数字图像处理程序
数字图像处理四个实验报告,带有源程序

数字图像处理实验指导书学院:通信与电子工程学院专业:电子信息工程班级:学号:姓名:XX理工大学实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。
2.熟练掌握在MATLAB中如何读取图像。
3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。
4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。
5.图像间如何转化。
二、实验原理及知识点1、数字图像的表示和类别一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。
灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。
例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。
因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。
图像关于x和y坐标以及振幅连续。
要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。
将坐标值数字化成为取样;将振幅数字化成为量化。
采样和量化的过程如图1所示。
因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。
作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。
图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类:亮度图像(Intensity images)二值图像(Binary images)索引图像(Indexed images)RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。
若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。
若图像是double类,则像素取值就是浮点数。
图像处理流程

图像处理流程图像处理是数字图像处理的一种形式,旨在改善或增强图像的质量,使得图像更加清晰、更鲜明,或者从图像中提取出特定的信息。
图像处理的流程一般包括以下几个步骤:1. 图像获取:首先需要采集图像,可以通过摄像机、扫描仪等设备来获取图像,或者从存储介质中读取图像文件。
2. 图像预处理:在进行下一步处理之前,需要对图像进行预处理。
预处理的目的主要是去除图像中的噪声,使得图像更加清晰。
常用的预处理方法包括平滑滤波、去噪、去除伪影等。
3. 图像增强:图像增强是指通过一系列的算法和方法来改善图像的质量,使得图像更容易被观察和分析。
常见的图像增强方法包括灰度变换、直方图均衡化、空间滤波等。
4. 图像分割:图像分割是将图像中的物体或区域分离开来,通常是根据图像的某些特征进行分割。
图像分割常用的方法包括阈值分割、边缘检测、区域生长等。
5. 特征提取:特征提取是从图像中提取出具有代表性的特征信息,用于描述图像的内容。
常见的特征包括纹理特征、形状特征、颜色特征等。
特征提取可以利用图像处理算法和机器学习方法来实现。
6. 物体识别和分类:特征提取之后,可以利用分类算法进行物体的识别和分类。
分类的目的是将图像中的物体归类到不同的类别中,可以通过统计、机器学习等方法来实现。
7. 结果评估和应用:最后,需要对处理结果进行评估,并根据具体的需求进行应用。
评估可以根据图像质量、识别准确率等指标来进行。
根据应用需求,可以将处理结果用于图像检索、图像分类、图像匹配等领域。
总之,图像处理流程涵盖了图像获取、预处理、增强、分割、特征提取、识别和分类等多个步骤,通过一系列的算法和方法来改善图像的质量和信息提取。
图像处理在计算机视觉、图像识别、医学影像等领域具有广泛的应用。
数字图像处理实验报告

目录实验一:数字图像的基本处理操作 (4):实验目的 (4):实验任务和要求 (4):实验步骤和结果 (5):结果分析 (8)实验二:图像的灰度变换和直方图变换 (9):实验目的 (9):实验任务和要求 (9):实验步骤和结果 (9):结果分析 (13)实验三:图像的平滑处理 (14):实验目的 (14):实验任务和要求 (14):实验步骤和结果 (14):结果分析 (18)实验四:图像的锐化处理 (19):实验目的 (19):实验任务和要求 (19):实验步骤和结果 (19):结果分析 (21)实验一:数字图像的基本处理操作:实验目的1、熟悉并掌握MATLAB、PHOTOSHOP等工具的使用;2、实现图像的读取、显示、代数运算和简单变换。
3、熟悉及掌握图像的傅里叶变换原理及性质,实现图像的傅里叶变换。
:实验任务和要求1.读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。
2.对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分别显示,注上文字标题。
3.对一幅图像进行平移,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与平移后傅里叶频谱的对应关系。
4.对一幅图像进行旋转,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与旋转后傅里叶频谱的对应关系。
:实验步骤和结果1.对实验任务1的实现代码如下:a=imread('d:\');i=rgb2gray(a);I=im2bw(a,;subplot(1,3,1);imshow(a);title('原图像');subplot(1,3,2);imshow(i);title('灰度图像');subplot(1,3,3);imshow(I);title('二值图像');subplot(1,3,1);imshow(a);title('原图像');结果如图所示:图原图及其灰度图像,二值图像2.对实验任务2的实现代码如下:a=imread('d:\');A=imresize(a,[800 800]);b=imread('d:\');B=imresize(b,[800 800]);Z1=imadd(A,B);Z2=imsubtract(A,B);Z3=immultiply(A,B);Z4=imdivide(A,B);subplot(3,2,1);imshow(A);title('原图像 A'); subplot(3,2,2);imshow(B);title('原图像 B'); subplot(3,2,3);imshow(Z1);title('加法图像'); subplot(3,2,4);imshow(Z2);title('减法图像'); subplot(3,2,5);imshow(Z3);title('乘法图像'); subplot(3,2,6);imshow(Z2);title('除法图像');结果如图所示:3.对实验任务3的实现代码如下:s=imread('d:\');i=rgb2gray(s);i=double(i);j=fft2(i);k=fftshift(j); %直流分量移到频谱中心I=log(abs(k)); %对数变换m=fftshift(j); %直流分量移到频谱中心RR=real(m); %取傅里叶变换的实部II=imag(m); %取傅里叶变换的虚部A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=circshift(s,[800 450]);b=rgb2gray(b);b=double(b);c=fft2(b);e=fftshift(c);I=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);title('原图像');subplot(2,2,2);imshow(uint8(b));title('平移图像');subplot(2,2,3);imshow(A);title('离散傅里叶变换频谱');subplot(2,2,4);imshow(B);title('平移图像离散傅里叶变换频谱');结果如图所示:4.对实验任务4的实现代码如下:s=imread('d:\');i=rgb2gray(s);i=double(i);j=fft2(i);k=fftshift(j);I=log(abs(k));m=fftshift(j);RR=real(m);II=imag(m);A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=imrotate(s,-90);b=rgb2gray(b);b=double(b);c=fft2(b);e=fftshift(c);I=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);title('原图像');subplot(2,2,2);imshow(uint8(b));title('平移图像');subplot(2,2,3);imshow(A);title('离散傅里叶频谱');subplot(2,2,4);imshow(B);title('平移图像离散傅里叶频谱');结果如图所示::结果分析对MATLAB软件的操作开始时不太熟悉,许多语法和函数都不会使用,写出程序后,调试运行,最开始无法显示图像,检查原因,是有些标点符号没有在英文状态下输入和一些其他的细节,学会了imread(),imshow(),rgb2gray()等函数。
(完整版)数字图像处理MATLAB程序【完整版】

第一部分数字图像处理实验一图像的点运算实验1.1 直方图一.实验目的1.熟悉matlab图像处理工具箱及直方图函数的使用;2.理解和掌握直方图原理和方法;二.实验设备1.PC机一台;2.软件matlab。
三.程序设计在matlab环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。
I=imread('cameraman.tif');%读取图像subplot(1,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的直方图函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果观察图像matlab环境下的直方图分布。
(a)原始图像 (b)原始图像直方图六.实验报告要求1、给出实验原理过程及实现代码;2、输入一幅灰度图像,给出其灰度直方图结果,并进行灰度直方图分布原理分析。
实验1.2 灰度均衡一.实验目的1.熟悉matlab图像处理工具箱中灰度均衡函数的使用;2.理解和掌握灰度均衡原理和实现方法;二.实验设备1.PC机一台;2.软件matlab;三.程序设计在matlab环境中,程序首先读取图像,然后调用灰度均衡函数,设置相关参数,再输出处理后的图像。
I=imread('cameraman.tif');%读取图像subplot(2,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(2,2,3),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题a=histeq(I,256); %直方图均衡化,灰度级为256subplot(2,2,2),imshow(a) %输出均衡化后图像title('均衡化后图像') %在均衡化后图像中加标题subplot(2,2,4),imhist(a) %输出均衡化后直方图title('均衡化后图像直方图') %在均衡化后直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
数字图像处理 算法原理

数字图像处理算法原理
数字图像处理是指应用数字计算机对图像进行处理与分析的技术。
其中涉及到的算法原理包括:
1. 灰度变换算法:通过改变图像中像素的灰度级分布,实现对图像亮度、对比度、伽马校正等属性的调整。
常用的灰度变换算法有线性变换、逆变换、非线性自适应直方图均衡化等。
2. 图像滤波算法:用于平滑图像、强调图像细节或检测图像中的边缘。
常用的滤波算法包括均值滤波、中值滤波、高斯滤波、导向滤波等。
3. 图像增强算法:通过改善图像的质量和可视化效果,使图像更适合人眼观察和计算机分析。
常用的图像增强算法有直方图均衡化、局部对比度增强、锐化增强等。
4. 彩色图像处理算法:针对彩色图像的特点,进行颜色空间转换、亮度调整、色彩增强、色彩平衡等操作。
常用的彩色图像处理算法有RGB空间转换为HSV空间、色彩补偿、白平衡调整等。
5. 图像分割与边缘检测算法:将图像划分为不同的区域或提取图像中感兴趣的目标,常用的算法包括阈值分割、基于边缘的分割、基于区域的分割等。
6. 图像压缩与编解码算法:将图像数据经过压缩编码处理,以减少存储空间和传输带宽。
常用的压缩算法有无损压缩算法
(如RLE、Huffman编码)和有损压缩算法(如JPEG)。
除了以上算法原理外,还包括图像配准、图像恢复、形态学处理、基于特征的图像分析等其他算法。
这些算法原理的应用能够有效地处理数字图像,对于图像识别、图像搜索、医学图像分析等领域具有广泛的应用价值。
《数字图像处理》实验教案

《数字图像处理》实验教案一、实验目的1. 使学生了解和掌握数字图像处理的基本概念和基本算法。
2. 培养学生运用数字图像处理技术解决实际问题的能力。
3. 提高学生使用相关软件工具进行数字图像处理操作的技能。
二、实验内容1. 图像读取与显示:学习如何使用相关软件工具读取和显示数字图像。
2. 图像基本操作:学习图像的旋转、缩放、翻转等基本操作。
3. 图像滤波:学习使用不同类型的滤波器进行图像去噪和增强。
4. 图像分割:学习利用阈值分割、区域增长等方法对图像进行分割。
5. 图像特征提取:学习提取图像的边缘、角点等特征信息。
三、实验环境1. 操作系统:Windows或Linux。
2. 编程语言:Python或MATLAB。
3. 图像处理软件:OpenCV、ImageJ或MATLAB。
四、实验步骤1. 打开相关软件工具,导入图像。
2. 学习并实践图像的基本操作,如旋转、缩放、翻转等。
3. 学习并实践图像滤波算法,如均值滤波、中值滤波等。
4. 学习并实践图像分割算法,如全局阈值分割、局部阈值分割等。
5. 学习并实践图像特征提取算法,如Canny边缘检测算法等。
五、实验要求1. 每位学生需独立完成实验,并在实验报告中详细描述实验过程和结果。
2. 实验报告需包括实验目的、实验内容、实验步骤、实验结果和实验总结。
3. 实验结果要求清晰显示每个步骤的操作和效果。
4. 实验总结部分需对本次实验的学习内容进行归纳和总结,并提出改进意见。
六、实验注意事项1. 实验前请确保掌握相关软件工具的基本使用方法。
3. 在进行图像操作时,请尽量使用向量或数组进行处理,避免使用低效的循环结构。
4. 实验过程中如需保存中间结果,请使用合适的文件格式,如PNG、JPG等。
5. 请合理安排实验时间,确保实验报告的质量和按时提交。
七、实验评价1. 实验报告的评价:评价学生的实验报告内容是否完整、实验结果是否清晰、实验总结是否到位。
2. 实验操作的评价:评价学生在实验过程中对图像处理算法的理解和运用能力。
(完整版)数字图像处理MATLAB程序【完整版】

第一部分数字图像处理实验一图像的点运算实验1.1 直方图一.实验目的1.熟悉matlab图像处理工具箱及直方图函数的使用;2.理解和掌握直方图原理和方法;二.实验设备1.PC机一台;2.软件matlab。
三.程序设计在matlab环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。
I=imread('cameraman.tif');%读取图像subplot(1,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的直方图函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果观察图像matlab环境下的直方图分布。
(a)原始图像 (b)原始图像直方图六.实验报告要求1、给出实验原理过程及实现代码;2、输入一幅灰度图像,给出其灰度直方图结果,并进行灰度直方图分布原理分析。
实验1.2 灰度均衡一.实验目的1.熟悉matlab图像处理工具箱中灰度均衡函数的使用;2.理解和掌握灰度均衡原理和实现方法;二.实验设备1.PC机一台;2.软件matlab;三.程序设计在matlab环境中,程序首先读取图像,然后调用灰度均衡函数,设置相关参数,再输出处理后的图像。
I=imread('cameraman.tif');%读取图像subplot(2,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(2,2,3),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题a=histeq(I,256); %直方图均衡化,灰度级为256subplot(2,2,2),imshow(a) %输出均衡化后图像title('均衡化后图像') %在均衡化后图像中加标题subplot(2,2,4),imhist(a) %输出均衡化后直方图title('均衡化后图像直方图') %在均衡化后直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
数字图像处理实验指导书(带源程序)

实验一Matlab图像处理工具箱的初步练习一. 实验目的1. 掌握有关数字图像处理的基本概念;2. 熟悉Matlab图像处理工具箱;3. 熟悉使用Matlab进行数字图像的读出和显示;4. 熟悉运用Matlab指令进行图像旋转和缩放变换。
二. 练习1. 文件的读入与显示(1) 运行Matlab。
(2) MATLAB窗口构成:在缺省的情况下,由三个窗口组成。
命令窗口(command window)、命令历史(command history)、工作空间(workspace)。
注意:缺省窗口的设置步骤为:MATLAB菜单/view选项/Desktop layout/default。
(3) 调入一个文件:i=imread('pout.tif');%注意:前面的“%”是用于注释的,不会被执行,只是说明这个语句的作用。
此时的i出现在什么窗口?是什么类型的变量?大小是多少?(4) 显示这幅图:imshow(i);(5) 将变量i转置成j,即j=i';显示j即imshow(j);%在胸前左侧花纹怎么会跑到右边的呢?举一个例子加以验证:设a=[1 2 3 4 5;6 7 8 9 10;11 12 13 14 15];b=a’;此时的b与a有什么区别?(6) 写入到一个新的图像文件'abc.tif'中,即imwrite(j,'abc.tif')。
(7) 清除变量命令:clear执行这个命令后,workspace窗口中的变量有没有?怎么验证?(8) 清除用户开设的窗口命令:close all(9) 调入图像文件'abc.tif'并显示。
问题:(1) 操作符“’”是图像的转置的意思,转置两次后,是否回到原图像?(2) 命令后的符号“;”所起的作用是什么?(3) 命令是否可以大写母?2. 灰度图像分别选择不同的灰度级(如2、4、16、64、128个)来显示同一幅图像(如testpat1.tif)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理程序数字图像处理实验图像处理实验(一)直方图灰度变换是图像增强的一种重要手段,使图像对比度扩展,图像更加清晰,特征更加明显。
灰度级的直方图给出了一幅图像概貌的描述,通过修改灰度直方图来得到图像增强。
1、灰度直方图(1)计算出一幅灰度图像的直方图clearclose allI=imread('004.bmp');imhist(I)title('实验一(1)直方图');(2)对灰度图像进行简单的灰度线形变换,figuresubplot(2,2,1)imshow(I);title('试验2-灰度线性变换');subplot(2,2,2)histeq(I);(3)看其直方图的对应变化和图像对比度的变化。
原图像 f(m,n) 的灰度范围 [a,b] 线形变换为图像 g(m,n),灰度范围[a’,b’]公式:g(m,n)=a’+(b’-a’)* f(m,n) /(b-a)figuresubplot(2,2,1)imshow(I)J=imadjust(I,[0.3,0.7],[0,1],1);title(' 实验一(3)用g(m,n)=a’+(b’-a’)* f(m,n) /(b-a)进行变换 '); subplot(2,2,2)imshow(J)subplot(2,2,3)imshow(I)J=imadjust(I,[0.5 0.8],[0,1],1);subplot(2,2,4)imshow(J)(4) 图像二值化(选取一个域值,(5) 将图像变为黑白图像)figuresubplot(2,2,1)imshow(I)J=find(I<150);I(J)=0;J=find(I>=150);I(J)=255;title(' 实验一(4)图像二值化 ( 域值为150 ) ');subplot(2,2,2)imshow(I)clc;I=imread('14499.jpg');bw=im2bw(I,0.5);%选取阈值为0.5figure;imshow(bw) %显示二值图象图象处理变换(二)1.傅立叶变换熟悉其概念和原理,实现对一幅灰度图像的快速傅立叶变换,并求其变换后的系数分布.2.离散余弦变换熟悉其概念和原理,实现对一幅灰度和彩色图像作的离散余弦变换,选择适当的DCT系数阈值对其进行DCT反变换.% 图象的FFT变换clc;I=imread('005.bmp');subplot(1,2,1)imshow(I);title('原图');subplot(1,2,2)imhist(I);title('直方图');colorbar;J=fft2(I);figure;subplot(1,2,1)imshow(J);title('FFT变换结果');subplot(1,2,2)K=fftshift(J);imshow(K);title('零点平移');figure;imshow(log(abs(K)),[]),colormap(jet(64)),colorbar;title('系数分布图');% 图象的DCT变换RGB=imread('005.bmp');figure;subplot(1,2,1)imshow(RGB);title('彩色原图');a=rgb2gray(RGB);subplot(1,2,2)imshow(a);title('灰度图');figure;b=dct2(a);imshow(log(abs(b)),[]),colormap(jet(64)),colorbar;title('DCT变换结果');figure;b(abs(b)<10)=0;% idctc=idct2(b)/255;imshow(c);title('IDCT变换结果');图象处理变换(三)小波变换实验内容:熟悉小波变换的概念和原理,熟悉matlab小波工具箱主要函数的使用.利用二维小波分析对一幅图象作2层小波分解,并在此基础上提取各层的低频信息实现图像的压缩.程序如下:clcclose allcleara=imread('005.bmp');subplot(1,2,1);imshow(a);title('原始图象');I=rgb2gray(a);subplot(1,2,2);imshow(I);title('原始图象的灰度图');% 进行二维小波变换[a,b] = wavedec2(I, 2, 'bior3.7');% 提取各层低频信息figure;c = appcoef2( a, b, 'bior3.7', 1 );subplot(1,2,1);imshow(c, []);title('一层小波变换结果');d = appcoef2( a, b, 'bior3.7', 2 );subplot(1,2,2);imshow(d, []);title('二层小波变换结果');图象处理实验(四)模板运算一、实验内容:(1)平滑:平滑的目的是模糊和消除噪声。
平滑是用低通滤波器来完成,在空域中全是正值。
(2)锐化:锐化的目的是增强被模糊的细节。
锐化是用高通滤波器来完成,在空域中,接近原点处为正,在远离原点处为负。
利用模板进行图象增强就是进行模板卷积。
1、利用二个低通邻域平均模板(3×3和9×9)对一幅图象进行平滑,验证模板尺寸对图象的模糊效果的影响。
2、利用一个低通模板对一幅有噪图象(GAUSS白噪声)进行滤波,检验两种滤波模板(分别使用一个5×5的线性邻域平均模板和一个非线性模板:3×5中值滤波器)对噪声的滤波效果。
3、选择一个经过低通滤波器滤波的模糊图象,利用sobel和prewitt水平边缘增强高通滤波器(模板)对其进行高通滤波图象边缘增强,验证模板的滤波效果。
4、选择一幅灰度图象分别利用一阶Sobel算子和二阶Laplacian算子对其进行边缘检测,验证检测效果。
二、实验步骤:1、利用低通邻域平均模板进行平滑:I=imread('girl.bmp');subplot(1,3,1);imshow(I);title('原图');J=fspecial('average');J1=filter2(J,I)/255;subplot(1,3,2);imshow(J1);title('3*3滤波');K=fspecial('average',9);K1=filter2(K,I)/255;subplot(1,3,3);imshow(K1);title('9*9滤波');2、中值滤波和平均滤波I=imread('girl.bmp');J=imnoise(I,'gaussian',0,0.01); subplot(2,2,1);imshow(I);title('原图');subplot(2,2,2);imshow(J);title('noise');K=fspecial('average',5);K1=filter2(K,J)/255;subplot(2,2,3);imshow(K1);title('average');L=medfilt2(J,[3 5]);subplot(2,2,4);imshow(L);title('medium');3、高通滤波边缘增强I=imread('girl.bmp');subplot(2,2,1);imshow(I);title('original pic');J=fspecial('average',3);J1=conv2(I,J)/255;%J1=filter2(J,I)/255;subplot(2,2,2);imshow(J1);title('3*3lowpass');K=fspecial('prewitt');K1=filter2(K,J1)*5;subplot(2,2,3);imshow(K1);title('prewitt');L=fspecial('sobel');L1=filter2(L,J1)*5;subplot(2,2,4);imshow(L1);title('sibel');4、边缘检测分别用sobel和laplacian算子来进行,程序如下:I=imread('girl.bmp');subplot(1,3,1);imshow(I);title('original pic');K=fspecial('laplacian',0.7);K1=filter2(K,I)/100;subplot(1,3,2);imshow(K1);title('laplacian');L=fspecial('sobel');L1=filter2(L,I)/200;subplot(1,3,3);imshow(L1);title('sibel');图像处理实验(五)图像分割实验目的:1、学习边缘检测2、学习灰度阀值分割实验内容:1、分别用sobel、Laplacian-Gaussian方法对一幅灰度图像进行边缘提取,2、给出对比结果i=imread('eight.tif');figure;subplot(2,2,1);imshow(i);title('原始图像');subplot(2,2,3);imshow(i);title('原始图像');i1=edge(i,'sobel');subplot(2,2,2);imshow(i1);title('sober方法提取的边缘');i2=edge(i,'log');subplot(2,2,4);imshow(i2);title('Laplacian-Gaussian方法提取的边缘');比较提取边缘的效果可以看出,sober算子是一种微分算子,对边缘的定位较精确,但是会漏去一些边缘细节。