∩CD =D ,PD ,CD ⊂平面PCD , 所以OF ⊥平面PCD .因为AE ∥CD ,CD ⊂平面PCD ,AE ⊄平面PCD ,所以AE ∥平面PCD .因此O 到平面PCD 的距离OF 就是A 到平面PCD 的距离,而 OF =12PB =1,所以A 到平面PCD 的距离为1.2.(2022·广州调研)如图,在三棱锥P -ABC 中,BC ⊥平面PAC ,AD ⊥BP ,AB =2,BC =1,PD =3BD =3.(1)求证:PA ⊥AC ;(2)求平面PAC与平面ACD夹角的余弦值.(1)证明法一由AB=2,BD=1,AD⊥BP,得AD= 3. 由PD=3,AD=3,AD⊥BP,得PA=2 3.由BC⊥平面PAC,AC,PC⊂平面PAC,得BC⊥AC,BC⊥PC.所以AC=AB2-BC2=3,PC=PB2-BC2=15.因为AC2+PA2=15=PC2,所以PA⊥AC.法二由AB=2,BD=1,AD⊥BP,得AD= 3.由PD=3,AD=3,AD⊥BP,得PA=2 3.因为PB=4,所以PB2=AB2+PA2,所以PA⊥AB.由BC⊥平面PAC,PA⊂平面PAC,得BC⊥PA.又BC,AB⊂平面ABC,BC∩AB=B,故PA⊥平面ABC.因为AC⊂平面ABC,所以PA⊥AC.(2)解法一如图,过点D作DE∥BC交PC于点E,因为BC⊥平面PAC,所以DE⊥平面PAC.因为AC⊂平面PAC,所以DE⊥AC.过点E作EF⊥AC交AC于点F,连接DF,又DE∩EF=E,DE,EF⊂平面DEF,所以AC⊥平面DEF.因为DF⊂平面DEF,所以AC⊥DF.则∠DFE为平面PAC与平面ACD的夹角.由PD=3BD=3,DE∥BC,得DE=3 4,由EF⊥AC,PA⊥AC,且EF,PA⊂平面PAC,得EF∥PA,且EFPA=CECP=BDBP=14,得EF=3 2.易知DE⊥EF,则DF=DE2+EF2=21 4.所以cos∠DFE =EF DF =277.所以平面PAC 与平面ACD 夹角的余弦值为277. 法二 如图,作AQ ∥CB ,以AQ ,AC ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系.因为AB =2,BC =1,BD =1,BP =4, 所以AC =3,AP =2 3.故A (0,0,0),B (1,3,0),C (0,3,0),P (0,0,23). 由BD →=14BP →,得D ⎝ ⎛⎭⎪⎫34,334,32,则AD →=⎝ ⎛⎭⎪⎫34,334,32,AC →=(0,3,0).设平面ACD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD →=0,即⎩⎨⎧3y =0,34x +334y +32z =0,令x =2,则z =-3,y =0,所以n =(2,0,-3)为平面ACD 的一个法向量. 由于BC ⊥平面PAC ,因此CB →=(1,0,0)为平面PAC 的一个法向量. 设平面PAC 与平面ACD 夹角的大小为θ,则cos θ=|cos 〈CB →,n 〉|=|CB →·n ||CB →||n |=27=277.所以平面PAC 与平面ACD 夹角的余弦值为277. 3.(2022·泉州质检)在三棱锥A -BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设平面FDE 与平面DEC 夹角的大小为θ,求sin θ的值.解 (1)如图,连接OC ,因为CB =CD ,O 为BD 的中点,所以CO ⊥BD .又AO ⊥平面BCD ,OB ,OC ⊂平面BCD ,所以AO ⊥OB ,AO ⊥OC .以{OB →,OC →,OA →}为基底,建立空间直角坐标系O -xyz .因为BD =2,CB =CD =5,AO =2,所以B (1,0,0),D (-1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1), 所以AB →=(1,0,-2),DE →=(1,1,1),所以|cos 〈AB →,DE →〉|=|AB →·DE →||AB →|·|DE →|=|1+0-2|5×3=1515.因此,直线AB 与DE 所成角的余弦值为1515. (2)因为点F 在BC 上,BF =14BC ,BC →=(-1,2,0),所以BF →=14BC →=⎝ ⎛⎭⎪⎫-14,12,0.又DB →=(2,0,0), 故DF →=DB →+BF →=⎝ ⎛⎭⎪⎫74,12,0.设平面DEF 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧DE →·n 1=0,DF →·n 1=0,即⎩⎨⎧x 1+y 1+z 1=0,74x 1+12y 1=0, 取x 1=2,得y 1=-7,z 1=5,所以n 1=(2,-7,5)为平面DEF 的一个法向量.设平面DEC 的法向量为n 2=(x 2,y 2,z 2),又DC →=(1,2,0), 则⎩⎪⎨⎪⎧DE →·n 2=0,DC →·n 2=0,即⎩⎨⎧x 2+y 2+z 2=0,x 2+2y 2=0, 取x 2=2,得y 2=-1,z 2=-1,所以n 2=(2,-1,-1)为平面DEC 的一个法向量. 故|cos θ|=|n 1·n 2||n 1|·|n 2|=|4+7-5|78×6=1313.所以sin θ=1-cos 2θ=23913.二、创新拓展练4.如图,三棱柱ABC -A 1B 1C 1中,侧面BCC 1B 1为矩形,若平面BCC 1B 1⊥平面ABB 1A 1,平面BCC 1B 1⊥平面ABC 1.(1)求证:AB ⊥BB 1;(2)记平面ABC 1与平面A 1B 1C 1的夹角为α,直线AC 1与平面BCC 1B 1所成的角为β,异面直线AC 1与BC 所成的角为φ,当α,β满足:cos α·cos β=m (0<m <1,m 为常数)时,求sin φ的值.(1)证明∵四边形BCC 1B 1是矩形,∴BC ⊥BB 1,图1 又平面ABB1A1⊥平面BCC1B1,平面ABB1A1∩平面BCC1B1=BB1,BC⊂平面BCC1B1,∴BC⊥平面ABB1A1,又AB⊂平面ABB1A1,∴AB⊥BC.如图1,过C作CO⊥BC1,∵平面BCC1B1⊥平面ABC1,平面BCC1B1∩平面ABC1=BC1,CO⊂平面BCC1B1,∴CO⊥平面ABC1,又AB⊂平面ABC1,∴AB⊥CO,又AB⊥BC,CO∩BC=C,CO,BC⊂平面BCC1B1,∴AB⊥平面BCC1B1,又BB1⊂平面BCC1B1,∴AB⊥BB1.(2)解由题意知AB∥A1B1,又AB⊥平面BCC1B1,∴A1B1⊥平面BCC1B1.以B 1为原点,B 1A 1,B 1B ,B 1C 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图2,图2不妨设B 1A 1=a ,B 1B =b ,B 1C 1=c ,则B 1(0,0,0),A 1(a ,0,0),B (0,b ,0),C 1(0,0,c ),A (a ,b ,0), BA →=B 1A 1→=(a ,0,0),BC →=B 1C 1→=(0,0,c ),BC1→=(0,-b ,c ). 设n 1=(x 1,y 1,z 1)为平面ABC 1的法向量,则⎩⎪⎨⎪⎧n 1·BA →=ax 1=0,n 1·BC 1→=-by 1+cz 1=0,∴x 1=0,令y 1=c ,则z 1=b , ∴n 1=(0,c ,b ).取平面A 1B 1C 1的一个法向量n =(0,1,0), 由图知,α为锐角, 则cos α=|cos 〈n 1,n 〉|=c b 2+c 2.取平面BCC 1B 1的一个法向量n 2=(1,0,0), 由C 1A →=(a ,b ,-c ), 得sin β=|cos 〈C 1A →,n 2〉|=aa 2+b 2+c2. 又β∈⎣⎢⎡⎦⎥⎤0,π2,∴cos β=b 2+c 2a 2+b 2+c 2, 则cos αcos β=ca 2+b 2+c2. |cos 〈C 1A →,BC →〉|=cos φ=|(a ,b ,-c )·(0,0,c )|c a 2+b 2+(-c )2=c a 2+b 2+c 2,∴cos φ=cos αcos β.∵cos αcos β=m 且m ∈(0,1),φ∈⎝ ⎛⎦⎥⎤0,π2,∴sin φ=1-cos 2φ=1-m 2.。
专题11 立体几何 11.4空间角与空间距离 题型归纳讲义-2022届高三数学一轮复习(原卷版)

专题十一《立体几何》讲义11.4空间角与空间距离知识梳理.空间角1.异面直线的定义:不同在任何一个平面的两条直线叫做异面直线(1)异面直线所成的角的范围:.(2)求法:平移→⎧⎪⇒−−−→⎨⎪⎩转化直接平移中点平移“三维”“二维”补形平移2.直线和平面所成角的求法:如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.0°≤φ≤90°3.求二面角的大小(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉.(2)如图2、3,12,n n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小12,n n θ=<>(或12,n n π-<>).题型一.点到面的距离1.如图,点P为矩形ABCD所在平面外一点,PA⊥平面ABCD,Q为线段AP的中点,AB =3,BC=4,PA=2,则P到平面BQD的距离为.2.正三棱柱ABC﹣A1B1C1中,若AB=2,AA1=1,若则点A到平面A1BC的距离为()A.34B.32C.334D.33.如图,四棱锥P﹣ABCD中,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD 是菱形,且∠ABC=60°,M为PC的中点.(Ⅰ)在棱PB上是否存在一点Q,使用A,Q,M,D四点共面?若存在,指出点Q的位置并证明;若不存在,请说明理由.(Ⅱ)求点D到平面PAM的距离.4.如图,在三棱锥P﹣ABC中,D,E分别为AB,PB的中点,EB=EA,且PA⊥AC,PC ⊥BC.(Ⅰ)求证:BC⊥平面PAC;(Ⅱ)若PA=2BC且AB=EA,三棱锥P﹣ABC.体积为1,求点B到平面DCE的距离.题型二.异面直线所成的角1.已知P是平行四边形ABCD所在平面外的一点,M、N分别是AB、PC的中点,若MN =BC=4,PA=43,则异面直线PA与MN所成角的大小是()A.30°B.45°C.60°D.90°2.如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,O为底面ABCD的中心,E为CC1的中点,那么异面直线OE与AD1所成角的余弦值等于.3.如图所示,直三棱柱ABC﹣A1B1C1中,∠BCA=60°,M,N分别是A1C1,CC1的中点,BC=CA=CC1,则BN与AM所成角的余弦值为()A.35B.45C.23D.344.如图,在四棱锥P﹣ABCD中,四边形ABCD是菱形,其中∠BAD=60°,平面PAD⊥平面ABCD,其中△PAD为等边三角形,AB=4,M为棱PD的中点.(Ⅰ)求证:PB⊥AD;(Ⅱ)求异面直线PB与AM所成角的余弦值.1.如图,在三棱柱ABC﹣A′B′C′中,底面ABC是正三角形,AA′⊥底面ABC,且AB =1,AA′=2,则直线BC′与平面ABB′A′所成角的正弦值为.2.如图所示,在直三棱柱ABO﹣A′B′O′中,OO′=4,OA=4,OB=3,∠AOB=90°,D是线段A′B′的中点,P是侧棱BB′上的一点,若OP⊥BD,求OP与底面AOB所成角的正切值.3.如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD⊥平面PBC;(Ⅲ)求直线AB与平面PBC所成角的正弦值.4.在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD=4,A=C=10.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若A=6,求BC与平面PBD所成角的正弦值.1.已知三棱锥D﹣ABC的三个侧面与底面全等,且AB=AC=5,BC=2,则二面角D﹣BC﹣A的大小()A.30°B.45°C.60°D.90°2.已知正三棱锥S﹣ABC的所有棱长均为2,则侧面与底面所成二面角的余弦为()A.223B.−C.13D.−133.如图,三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是3,D是AC的中点.(1)求证:B1C∥平面A1BD;(2)求二面角A1﹣BD﹣A的大小;(3)求直线AB1与平面A1BD所成的角的正弦值.4.在四棱锥P﹣ABCD中,底面ABCD是正方形,AB=PD=a,PA=PC=2a.(Ⅰ)求证:PD⊥平面ABCD;(Ⅱ)求异面直线PB与AC所成的角;(Ⅲ)求二面角A﹣PB﹣D的大小.题型五.存在性问题、折叠问题1.如图,在底面是菱形的四棱柱ABCD﹣A1B1C1D1中,∠ABC=60°,AA1=AC=2,A1B =A1D=22,点E在A1D上.(1)求证:AA1⊥平面ABCD;(2)当E为线段A1D的中点时,求点A1到平面EAC的距离.2.已知:如图,等腰直角三角形ABC的直角边AC=BC=2,沿其中位线DE将平面ADE 折起,使平面ADE⊥平面BCDE,得到四棱锥A﹣BCDE,设CD、BE、AE、AD的中点分别为M、N、P、Q.(1)求证:M、N、P、Q四点共面;(2)求证:平面ABC⊥平面ACD;(3)求异面直线BE与MQ所成的角.3.如图,在矩形ABCD中,AB=4,AD=3,点E,F分别是线段DC,BC的中点,分别将△DAE沿AE折起,△CEF沿EF折起,使得D,C重合于点G,连结AF.(Ⅰ)求证:平面GEF⊥平面GAF;(Ⅱ)求直线GF与平面GAE所成角的正弦值.4.已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC =a,得到三棱锥A﹣BCD,如图所示.(1)当a=2时,求证:AO⊥平面BCD;(2)当二面角A﹣BD﹣C的大小为120°时,求二面角A﹣BC﹣D的正切值.课后作业.空间角与空间距离1.(2019•新课标Ⅰ)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.2.如图,在四棱锥P﹣ABCD中,PC=AD=CD=12AB=2,AB∥DC,AD⊥CD,PC⊥平面ABCD.(1)求证:BC⊥平面PAC;(2)若M为线段PA的中点,且过C,D,M三点的平面与线段PB交于点N,确定点N 的位置,说明理由;并求AN与平面ABCD所成的角的正切值.3.(2018•新课标Ⅲ)如图,边长为2的正方形ABCD所在的平面与半圆弧C 所在平面垂直,M是C 上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M﹣ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.4.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,∠ABC=60°,PA=22,E是线段PC上的动点.(1)若E是线段PC中点时,证明:PA∥平面EBD;(2)若直线PC与底面ABCD所成角的正弦值为63,且三棱锥E﹣PAB的体积为269,请确定E点的位置,并说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
得 .
取x=1,得 .
所以点P到平面QAD的距离 .
考点2异面直线的距离
此类题目主要考查异面直线的距离的概念及其求法,考纲只要求掌握已给出公垂线段的异面直线的距离.
典型例题
例3已知三棱锥 ,底面是边长为 的正三角形,棱 的长为2,且垂直于底面. 分别为 的中点,求CD与SE间的距离.
过程指引:方法一关键是用恰当的方法找到所求的空间距离和角;方法二关键是掌握利用空间向量求空间距离和角的一般方法.
解答过程:
方法一 (Ⅰ)取AD的中点,连结PM,QM.
因为P-ABCD与Q-ABCD都是正四棱锥,
所以AD⊥PM,AD⊥QM.从而AD⊥平面PQM.
又 平面PQM,所以PQ⊥AD.
同理PQ⊥AB,所以PQ⊥平面ABCD.
由(Ⅰ)知AD⊥平面PMQ,所以平面PMQ⊥平面QAD.过P作PH⊥QM于H,PH⊥平面QAD.从而PH的长是点P到平面QAD的距离.
又 .
即点P到平面QAD的距离是 .
方法二
(Ⅰ)连结AC、BD,设 .
由P-ABCD与Q-ABCD都是正四棱锥,所以PO⊥平面ABCD,QO⊥平面ABCD.
从而P、O、Q三点在一条直线上,所以PQ⊥平面ABCD.
典型例题
例1如图,正三棱柱 的所有棱长都为 , 为 中点.
(Ⅰ)求证: 平面 ;
(Ⅱ)求二面角 的大小;
(Ⅲ)求点 到平面 的距离.
考查目的:本小题主要考查直线与平面的位置关系,二面角的
大小,点到平面的距离等知识,考查空间想象能力、逻辑思维
能力和运算能力.
解答过程:解法一:(Ⅰ)取 中点 ,连结 .
不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色.
求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。
【例题解析】
考点1点到平面的距离
求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用.
, .
平面 .
(Ⅱ)设平面 的法向量为 .
, . , ,
令 得 为平面 的一个法向量.
由(Ⅰ)知 平面 ,
为平面 的法向量.
, .
二面角 的大小为 .
(Ⅲ)由(Ⅱ), 为平面 法向量,
.
点 到平面 的距离 .
小结:本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B点到平面 的距离转化为容易求的点K到平面 的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法.
②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算.
③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.
④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念.
⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念.
⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式.
例2.如图,已知两个正四棱锥P-ABCD与Q-ABCD的高分别为1和2,AB=4.
(Ⅰ)证明PQ⊥平面ABCD;
(Ⅱ)求异面直线AQ与PB所成的角;
(Ⅲ)求点P到平面QAD的距离.
命题目的:本题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离基本知识,考查空间想象能力、逻辑思维能力和运算能力.
(Ⅱ)连结AC、BD设 ,由PQ⊥平面ABCD及正四棱锥的性质可知O在PQ上,从而P、A、Q、C四点共面.取OC的中点N,连接PN.
因为 ,所以 ,
从而AQ∥PN,∠BPN(或其补角)是异面直线AQ与PB所成的角.
因为 ,
所以 .
从而异面直线AQ与PB所成的角是 .(Ⅲ)连Leabharlann OM,则所以∠MQP=45°.
在正三棱柱中, 到平面 的距离为 .
设点 到平面 的距离为 .
由 ,得 ,
.
点 到平面 的距离为 .
解法二:(Ⅰ)取 中点 ,连结 .
为正三角形, .
在正三棱柱 中,平面 平面 ,
平面 .
取 中点 ,以 为原点, , , 的方向为 轴的正方向建立空间直角坐标系,则 , , , , ,
, , .
, ,
为正三角形, .
正三棱柱 中,平面 平面 ,
平面 .
连结 ,在正方形 中, 分别为
的中点, , .
在正方形 中, , 平面 .
(Ⅱ)设 与 交于点 ,在平面 中,作 于 ,连结 ,由(Ⅰ)得 平面 .
, 为二面角 的平面角.
在 中,由等面积法可求得 ,
又 , .
所以二面角 的大小为 .
(Ⅲ) 中, , .
立体几何题型
【考点透视】
(A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念.
(B)版.
①理解空间向量的概念,掌握空间向量的加法、减法和数乘.
⑦会画直棱柱、正棱锥的直观图.
空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题.
思路启迪:由于异面直线CD与SE的公垂线不易寻找,所以设法将所求异面直线的距离,转化成求直线与平面的距离,再进一步转化成求点到平面的距离.
解答过程:
如图所示,取BD的中点F,连结EF,SF,CF,
为 的中位线, ∥ ∥面 ,
到平面 的距离即为两异面直线间的距离.
又 线面之间的距离可转化为线 上一点C到平面
的距离,设其为h,由题意知, ,D、E、F分别是
(Ⅱ)由题设知,ABCD是正方形,所以AC⊥BD.
由(Ⅰ),QO⊥平面ABCD.故可分别以直线CA、DB、QP为x轴、y轴、z轴建立空间直角坐标系(如图),由题条件,相关各点的坐标分别是P(0,0,1),A( ,0,0),Q(0,0,-2),B(0, ,0).
所以
于是 .
(Ⅲ)由(Ⅱ),点D的坐标是(0,- ,0), ,