北师大版八年级上册数学 1.1 探索勾股定理 教案
北师大版八年级上册第一章勾股定理1.1.1 探索勾股定理(教案)

1. 探究勾股定理1.经历用测量法和数格子的方法探究勾股定理的过程,开展合情推理才能,体会数形结合的思想.2.会解决直角三角形的两边求另一边的问题.1.经历“测量—猜测—归纳—验证〞等一系列过程,体会数学定理发现的过程.2.在观察、猜测、归纳、验证等过程中培养语言表达才能和初步的逻辑推理才能.3.在探究过程中,体会数形结合、由特殊到一般及化归等数学思想方法.通过让学生参加探究与创造,获得参加数学活动成功的经历.【重点】勾股定理的探究及应用.【难点】勾股定理的探究过程.【老师准备】分发给学生打印的方格纸.【学生准备】有刻度的直尺.导入一:展示教材P2开头的情境.如下图,从电线杆离地面8 m处向地面拉一条钢索,假如这条钢索在地面的固定点间隔电线杆底部6 m,那么需要多长的钢索?事实上,古人发现,直角三角形的三条边长度的平方存在一个特殊关系,学完了这节课,我们就会很容易地求出钢索的长度.[设计意图]创设问题情境,造成学生的认知冲突,激发学生的求知欲望.导入二:如下图,强大的台风使得一个旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处.旗杆折断之前有多高?【师生活动】在直角三角形中,任意两条边确定了,第三条边确定吗?为什么?在直角三角形中,任意两条边确定了,第三条边也就随之确定,三边之间存在着一种特定的数量关系.事实上,古人发现,直角三角形的三条边长度的平方存在一种特殊的关系.让我们一起去探究吧!一、用测量的方法探究勾股定理思路一【学生活动】1.画一个直角三角形,使直角边长分别为3 cm和4 cm,测量一下斜边长是多少.2.画一个直角边长分别是6 cm和8 cm的直角三角形,测量一下斜边长是多少.3.画一个直角边长分别是5 cm和12 cm的直角三角形,测量一下斜边长是多少.【问题】你能观察出直角三角形三边之间的关系吗?[设计意图]帮助学生感知直角三角形三条边的长度存在特殊的关系,进而激发学生的探究欲望.思路二任意画一个直角三角形,分别测量三条边长,把长度标在图形中,计算三边的平方,把结果填在表格中.直角三角形直角边长直角边长斜边长123【师生活动】师:观察表格,有什么发现?生1:a2+b2=c2.生2:两直角边的平方和很接近斜边的平方.师:很准确,他用了很接近这个词,非常棒!有哪些数据得到了a2+b2=c2?生:3,4,5;6,8,10;2,1.5,2.5;5,12,13……师:哪些数据没得到a2+b2=c2?生:2,4,4.5;5,8,9.5;2.4,4.8,9.3……师:怎样验证直角三角形三边之间的平方关系呢?二、验证直角三角形三条边长度存在的特殊关系,用数格子的方法探究勾股定理1.探究等腰直角三角形的情况.思路一展示教材P2图1 - 2局部图.探究问题:(1)这个三角形是什么样的三角形?(2)直角三角形三边的平方分别是多少?它们满足怎样的数量关系?(学生通过数格子的方法可以得出S A+S B=S C)[设计意图]通过三个正方形面积的关系,得到直角三角形三边的关系.思路二展示教材P2图1 - 2,直角三角形三边的平方分别是多少,它们满足上面所猜测的数量关系吗?你是如何计算的?【师生活动】师:在这幅图中,边长的平方是如何刻画的?我们的猜测如何实现?生:用正方形A,B,C刻画的,就是证A+B=C.师:再准确点说呢?生:是用三个正方形A,B,C的面积刻画的,就是证明正方形A的面积加上正方形B的面积等于正方形C的面积.师:请同学们快速算一算正方形A,B,C的面积.(学生交流面积C的求法,老师巡视点评)生:A的面积是9,B的面积也是9,C的面积是18.师:你用什么方法得到正方形C的面积为18个单位面积?生1:我先数整个格子有12个,两个三角形格子拼成一个正方形格子,能凑6个,一共是18个.生2:把正方形对折,得到两个三角形.(学生板演,并列式计算) 生3:分成四个全等的直角三角形.(学生板演,口述面积求法)师:方法不错,你们很擅长动脑筋,我们用数格子、分割图形的方法得到C的面积,还有什么方法可以得到吗?生:在正方形C的外侧画一个大正方形,用大正方形的面积减去4个三角形的面积.(学生板演,口述面积求法)师:很好,他采用了补形的方法计算面积,我们能得到什么结论?生1:S A+S B=S C.生2:a2+b2=c2.师:我们看到上面的三角形具有特殊性,是等腰直角三角形,一般三角形能验证吗?2.探究边长为3,4,5的直角三角形的情况.展示教材P2图1 - 3局部图.对于一般的直角三角形是否也有这样的关系?你是如何计算的?【问题】(1)正方形A的面积是多少个方格?正方形B的面积是多少个方格?(2)怎样求出正方形C的面积是多少个方格?(3)三个正方形的面积之间有什么关系?同桌交流、小组讨论,共同讨论如何求正方形的面积,找到三边平方之间的关系.【提示】在正方形C的四周再补上三个相等的直角三角形,变成一个新的大正方形.【拓展】假如直角三角形的两直角边分别为1.6个单位长度和2.4个单位长度,上面所猜测的数量关系还成立吗?说明你的理由.学生考虑、交流,老师请学生口答,并板书,指出这就是这节课要学习的勾股定理.【学生总结】直角三角形两直角边的平方和等于斜边的平方.假如用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.[考虑](1)运用此定理的前提条件是什么?(2)公式a2+b2=c2有哪些变形公式?(3)由(2)知直角三角形中,只要知道条边,就可以利用求出.[设计意图]让学生经历“独立考虑——小组讨论——合作交流〞的环节,进一步加深对勾股定理的理解,并激发学生的爱国热情.[知识拓展]1.由勾股定理的根本形式a2+b2=c2可以得到一些变形关系式,如a2=c2-b2=(c+b)(c-b);b2=c2-a2=(c+a)(c-a).2.在钝角三角形中,三角形三边长分别为a,b,c,假设c为最大边长,那么有a2+b2<c2,在锐角三角形中,三角形三边长分别为a,b,c,假设c为最大边长,那么有a2+b2>c2.1.勾股定理的由来.2.勾股定理的探究方法:测量法和数格子法.3.勾股定理:直角三角形两直角边的平方和等于斜边的平方.假如a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.1.直角三角形ABC的两直角边BC=12,AC=16,那么ΔABC的斜边AB的长是()C.9.6D.8解析:BC2=122=144,AC2=162=256,AB2=AC2+BC2=400=202.应选A.2.直角三角形两直角边长分别是6和8,那么周长与最短边长的比是()A.7∶1B.4∶1C.25∶7D.31∶7解析:利用勾股定理求出斜边的长为10.应选B.3.(2021·温州模拟)如下图,在ΔABC中,AB=AC,AD是ΔABC的角平分线,假设BC=10,AD=12,那么AC=.解析:根据等腰三角形三线合一,判断出ΔADC为直角三角形,利用勾股定理即可求出AC的长为13.故填13.4.如下图,在RtΔABC中,∠ACB=90°,AB=10,分别以AC,BC为直径作半圆,面积分别记为S1,S2,那么S1+S2的值等于.解析:根据半圆面积公式结合勾股定理,知S1+S2等于以斜边为直径的半圆的面积.所以S1+S2=1πAB2=12.5π.故填12.5π.8第1课时1.概念:直角三角形两直角边的平方和等于斜边的平方.2.表示法:假如用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.一、教材作业【必做题】教材第3页随堂练习第1,2题.【选做题】教材第4页习题1.1第2题.二、课后作业【根底稳固】1.在RtΔABC中,AB=6,BC=10,∠A=90°,那么AC=.2.假设三角形是直角三角形,且两条直角边长分别为5,12,那么此三角形的周长为,面积为.3.(2021·凉山中考)直角三角形的两边长分别是3和4,那么第三边长为.4.假如梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是.【才能提升】5.如下图,在正方形网格中,ΔABC的三边长a,b,c的大小关系是() A.a<b<c B.c<a<b C.c<b<a D.b<a<c6.如下图,在一个由4×4个小正方形组成的正方形网格中,以EF为边的小正方形与正方形ABCD的面积比是.7.如下图,阴影局部是一个正方形,它的面积为.8.如下图,三个正方形的面积中,字母A所在的正方形的面积是.9.飞机在空中程度飞行,某一时刻飞机刚好飞到一个男孩头顶正上方4000米处,过20秒,飞机间隔这个男孩头顶5000米,飞机每小时飞行多少千米?10.一个门框的尺寸如下图,一块长3 m,宽2.2 m的薄木板能否从门框内通过?为什么?11.在ΔABC中,AB=25,AC=30,BC边上的高AD=24,求BC的长.【拓展探究】12.如下图,在RtΔABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,那么BD=.13.如下图,一个机器人从O点出发,向正东方向走3米到A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,…,按此规律走下去,当机器人走到A6点时,离O点的间隔是.【答案与解析】1.8(解析:AC2=BC2-AB2=64.)2.3030(解析:由题意得此直角三角形的斜边长为13.)3.5或√74.12米5.D(解析:两个正数比拟大小,可以按照下面的方法进展:假如a>0,b>0,并且a2>b2,那么a>b.可以设每一个小正方形的边长为1,在直角三角形BDC中,根据勾股定理可以求出a2=10,同理可以求出b2=5,c2=13,因为a>0,b>0,c>0,且b2<a2<c2,所以b<a<c.)6.5∶8(解析:可以设每个小正方形的边长为1,那么正方形ABCD的面积就是4×4=16,斜放的小正方形的边长应该是直角三角形DEF的斜边长,另外两条直角边长分别是1和3,根据勾股定理可以求出小正方形的面积是10.所以以EF为边的小正方形与正方形ABCD的面积比是10∶16=5∶8.)7.64 cm2(解析:设阴影局部的边长为x,那么它的面积为x2=172-152=64(cm2).)8.7(解析:根据正方形的面积公式和勾股定理,知以直角三角形的两条直角边为边的正方形的面积和等于以斜边为边的正方形的面积,由勾股定理可知A=16-9=7.故A的面积为7.)9.解:根据题意可以先画出符合题意的图形.如下图,在ΔABC中,∠C=90°,AC=4000米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里飞行的路程,即图中的CB长,由于RtΔABC的斜边AB=5000米=5千米,AC=4000米=4千米,由勾股定理得BC2=AB2-AC2,即BC=3千米.飞机20秒飞行3千米,那么它1小时飞行×3=540(千米).答:飞机每小时飞行540千米.的间隔为36002010.解:连接AC,在RtΔABC中,根据勾股定理得AC2=AB2+BC2=12+22=5.又因为2.22=4.84<5.所以AC>木板的宽,所以木板可以从门框内通过.11.解:在RtΔABD中,由勾股定理得BD2=AB2-AD2=252-242=49,所以BD=7.在RtΔADC中,由勾股定理得CD2=AC2-AD2=302-242=324,所以CD=18.所以BC=BD+DC=7+18=25.12.2(解析:∵在RtΔABC中,AC=3,BC=4,∴AB=5,∵以点A为圆心,AC 长为半径画弧,交AB于点D,∴AD=AC,∴AD=3,∴BD=AB-AD=5-3=2.)13.15(解析:解此题时要求出A1A2,A2A3,A3A4,A4A5,A5A6等各线段的长,再利用勾股定理求解.)从本节课教案的思路设计看,始终贯彻以学生为主体,充分运用各种手段调动学生参与探究活动的积极性.课前的导入利用生活中的问题,唤起学生带着问题进入本节课的学习.在探求直角三角形三边平方关系时,遵循了发现问题、证实问题到推导问题的认识过程.在引导学生进展探究的过程中,对学生的指导过多,不敢放手让学生自己进展尝试.比方在利用教材第2页下面的两幅图的时候,要求学生选取与教材一致的数据.在这里应该放手让学生自己选取数据.在总结勾股定理的时候,可以让学生自己总结勾股定理的数学表达式.在利用教材给出的例如进展勾股定理结论探究的时候,一定要立足于“面积相等〞这个探究的立足点,这样才能保证学生找准探究活动的方向.随堂练习(教材第3页)1.解:字母A代表的正方形的面积=225+400=625,字母B代表的正方形的面积=225-81=144.2.解:不同意他的想法,因为29 in的电视机是指屏幕长方形的对角线长为29 in,由屏幕的长为58 cm,宽为46 cm,可知屏幕的对角线长的平方=(46025.4)2+(58025.4)2,所以对角线长≈29 in.习题1.1(教材第4页)1.解:①x2=62+82=100,x=10.②y2=132-52=144,y=12.2.解:172-152=64,所以另一条直角边长为8 cm.面积为12×8×15=60(cm2).3.解:此题具有一定的开放性,现给出4种方案:如下图,设①的面积为g,③的面积为e,④的面积为f,⑦的面积为a,⑨的面积为b,⑧的面积为d ,⑩的面积为c ,那么(1)a +b +c +d =g ,(2)a +b +f =g ,(3)e +c +d =g ,(4)e +f =g.4.解:过C 点作CD ⊥AB 于D ,因为CA =CB =5 cm,所以AD =BD =12AB =3 cm .在Rt ΔADC 中,CD 2=AC 2-AD 2,所以CD =4 cm,所以S ΔABC =12AB ·CD =12×6×4=12(cm 2).(2021·淮安中考)如左下列图所示,在边长为1个单位长度的小正方形组成的网格中,点A ,B 都是格点,那么线段AB 的长度为( )C .7D .25〔解析〕 此题考察勾股定理的知识,解答此题的关键是掌握格点三角形中勾股定理的应用,建立格点三角形.如下图,利用勾股定理求解AB 的长度即可.由图可知AC =4,BC =3,那么由勾股定理得AB =5.应选A .如下图,直线l 上有三个正方形a ,b ,c ,假设a ,c 的面积分别为3和4,那么b 的面积为 .〔解析〕 ∵∠ACB +∠ECD =90°,∠DEC +∠ECD =90°,∴∠ACB =∠DEC.∵∠ABC =∠CDE ,AC =CE ,∴ΔABC ≌ΔCDE ,∴BC =DE.根据勾股定理的几何意义,b的面积=a的面积+c的面积,∴b的面积=3+4=7.故填7.。
北师大版探索勾股定理教案

课题1、1 探索勾股定理教材义务教育课程标准实验教科书(北师大版)八年级数学上册第一章第1节P2~ P6。
勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用。
本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性。
此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值。
授课教师: 刘洋教学目标1、知识与技能目标:掌握直角三角形三边之间的数量关系,学会用符号表示。
学生在经历用数格子与割补等办法探索勾股定理的过程中,体会数形结合的思想,体验从特殊到一般的逻辑推理过程。
2、能力目标:通过分层训练,使学生学会熟练运用勾股定理进行简单的计算,在解决实际问题中掌握勾股定理的应用技能。
3、情感目标:通过数学史上对勾股定理的介绍,激发学生学数学,爱数学,做数学的情感。
使学生从经历定理探索的过程中,感受数学之美,探究之趣。
教学重点、难点重点:用面积法探索勾股定理,理解并掌握勾股定理。
难点:计算以斜边为边长的大正方形C面积及割补思想的理解与应用。
教学方法选择引导探索法,采用“问题情境----建立模型----解释、应用与拓展”的模式进行教学。
教具准备多媒体课件;若干张已画好直角三角形的方格纸;剪刀;已剪好的纸片若干张。
教学过程一、创设情境,引入新课(师)请同学们观察动画,我国科学家曾向太空发射勾股图试图与外星人沟通,在2002年的国际数学家大会上采用弦图作为会标,它为什么有如此大的魅力呢?它蕴涵着怎样迷人的奥妙呢?这节课我就带领大家一起探索勾股定理。
(设计意图:用一段生动有趣的动画,点燃学生的求知欲,以景激情,以情激思,引领学生进入学习情境。
)二、师生互动,探究新知活动1:(观察图1)你知道正方形C的面积是多少吗?你是怎样得出上面结果的呢?(生)独立思考后交流,采用直接数方格的办法,或者是分割成几个等腰直角三角形的方法计算正方形C的面积。
北师大版八年级上册数学1.1第1课时认识勾股定理教案1

1. 1研究勾股定理第 1 课时认识勾股定理1.研究勾股定理,进一步发展学生的推理能力;2.理解并掌握直角三角形三边之间的数目关系. ( 要点、难点 )一、情境导入如下图的图形像一棵枝叶旺盛、姿态优美的树,这就是有名的毕达哥拉斯树,它由若干个图形构成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说此中的神秘吗?二、合作研究研究点一:勾股定理的初步认识【种类一】直接利用勾股定理求长度如图,已知在△ABC 中,∠ACB=90°, AB=5cm, BC= 3cm, CD⊥ AB 于点D,求 CD的长.分析:先运用勾股定理求出AC 的长,11再依据 S△ABC=2AB·CD=2AC·BC,求出 CD的长.解:∵△ ABC 是直角三角形,∠ACB=90°, AB= 5cm, BC=3cm,∴由勾股定理得222222AC = AB - BC= 5 - 3 = 4 ,∴ AC= 4cm. 又11AC·BC∵S ABC=AB·CD=AC·BC,∴CD=△22AB4×3 12(cm) ,故 CD的长是12==cm.555方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,这个规律也称“弦高公式”,它常与勾股定理联合使用.【种类二】勾股定理与其余几何知识的综合运用如图,已知 AD是△ ABC的中线.求2222证: AB +AC= 2(AD + CD) .分析:结论中波及线段的平方,所以可以考虑作AE⊥ BC于点 E,在△ ABC中结构直角三角形,利用勾股定理进行证明.证明:如图,过点 A 作 AE⊥BC 于点 E.在 Rt △ACE、 Rt△ ABE和 Rt△ ADE中, AB2=22222222AE + BE,AC= AE+ CE,AE= AD- ED,∴2222222 AB + AC= (AE + BE) + (AE + CE) = 2(AD- ED2) + (DB - DE)2+ (DC+ DE)2= 2AD2-22222ED+ DB-2DB·DE+ DE+ DC+2DC·DE+2222DE= 2AD+DB+ DC+ 2DE(DC- DB).又∵ AD22是△ ABC 的中线,∴ BD= CD,∴ AB + AC=22222AD+ 2DC= 2(AD + CD) .方法总结:结构直角三角形,利用勾股定理把需要证明的线段联系起来.一般地,波及线段之间的平方关系问题时,往常沿着这个思路去剖析问题.【种类三】分类议论思想在勾股定理中的应用在△ ABC中, AB= 20,AC= 15,AD 为 BC边上的高,且 AD= 12,求△ ABC 的周长.分析:应试虑高AD在△ABC内和△ABC外的两种情况.解:当高 AD在△ ABC内部时,如图①.在 Rt △ ABD中,由勾股定理,得22 BD= AB-222=162,∴ BD= 16;在 Rt △ ACDAD=20 -12中,由勾股定理,得2222-CD= AC- AD= 15122= 81,∴ CD=9. ∴BC= BD+ CD= 25,∴△ABC的周长为25+20+ 15= 60.当高 AD在△ ABC外面时,如图② . 同理可得 BD= 16,CD=9. ∴BC= BD-CD= 7,∴△ABC的周长为 7+20+ 15= 42. 综上所述,△ABC的周长为 42 或 60.方法总结:题中未给出图形,作高结构直角三角形时,易遗漏钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情况,忽略高AD在△ ABC外的情况.研究点二:利用勾股定理求面积如图,以Rt△ ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中△ ABE 的面积为 ________,暗影部分的面积为 ________.1分析:由于 AE= BE,所以 S△ABE=2AE·BE 122222= AE. 又由于AE+ BE = AB,所以 2AE =2212129AB ,所以 S△=4AB=4× 3=4;同理可得ABES△AHC+121222 S△BCF=4A C+4BC. 又由于AC+BC=212121 AB ,所以暗影部分的面积为4AB +AB =24212999AB=×3=2.故填、.242方法总结:求解与直角三角形三边相关的图形面积时,要联合图形想方法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系.三、板书设计勾股定理:直角三角形两直角边的平方和等于斜边的平方.假如用 a,b,c 分别表示直角三角形的两直角边和斜边,那么a2+b2= c2.让学生领会数形联合和由特别到一般的思想方法,进一步发展学生的说理和简单推理的意识及能力;进一步领会数学与现实生活的密切联系.在研究勾股定理的过程中,体验获取成功的快乐;经过介绍勾股定理在中国古代的研究,激发学生热爱祖国的悠长文化历史,激励学生奋发学习.。
北师大版-数学-八年级上册-第一章第1节探索勾股定理(1) 教案

北师大版八年级上第一章第1节探索勾股定理(1)教案教学目标:(一)教学知识点1. 经历用计算和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
.2.掌握勾股定理的内容,能应用勾股定理解决简单的实际问题.(二)能力训练要求通过探索直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。
(三)情感与价值观通过自主学习的发展体验获取数学知识的感受;了解勾股勾股定理的历史,体会它的重大意义和文化价值教学重点:了解勾股定理的由来并能用它解决一些简单问题。
教学难点:勾股定理中数量关系的发现的发现课堂导入:我们生活的这个世界,蕴涵着无穷的秘密,人们不断去发现它,探索它,促使人类社会不断发展进步,可以说,人类不断发展的历史就是我们不断认识自然、发现自然规律的过程,其中有一些重要的发现对人类的历史进程产生了重大的影响。
我们今天所要研究的就是这样一个伟大的发现,无论是我国古代科技所代表的东方文明还是毕达哥拉斯学派所代表的西方文明,先后都发现了这个规律,有的科学家建议把这个规律作为地球人和外星文明交流的工具。
教学过程:1、知识准备谁能有办法得到下面几个格点图形的面积在网格图形中,简单的图形可以通过数格子的方法得到面积,复杂的图形总可以利用长方形和直角三角形的和或差得到面积。
1观察图1,正方形A中有_______个小方格,即A的面积为______个单位。
正方形B中有_______个小方格,即A的面积为______个单位。
正方形C 中有_______个小方格,即A 的面积为______个单位。
1、 你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:2、 图2中,A,B,C 之间的面积之间有什么关系?学生交流后形成共识,教师板书,A+B=C 。
2、做一做出示投影提问:1、图3中,A,B,C 之间有什么关系?2、图4中,A,B,C 之间有什么关系?1、 从图1, 2, 3, 4中你发现什么?学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。
北师大版数学八年级上册1《探索勾股定理》说课稿1

北师大版数学八年级上册1《探索勾股定理》说课稿1一. 教材分析《探索勾股定理》是北师大版数学八年级上册第一单元的一节重要内容。
本节课的主要任务是让学生通过探究、验证勾股定理,培养学生的逻辑思维能力和创新能力。
教材通过引入古希腊数学家毕达哥拉斯的故事,激发学生的学习兴趣,接着引导学生通过实际操作,探索勾股定理的证明方法。
教材内容丰富,既有理论探究,又有实践操作,使学生在学习过程中充分体验到数学的趣味性和实用性。
二. 学情分析八年级的学生已经具备了一定的数学基础,对几何图形的认识和逻辑推理能力有一定的掌握。
但学生在学习过程中,往往对理论性的知识感到枯燥乏味,缺乏学习的积极性。
因此,在教学过程中,教师需要注重激发学生的学习兴趣,引导学生主动参与课堂讨论,提高学生的学习积极性。
三. 说教学目标1.知识与技能:让学生掌握勾股定理的内容,了解勾股定理的证明方法,能够运用勾股定理解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的逻辑思维能力和创新能力。
3.情感态度与价值观:让学生感受数学的趣味性和实用性,激发学生学习数学的兴趣,培养学生的团队协作精神。
四. 说教学重难点1.教学重点:让学生掌握勾股定理及其证明方法。
2.教学难点:引导学生探索勾股定理的证明方法,培养学生的创新能力。
五. 说教学方法与手段在本节课的教学过程中,我将采用问题驱动法、分组讨论法、情境教学法等教学方法,结合多媒体课件、几何画板等教学手段,引导学生主动参与课堂讨论,提高学生的学习积极性。
六. 说教学过程1.导入新课:通过讲述毕达哥拉斯的故事,激发学生的学习兴趣,引出本节课的主题。
2.探究勾股定理:让学生分组进行实际操作,观察直角三角形的三条边之间的关系,引导学生猜想勾股定理。
3.验证勾股定理:引导学生运用几何画板等工具,验证猜想的正确性。
4.讲解勾股定理:教师对勾股定理进行详细讲解,让学生掌握定理的内容。
5.应用勾股定理:让学生运用所学知识解决实际问题,巩固所学内容。
初中数学北师大八年级上册(2023年修订) 勾股定理探索勾股定理教案

第一章勾股定理第一节探索勾股定理:一、教学目标(一)知识与技能:.了解勾股定理的历史背景,体会勾股定理的探索过程..掌握直角三角形中的三边关系和三角之间的关系。
(二)能力训练要求.通过拼图活动,体验数学思维的严谨性,发展形象思维。
.在探究活动中,学会与人合作并能与他人交流思维的过程和探究的结果。
(三)情感与态度:.通过对勾股定理历史的了解,感受数学文化,激发学习热情。
.在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。
二、教学重难点重点:经历探索和验证勾股定理的过程,会利用两边求直角三角形的另一边长。
难点:拼图法验证勾股定理,会利用两边求直角三角形另一边长。
三、教学方法引导—探究—发现法.四、教学过程(一)自学指导请同学们认真看可课本至页内容,并解决下列问题:、“做一做”中的问题,你能完成吗?你能发现什么规律呢?、什么是勾股定理?、解答“想一想”中的问题(二)合作交流对于自学中的困惑请提出来,看你的同桌是否能帮助你,必要时请教老师,力争解决自己在学习过程中的疑惑。
如果你感觉还行,请不要保留地传授给你的同桌你的经验和收获。
(三)检查自学效果.观察下面两幅图,对做一做中的问题,通过讨论动手操作,总结规律。
结论: 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积..勾股定理:如果直角三角形两直角边长分别为、,斜边长为,那么 222c b a =+.即直角三角形两直角边的平方和等于斜边的平方.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方称为毕达哥拉斯定理). 利用勾股定理解出折断处与旗杆顶间的长为米,所以旗杆折断前米高。
(四)当堂训练.求下列图形中未知正方形的面积或未知边的长度:弦股勾225100x 1517.在△中∠=度,若,则..如图所示,一棵大树在一次强烈台风中于离地面10m 处折断倒下,树顶落在离树根24m 处. 大树在折断之前高多少?.小明妈妈买了一部英寸(厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有厘米长和厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?.某工人拿一个2.5m 的梯子,一头放在离墙1.5m 处,另一头靠墙,以便去修理梯子另一头的有线电视分线盒(如图)。
2022年八年级数学上册第一章勾股定理1.1探索勾股定理第2课时验证勾股定理教案新版北师大版

1.1探索勾股定理第2课时验证勾股定理教学目标【知识与能力】1.掌握勾股定理,理解和利用拼图验证勾股定理的方法.2.能运用勾股定理解决一些简单的实际问题.【过程与方法】通过拼图法验证勾股定理,使学生经历观察、猜想、验证的过程,进一步体会数形结合的思想.【情感态度价值观】培养学生大胆探索,不怕失败的精神.教学重难点【教学重点】经历勾股定理的验证过程,能利用勾股定理解决实际问题.【教学难点】用拼图法验证勾股定理.课前准备【教师准备】教材图1 - 4,1 - 5,1 - 6,1 - 7的图片.【学生准备】4个全等的直角三角形纸片.教学过程第一环节:引入新课导入一:【提问】直角三角形的三边有怎样的关系?在研究直角三角形三边关系时,我们是通过测量、数格子的方法发现了勾股定理,那么,我们怎样用科学的方法去证明勾股定理的正确性呢?请跟我一起去探索吧!导入二:上节课我们用什么方法探索发现了勾股定理?学生思考(测量、数格子).第二环节:新知构建1.勾股定理的验证思路一【师生活动】师:投影教材P4图1 - 4,分别以直角三角形的三条边的长度为边长向外作正方形,你能利用这个图说明勾股定理的正确性吗?你是如何做的?与同伴进行交流.生:割补法进行验证.师:出示教材P5图1 - 5和图1 - 6,想一想:小明是怎样对大正方形进行割补的?生:讨论交流.师总结:图1 - 5是在大正方形的四周补上四个边长为a,b,c的直角三角形;图1 - 6是把大正方形分割成四个边长为a,b,c的直角三角形和一个小正方形.图1 -5采用的是“补”的方法,而图1 - 6采用的是“割”的方法,请同学们将所有三角形和正方形的面积用a,b,c 的关系式表示出来.(1)动笔操作,独立完成.师:图1 - 5中正方形ABCD的面积是多少?你们有哪些方法求?与同伴进行交流.(2)分组讨论面积的不同表示方法.ab+c2两种方法.生:得出(a+b)2,4×12(3)板书学生讨论的结果.【提问】你能利用图1 - 5验证勾股定理吗?生:根据刚才讨论的情况列出等式进行化简.师:化简之后能得到勾股定理吗?生:得到a2+b2=c2,即两直角边的平方和等于斜边的平方,验证了勾股定理.师:你能用图1 - 6也证明一下勾股定理吗?独立完成.师:(强调)割补法是几何证明中常用的方法,要注意这种方法的运用.思路二教师出示教材图1 - 4及“做一做”,让学生观察图1 - 5和图1 - 6.【提问】小明是怎样拼的?你来试一试.(学生以小组为单位展开拼图尝试,同伴之间讨论、争辩、互相启发,将拼好的图形画下来)【思考】“做一做”的三个问题.教师讲评验证勾股定理的方法.2.勾股定理的简单应用思路一:出示教材P5例题,教师分析并抽象出几何图形.【问题】(1)图中三角形的三边长是否满足AB2=AC2+BC2?(2)要想求敌方汽车的速度,应先求什么?你能利用勾股定理完成这道题吗?(学生独立完成,教师指名板演)出示教材P8图1 - 8.【提问】 判断图中三角形的三边长是否满足a 2+b 2=c 2.(学生以组为单位合作完成,分别计算出每个正方形的面积.独立完成,有困难的可以合作完成)思路二我方侦察员小王在距离东西向公路400 m 处侦察,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外测距仪,测得汽车与他相距400 m,10 s 后,汽车与他相距500 m,你能帮小王计算敌方汽车的速度吗?〔解析〕 根据题意,可以画出右图,其中点A 表示小王所在位置,点C ,点B 表示两个时刻敌方汽车的位置.由于小王距离公路400 m,因此∠C 是直角,这样就可以由勾股定理来解决这个问题了.解:由勾股定理,可以得到AB 2=BC 2+AC 2,也就是5002=BC 2+4002,所以BC =300.敌方汽车10 s 行驶了300 m,那么它1 h 行驶的距离为300×6×60=108000(m),即它行驶的速度为108 km/h .[知识拓展] 利用面积相等来验证勾股定理,关键是利用不同的方法表示图形的面积,一要注意部分面积和等于整体面积的思想,二要注意拼接时要做到不重不漏.曾任美国总统的伽菲尔德在《新英格兰教育日志》上发表了他提出的一个勾股定理证明,如图所示,这就是他拼出的图形.它的面积有两种表示方法,既可以表示为12(a +b )(a +b ),又可以表示为12(2ab +c 2),所以可得12(a +b )(a +b )=12(2ab +c 2),化简可得a 2+b 2=c 2.第三环节:课堂小结1.勾股定理的验证方法{测量法数格子法面积法2.在实际问题中,首先要找到直角三角形,然后再应用勾股定理解题. 第四环节:检测反馈1.下列选项中,不能用来证明勾股定理的是 ( )解析:A,B,C 都可以利用图形面积得出a ,b ,c 的关系,即可证明勾股定理,故A,B,C 选项不符合题意;D,不能利用图形面积证明勾股定理,故此选项正确.故选D .2.用四个边长均为a ,b ,c 的直角三角板,拼成如图所示的图形,则下列结论中正确的是( )A.c 2=a 2+b 2B.c 2=a 2+2ab +b 2C .c 2=a 2-2ab +b 2D .c 2=(a +b )2解析:由题意得到四个完全一样的直角三角板围成的四边形为正方形,其边长为c ,里面的小四边形也为正方形,边长为b-a ,则有c 2=12ab ×4+(b-a )2,整理得c 2=a 2+b 2.故选A .3.如图所示,大正方形的面积是 ,另一种方法计算大正方形的面积是 ,两种结果相等,推得勾股定理是.ab+c2,即(a+b)2=4×解析:如图所示,大正方形的面积是(a+b)2,另一种计算方法是4×121ab+c2,化简得a2+b2=c2.2ab+c2a2+b2=c2答案:(a+b)24×124.操作:剪若干个大小形状完全相同的直角三角形,三边长分别记为a,b,c(如图(1)所示),分别用4张这样的直角三角形纸片拼成如图(2)(3)所示的形状,图(2)中的两个小正方形的面积S2,S3与图(3)中小正方形的面积S1有什么关系?你能得到a,b,c之间有什么关系?解析:根据已知图形的形状得出面积关系,进一步证明勾股定理即可求解.解:分别用4张直角三角形纸片,拼成如图(2)(3)所示的形状,观察图(2)(3)可发现,图(2)中的两个小正方形的面积之和等于图(3)中的小正方形的面积,即S2+S3=S1,这个结论用关系式可表示为a2+b2=c2.第五环节:布置作业1.教材作业【必做题】教材第6页随堂练习.【选做题】教材第7页习题1.2第3题.2.课后作业【基础巩固】1.我国古代数学家赵爽的《勾股圆方图》是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a,b,那么(a-b)2的值是()A.1B.2C.12D.132.历史上对勾股定理的一种证法采用了如图所示的图形,其中两个全等的直角三角形边AE,EB在一条直线上.证明中用到的面积相等的关系是()A.SΔEDA =SΔCEBB.SΔEDA+SΔCEB=SΔCDEC.S四边形CDAE =S四边形CDEBD.SΔEDA+SΔCDE+SΔCEB=S四边形ABCD3.北京召开的第24届国际数学家大会会标的图案如图所示.(1)它可以看做是由四个边长分别为a,b,c的直角三角形拼成的,请从面积关系出发,写出一个关于a,b,c的等式.(要有过程)(2)请用四个这样的直角三角形再拼出另一个几何图形,也能验证(1)中所写的等式.(不用写出验证过程)(3)如果a2+b2=100,a+b=14,求此直角三角形的面积.【能力提升】4.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图(1)所示的是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图(2)是由图(1)放入矩形内得到的,∠BAC=90°,AB=6,AC=8,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为.5.在北京召开的国际数学家大会的会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,则a4+b4的值为()A.35B.43C.89D.976.据传当年毕达哥拉斯借助如图所示的两个图验证了勾股定理,你能说说其中的道理吗?7.如图所示,在平面内,把矩形ABCD绕点B按顺时针方向旋转90°得到矩形A'BC'D'.设AB=a,BC=b,BD=c.请利用该图验证勾股定理.【拓展探究】8.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)所示).图(2)是由弦图变化得到的,它是用八个全等的直角三角形拼接而成的.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若S1+S2+S3=16,则S2的值是.9.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜地发现,当两个全等的直角三角形如图(1)或图(2)摆放时,都可以用“面积法”来证明,下面是小聪利用图(1)证明勾股定理的过程.将两个全等的直角三角形按图(1)所示摆放,连接DC ,其中∠DAB =90°,求证a 2+b 2=c 2. 证明:连接DB ,过点D 作BC 边上的高DF ,则DF =EC =b-a. ∵S 四边形ADCB=S ΔACD+S ΔABC=12b 2+12ab , 又∵S 四边形ADCB=S ΔADB+S ΔDCB=12c 2+12a (b-a ),∴12b 2+12ab =12c 2+12a (b-a ),∴a 2+b 2=c 2.请参照上述证法,利用图(2)完成下面的验证过程.将两个全等的直角三角形按图(2)所示摆放,其中∠DAB =90°,连接BE.验证a 2+b 2=c 2.证明:连接 , ∵S 五边形ACBED= , 又∵S 五边形ACBED= ,∴ , ∴a 2+b 2=c 2.【答案与解析】1.A(解析:根据勾股定理可得a 2+b 2=13,四个直角三角形的面积和是12ab ×4=13-1=12,即2ab =12,则(a-b )2=a 2-2ab +b 2=13-12=1.故选A.) 2.D(解析:由S ΔEDA+S ΔCDE+S ΔCEB=S 四边形ABCD,可知12ab +12c 2+12ab =12(a +b )2,∴c 2+2ab =a 2+2ab +b 2,整理得a 2+b 2=c 2,∴证明中用到的面积相等的关系是S ΔEDA+S ΔCDE+S ΔCEB=S 四边形ABCD.故选D .)3.解:(1)大正方形的面积=4个三角形的面积+小正方形的面积,即c 2=4×12ab +(a-b )2=a 2+b 2. (2)如图所示. (3)∵2ab =(a +b )2-(a 2+b 2)=196-100=96,∴ab =48,∴S =12ab =12×48=24.4.440(解析:如图所示,延长AB 交KL 于P ,延长AC 交LM 于Q ,则ΔABC ≌ΔPFB ≌ΔQCG ,∴PB =AC =8,CQ =AB =6,∵图(2)是由图(1)放入矩形内得到的,∴IP =8+6+8=22,DQ =6+8+6=20,∴矩形KLMJ 的面积=22×20=440.故答案为440.)5.D(解析:依题意有:a 2+b 2=大正方形的面积=13,2ab =四个直角三角形的面积和=13-1=12,ab =6,则a 4+b 4=(a 2+b 2)2-2a 2b 2=(a 2+b 2)2-2(ab )2=132-2×62=169-72=97.故选D .)6.解:根据题意,第一个图形中间空白小正方形的面积是c 2;第二个图形中空白的两个小正方形的面积的和是a 2+b 2,∵它们的面积都等于边长为a +b 的正方形的面积-4个直角边分别为a ,b 的直角三角形的面积和,∴a 2+b 2=c 2,即在直角三角形中斜边的平方等于两直角边的平方和.7.解:连接D'D ,依题意,图中的四边形DAC'D'为直角梯形,ΔDBD'为等腰直角三角形,Rt ΔDAB 和Rt ΔBC'D'的形状和大小完全一样,设梯形DAC'D'的面积为S ,则S =12(a +b )(a +b )=12(a 2+b 2)+ab ,又S =S Rt ΔDBD'+2S Rt ΔABD =12c 2+2×12ab =12c 2+ab ,∴12(a 2+b 2)+ab =12c 2+ab ,因此a 2+b 2=c 2.8.163(解析:∵八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,∴CG =NG ,CF =DG =NF =GK ,∴S 1=(CG +DG )2=CG 2+DG 2+2CG ·DG =GF 2+2CG ·DG ,S 2=GF 2,S 3=(NG-NF )2=NG 2+NF 2-2NG ·NF ,∴S 1+S 2+S 3=GF 2+2CG ·DG +GF 2+NG 2+NF 2-2NG ·NF =3GF 2=16,∴GF 2=163,∴S 2=163.故答案为163.)9.证明:连接BD ,过点B 作DE 边上的高BF ,则BF =b-a ,∵S 五边形ACBED=S ΔACB +S ΔABE+S ΔADE=12ab +12b 2+12ab ,又∵S五边形ACBED=SΔACB+SΔABD+SΔBDE=12ab +12c 2+12a (b-a ),∴12ab +12b 2+12ab =12ab +12c 2+12a (b-a ),∴a 2+b 2=c 2.板书设计1.1.21.勾股定理的验证.2.勾股定理的简单应用.教学反思成功之处在课堂教学中,始终注意了调动学生的积极性.兴趣是最好的老师,所以无论是引入、拼图,还是历史回顾,都注意去调动学生,让学生满怀激情地投入到活动中.勾股定理作为“千古第一定理”,其魅力在于其历史价值和应用价值,因此充分挖掘了其内涵.特别是让学生事先进行调查,再在课堂上进行展示,这极大地调动了学生的积极性,既加深了对勾股定理文化的理解,又培养了学生收集、整理资料的能力.不足之处在教学过程中,过于让学生发散思维,而导致课堂秩序略有松散. 再教设计勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,可以设计拼图活动,先让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究,最后由学生独立探究,这样学生较容易突破本节课的难点.备课资源古诗中的数学题请你先欣赏下面一首诗:平平湖水清可鉴,面上半尺生红莲; 出泥不染亭亭立,忽被强风吹一边; 渔人观看忙向前,花离原位两尺远; 能算诸君请解题,湖水如何知深浅?你能用所学的数学知识解决上述诗中的问题吗? 〔解析〕 要解决诗中提出的问题,关键是将实际问题转化为数学问题,画出符合题意的图形,如图所示.在Rt ΔBCD 中,由勾股定理建立方程求线段的长.解:如图所示,AD 表示莲花的高度,CD 是水的深度,CB 是莲花吹倒后离原位的距离.欢迎阅读本文档,希望本文档能对您有所帮助!欢迎阅读本文档,希望本文档能对您有所帮助!设CD =x 尺,则AD =BD =(x +12)尺. 在Rt ΔBCD 中,∠BCD =90°,由勾股定理得BD 2=CD 2+BC 2,即(x +12)2=22+x 2.解得x =3.75.所以所求的湖水深度为3.75尺.[方法总结] 建立数学模型是解决实际问题的常用方法.本例是利用莲花无风时与水面垂直构造直角三角形这一几何模型.在直角三角形中常用勾股定理建立方程求线段的长.。
北师大版八年级上册1.1探索勾股定理(第2课时)教案

利用拼图验证勾股定理(课前准备 8 个全等的直角三角形): 活动:用四个全等的直角三角形拼出图 1,并思考: 1.拼成的图 1 中有_______个正方形, ___个直角三角形。 2.图中大正方形的边长为_______,小正方形的边长为_______。
(a + b)2 (a + b)2 (a + b)2
四、达标测评: 1、如右图,AD = 3,AB = 4,BC = 12,则 CD=________;
2、如图,阴影部分的面积为
;
D
15
8
A
3
B
C
3、一个直角三角形的三边分别为 3,4, x ,则 x2 =
4、若等腰三角形的腰为 10cm,底边长为 16cm,则它的面积为
;
5、从电线杆离地面 6 米处向地面拉一条长 10 米的缆绳,这条缆绳在地面的固定点
3 你能利用类似的方法由图 2 得到勾股定理吗?
9、飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方 4000 m 处,过了 20 s,飞机距离这个男孩子头顶 5000m,飞机每小时飞行多少千米?
◎备课留白:
1/1
◎教学反思: ◎安全提醒:
距离电线杆底部有
米。
6、一直角三角形的斜边比直角边大 2,另一直角边长为 6,则斜边长为
;
7、直角三角形一直角边为 5 厘米、斜边为 13 厘米,那么斜边上的高是
;
8、直角三角形的三边长为连续偶数,则其周长为
;
图22Leabharlann 三.合作探究:21. 如图 1,你能表示大正方形的面积吗?能用两种方法表示吗?
2. (a+b)2 与 c2+2ab 有什么关系?为什么?你能验证勾股定理了吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 探索勾股定理 教案
【学习目标】
1.掌握勾股定理的内容,了解勾股定理的多种证明方法,体验数形结合的思想;
2.能够运用勾股定理求解三角形中相关的边长(只限于常用的数);
3.通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题.
【要点梳理】
要点一、勾股定理
直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a b ,,斜边长为c ,那么222
a b c +=.
要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.
(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长
可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的
目的.
(3)理解勾股定理的一些变式: 222a c b =-,222b c a =-, ()222c a b ab =+-.
要点二、勾股定理的证明
方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.
图(1)中,所以.
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.
图(2)中,所以.
方法三:如图(3)所示,将两个直角三角形拼成直角梯形.
,所以.
要点三、勾股定理的作用
1. 已知直角三角形的任意两条边长,求第三边;
2. 用于解决带有平方关系的证明问题;
3. 与勾股定理有关的面积计算;
4.勾股定理在实际生活中的应用.
【典型例题】
类型一、勾股定理的直接应用
例题1、在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .
(1)若a =5,b =12,求c ;
(2)若c =26,b =24,求a .
【思路点拨】利用勾股定理222a b c +=来求未知边长.
【答案与解析】
解:(1)因为△ABC 中,∠C =90°,222a b c +=,a =5,b =12,
所以2222251225144169c a b =+=+=+=.所以c =13.
(2)因为△ABC 中,∠C =90°,222a b c +=,c =26,b =24,
所以222222624676576100a c b =-=-=-=.所以a =10.
【总结】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式.
举一反三:
【变式】在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .
(1)已知b =6,c =10,求a ;
(2)已知:3:5a c =,b =32,求a 、c .
【答案】
解:(1)∵ ∠C =90°,b =6,c =10,
∴ 2222210664a c b =-=-=,
∴ a =8.
(2)设3a k =,5c k =,
∵ ∠C =90°,b =32,
∴ 222a b c +=.
即222(3)32(5)k k +=.
解得k =8.
∴ 33824a k ==⨯=,55840c k ==⨯=.
类型二、与勾股定理有关的证明
例题2、阅读下面的材料
勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a,b,斜边为c,然后按图1的方法将它们摆成正方形.
由图1可以得到(a+b)2=4×,
整理,得a2+2ab+b2=2ab+c2.
所以a2+b2=c2.
如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请你参照上述证明勾股定理的方法,完成下面的填空:
由图2可以得到,
整理,得,
所以.
【答案与解析】
证明:∵S大正方形=c2,S大正方形=4S△+S小正方形=4×ab+(b﹣a)2,
∴c2=4×ab+(b﹣a)2,
整理,得
2ab+b2﹣2ab+a2=c2,
∴c2=a2+b2.
故答案是:;2ab+b2﹣2ab+a2=c2;a2+b2=c2.
【总结】本题考查利用图形面积的关系证明勾股定理,解题关键是利用三角形和正方形边长的关系进行组合图形.
举一反三:
【变式】如图,在△ABC中,∠C=90°,D为BC边的中点,DE⊥AB于E,则AE2-BE2等于()
A.AC2B.BD2C.BC2D.DE2
【答案】连接AD 构造直角三角形,得
,选A .
类型三、与勾股定理有关的线段长
例题3、如图,长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )
A .3
B .4
C .5
D .6
【答案】D ;
【解析】
解:设AB =x ,则AF =x ,
∵ △ABE 折叠后的图形为△AFE ,
∴ △ABE ≌△AFE .BE =EF ,
EC =BC -BE =8-3=5,
在Rt △EFC 中,
由勾股定理解得FC =4,
在Rt △ABC 中,()2
2284x x +=+,解得6x =. 【总结】折叠问题包括“全等形”、“勾股定理”两大问题,最后通过勾股定理求解. 类型四、与勾股定理有关的面积计算
例题4、如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为( )
A .6
B .5
C .11
D .16
【思路点拨】本题主要考察了全等三角形与勾股定理的综合应用,由b 是正方形,可求△ABC ≌△CDE .由勾股定理可求b 的面积=a 的面积+c 的面积.
【答案】D
【解析】
解:∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°,
∴∠ACB=∠DEC ,
在△ABC 和△CDE 中,
∵ABC CDE ACB DEC AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴△ABC ≌△CDE
∴BC=DE
∵222
AB BC AC +=
∴222AB DE AC +=
∴b 的面积为5+11=16,故选D .
【总结】此题巧妙的运用了勾股定理解决了面积问题,考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.
举一反三:
【变式】如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=( )
A.25
B.31
C.32
D.40
【答案】解:如图,由题意得:
AB 2=S 1+S 2=13,
AC 2=S 3+S 4=18,
∴BC 2=AB 2+AC 2=31,
∴S=BC 2=31,
故选B .
类型五、利用勾股定理解决实际问题
例题5、有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿高与门高.
【思路点拨】根据题中所给的条件可知,竹竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高.
【答案与解析】
解:设门高为x 尺,则竹竿长为(x +1)尺,
根据勾股定理可得:
x 2+42=(x +1)2,即x 2+16=x 2+2x +1,
解得:x=7.5,
竹竿高=7.5+1=8.5(尺)
答:门高7.5尺,竹竿高8.5尺.
【总结】本题考查勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解答本题的关键.
举一反三:
【变式】如图所示,一旗杆在离地面5m 处断裂,旗杆顶部落在离底部12m 处,则旗杆折断前有多高?
【答案】
解:因为旗杆是垂直于地面的,所以∠C =90°,BC =5m ,AC =12m ,
∴ 22222512169AB BC AC =+=+=.
∴ 13AB =(m ).
∴ BC +AB =5+13=18(m ).
∴ 旗杆折断前的高度为18m .。