电磁感应式无线充电核心技术(三)-高效能功率传输
手机无线充电技术方案

手机无线充电模块一、无线充电方式介绍:充电方式目前主流无线充电方式: 电磁感应式与磁共振式,其中,以电磁感应式应用最为普遍。
电磁感应式:一、无线充电方式:磁共振式:利用电磁感应原理进行充电的设备,类似于变压器。
在发送和 接收端各有一个线圈,发送端线圈连接有线电源产生电磁信号, 接收端线圈感应发送端的电磁信号从而产生电流给用电设备。
磁共振方式的原理与声音的共振原理相同。
排列好震动频率相同 的音叉,一个发声的话,其他的也会共振发声,同样,排列在磁 场中的相同震动频率的线圈,也可从一个向另一个供电。
无线电波式:电场耦合式:在发送端将电流转化为电磁波,接收端再通过天线将电磁波转 换为电流,再通过整流、调压输入电流给用电设备。
电场耦合方式利用通过沿垂直方向耦合两组对称偶极子而产生的 感应电场来传输电力,具有抗水平错位能力强的特点。
一、无线充电方式介绍:行业标准未来将会倾向于对位置偏移允许值较大的磁共振方式、以A4WP标准为主导进行合作推进。
非接触充电100kHz(电磁感应方式) ~300kHz213法人 目前主流74法人非接触充电6.78MHz(磁场共振方式)摸索着合作 的可能性合作近距离通信 (NFC)13.56MHz92法人发展方向技术相似项目电磁感应式磁共振式优点回路构成简单! 已经有既定的业界团体标准 (WPC)缺点只能近距离充电 (但可以实现水平方向(可 动线圈、多线圈等)充电)注:具体行业标准由来请看附件。
可以实现近距离输送控制方式的安全性不足、效率 低无线电波式 可以实现远距离输送输送电力低下电场耦合式虽是近距离充电,但水平方 向的自由度较高需考虑电极之间1500V的安 全对策 接收部分需要加上变压器二、技术、规格动向1、Qi标准Qi是全球首个推动无线充电技术的标准化组织--无线充电联盟(Wireless Power Consortium,简称WPC)推出的“无线充电”标准,具备便捷性和通用性两大特征。
大功率无线充电解决方案

大功率无线充电解决方案概述随着移动设备的普及和功能的增强,对电池续航能力的要求越来越高。
传统有线充电方式存在诸多不便,例如线缆的限制、插拔频繁导致的接口损坏等问题。
因此,无线充电技术成为了解决这些问题的一大趋势。
本文将针对大功率的无线充电需求,介绍几种常见的大功率无线充电解决方案,包括电磁感应式充电、谐振式充电和射频能量传输等技术。
电磁感应式充电电磁感应式充电是目前应用最为广泛的无线充电技术之一。
其基本原理是通过电磁感应将电能传输到接收设备中进行充电。
电磁感应式充电系统由发射器和接收器两部分组成。
发射器通过交流电源产生高频交变电流,通过发射线圈产生磁场。
接收器中的接收线圈通过感应发射器产生的磁场,将电能转变为电流,进而进行充电。
特点与优势•简单、成本相对较低:电磁感应式充电需要的设备和元件相对较少,易于实现和维护。
•高效能量传输:传输效率高,能够满足大功率充电要求。
•环保节能:充电效率高,能够减少能源浪费。
局限性•传输距离受限:电磁感应式充电传输距离通常较短,大功率下传输距离更是受到限制。
•批量充电受限:电磁感应式充电适合单个设备的充电,批量充电时可能会受到空间的限制。
谐振式充电是一种基于谐振原理的无线充电技术。
其通过共振装置将电能从发射器传输到接收器,实现高效的无线充电。
工作原理谐振式充电系统由发射器和接收器组成。
发射器利用电子器件产生高频交变电流,将电能传输到共振线圈。
接收设备通过调整自身的谐振频率与发射器保持同步,吸收电能。
特点与优势•高效能量传输:谐振式充电具有较高的传输效率,能够有效地传输大功率的电能。
•传输距离相对较远:相比电磁感应式充电,谐振式充电能够实现较远距离的无线充电。
•可扩展性强:谐振式充电技术能够应用于多设备同时充电,解决了电磁感应式充电批量充电受限的问题。
局限性•系统复杂度高:谐振式充电系统需要设计精确的频率匹配,调整谐振装置的参数较为繁琐。
•成本较高:谐振式充电系统的设计与制造成本相对较高。
无线充电技术方案

无线充电技术方案无线充电技术是一种近年来不断发展的新兴领域,在无需使用传统充电线的情况下,通过无线电波或者其他形式的电磁波将电能传输到设备中,以实现充电效果。
本文将介绍几种常见的无线充电技术方案,并对其优劣进行评估。
一、电磁感应充电技术电磁感应充电技术是目前应用最广的无线充电技术之一。
基于法拉第电磁感应定律,该技术通过一个发射端产生的交变电磁场来感应接收端的线圈,进而实现无线能量传输。
这种技术在近距离传输方面效果良好,但受到距离限制,传输效率较低,且不适用于大功率设备充电。
二、磁共振充电技术磁共振充电技术通过发射端和接收端之间的磁场共振来传输电能。
与电磁感应充电技术相比,磁共振充电技术可以实现更远距离的无线充电,并且传输效率较高。
然而,由于磁场共振需要精确匹配频率,因此设备之间的传输效率会受到外界干扰的影响。
三、射频充电技术射频充电技术利用无线电波通过发射端和接收端之间的电磁耦合来传输电能。
相比其他技术,射频充电技术的传输距离较远,传输效率也较高。
它还可以同时给多个设备充电,为用户提供更便捷的充电体验。
然而,射频充电技术也存在电磁波对人体健康的潜在影响以及功率损耗较大的问题。
四、纳米发电充电技术纳米发电充电技术是一种新兴的无线充电技术方案。
它利用纳米材料的特殊性质,通过温差、压力或者光敏等方式将环境中的能量转化为电能。
这种技术在某些特殊情况下效果显著,例如可以将人体体温转化为电能进行充电。
然而,由于纳米材料的制备成本较高,该技术仍处于实验室研究阶段。
综上所述,无线充电技术方案具有各自的优势和不足。
电磁感应充电技术适用于近距离传输;磁共振充电技术实现了远距离传输;射频充电技术提供了更便捷的充电体验;而纳米发电充电技术则具备一定的创新潜力。
未来的发展中,我们可以综合利用不同的无线充电技术方案,以满足不同场景下的充电需求,进一步提高充电效率和用户体验。
无线充电器的电磁感应技术

无线充电器的电磁感应技术随着科技的不断进步,无线充电技术逐渐成为人们生活中的一大亮点。
无线充电器作为一种便捷的电力供应方式,越来越受到消费者的欢迎。
它采用了电磁感应技术,使得我们可以摆脱繁琐的电线充电方式,享受更便捷的电力体验。
一、电磁感应原理无线充电器的核心技术是电磁感应。
在物理学中,电磁感应是一种通过磁场相互作用产生电流的现象。
借助这一原理,无线充电器可以将电能通过空气或其他障碍物的传导而无线传输。
二、无线充电器的工作流程无线充电器主要由两个部分组成:发射器和接收器。
发射器负责产生电磁场,而接收器则负责将电磁场转化为电能。
当我们需要给手机或其他支持无线充电功能的设备充电时,首先将发射器连接到电源上。
发射器中的电流流经线圈,通过电磁感应原理产生一个交变磁场。
接收器中也有一个线圈,这个线圈将被发射器产生的变化磁场所激励。
当接收器的线圈感受到磁场变化时,会产生感应电流。
接收器中的电路将感应电流转化为直流电流,并通过连接的电池进行充电,最终将电能储存起来。
这样,就完成了从发射器到接收器的无线传输过程。
三、电磁感应技术的优势1. 去除了电线的限制:传统的充电方式需要通过电线连接设备和电源,而无线充电器使用电磁感应技术,无需直接连接电器设备,大大方便了充电的过程。
2. 减少插拔损坏:频繁的插拔容易导致充电口损坏,无线充电器的使用可以减少这种损坏的可能性,延长设备的使用寿命。
3. 便捷性:无线充电器无需物理接触,只需要将设备放置在指定的范围内即可实现充电,省去了寻找插口的麻烦,使得充电更加便捷。
4. 安全性提高:无线充电器通过电磁感应进行能量传输,相对于有线充电,无需直接与电源接触,减少了触电风险,提高了使用的安全性。
四、电磁感应技术的应用前景随着无线充电器的不断发展,在日常生活中的应用越来越广泛。
目前,无线充电器已经广泛用于智能手机、手表、耳机等个人电子设备的充电。
而随着技术的进一步发展,无线充电器的应用领域将进一步扩大,涵盖汽车、医疗设备、家居用品等更多领域。
无线充电工作原理

无线充电技术工作原理无线充电的工作原理主要基于电磁感应、电磁共振、无线电波(RF)、电场耦合传输技术,这些技术允许电能通过非物理接触的方式从充电基座(或发射器)传输到电子设备(或接收器)的电池中。
以下是这三种主要无线充电技术的工作原理:①电磁感应式无线充电:1.这是目前应用最广泛、技术最成熟的无线充电方式。
其基本原理与变压器相似,利用交变电流通过初级线圈产生交变磁场,次级线圈则感应出电动势并转换为电流,从而实现电能的无线传输。
2.充电时,充电设备(如手机)放置在无线充电板上,两者内置的线圈相互靠近。
充电板上的线圈连接至电源并产生交变磁场,手机内的线圈感应到这一磁场后产生电流,进而为手机电池充电。
3.优点:效率高、技术成熟、成本相对较低。
4.缺点:传输距离短(一般需几毫米至几厘米),且要求设备位置相对固定。
②电磁共振式无线充电:1.电磁共振技术通过调整发射器和接收器的频率,使它们在同一频率上共振,从而更有效地传输电能。
这种技术的传输距离比电磁感应更远,可达数米。
2.发射器和接收器都包含能够产生和接收共振的线圈,它们被调谐到相同的频率。
当发射器通电并产生交变磁场时,与接收器线圈频率相同的部分会被放大并传输给接收器。
3.优点:传输距离较远,适用于多个设备同时充电。
4.缺点:效率相对较低,且对设备位置和方向有一定要求。
③无线电波(RF)传输式无线充电:1.无线电波式无线充电利用微波或毫米波等无线电波将电能传输到接收设备。
这种方法类似于无线通信,但传输的是电能而非信息。
2.发射器将电能转换为无线电波并发射出去,接收器则捕捉这些无线电波并将其转换回电能。
这种技术可以实现较远距离的电能传输,但技术复杂度和成本较高。
3.优点:传输距离远,理论上可以实现较远的无线充电。
4.缺点:效率低,能量在传输过程中会有较大损失;且可能对周围电子设备产生干扰。
总的来说,无线充电技术的发展为人们的生活带来了极大的便利,不同的技术各有优缺点,适用于不同的应用场景。
无线充电技术的电能转换效率

无线充电技术的电能转换效率无线充电技术是近年来备受关注的一项技术创新,它能够为手机、平板电脑等电子设备提供便捷的电能补充。
然而,不同的无线充电技术在电能转换效率方面存在着差异,这直接影响了使用者的充电体验和能源利用效率。
本文将对当前常见的几种无线充电技术的电能转换效率进行探讨,并分析其存在的问题和未来的发展方向。
一、电磁感应无线充电技术电磁感应无线充电技术是目前应用最为广泛的无线充电技术之一。
它利用发射端产生的交变磁场,通过感应耦合的方式将电能传输到接收端。
该技术的电能转换效率主要受到两个因素的影响:传输距离和传输功率。
在传输距离方面,电磁感应无线充电技术的电能转换效率随着传输距离的增加而逐渐下降。
这是由于随着距离的增加,磁场的强度减弱,从而导致能量传输的损耗增加。
为了提高电能转换效率,研究人员可以通过增加发射端和接收端之间的距离,以及合理设计电磁感应系统的结构和参数,来减小能量传输的损耗。
在传输功率方面,电磁感应无线充电技术的电能转换效率与功率的大小相关。
通常情况下,功率越大,电能转换效率越高。
但是,过高的功率也会引发一些问题,如系统发热问题和安全隐患。
因此,在设计电磁感应无线充电系统时,需要综合考虑功率大小与电能转换效率之间的平衡,以满足实际应用的需求。
二、磁共振无线充电技术相比于电磁感应无线充电技术,磁共振无线充电技术在电能转换效率方面具有更大的优势。
它利用发射端和接收端之间的磁场共振现象,实现较远距离的电能传输。
磁共振无线充电技术的电能转换效率主要受到两个因素的影响:共振频率和传输功率。
在共振频率方面,发射端和接收端需要具有相同的共振频率,才能够实现高效的能量传输。
因此,合理设计共振电路的频率和参数,对于提高电能转换效率至关重要。
在传输功率方面,磁共振无线充电技术能够通过调节谐振器的耦合系数来实现自适应的功率传输,从而提高电能转换效率。
此外,磁共振无线充电技术还可以通过将传输功率分割成多个小功率,将能量分布在空间中,减小传输过程中的能量损耗。
电磁感应式无线充电的核心技术

电磁感应式无线充电的核心技术相较于其它电子科技发展,感应式充电的技术发展显的缓慢,几个关键技术问题直到近年才有解决方案,且解决方案还在不断的演进中。
无线充电可通过许多方式去完成,以目前的技术中“电磁感应式”为已经量产且经过安全与市场验证的产品,在生产成本上电磁感应式技术的产品低于其它技术,有市场预测在接下来数年内,在消费类电子产品领域中该类产品将呈倍数成长。
在本文中将探讨目前在电磁感应式无线充电系统中三大核心技术:谐振控制、高效能功率传输以及数据传输,以及它们面临的难题与现有的解决方法。
谐振控制现今量产的IC制程已经进步到纳米层级,但量产电容、电感组件的规格却很难作到误差在百分之一以下,而在电磁感应式电力系统中的系利用两个线圈感应,而线圈即为电感,在线圈上需要搭配电容作为谐振匹配,这样的构造即同LC振荡装置,较为不同的是在这系统中的目的是为了要在线圈上传输功率,为了提高效率需要在电容、电感选用低阻抗零件使质量因子Q提高,在这样的设计下其谐振曲线的斜率变的非常的大,在量产中系统设计频率与电容、电感搭配变的非常困难,因为先前提到电容、电感存在相当的误差,在量产中这样的误差若是没有在系统中加入谐振控制修正误差因素,则成品良率难以控制。
在电容、电感误差下会搭配出偏移原设计谐振点组合,导致发射功率与设计预定值有所偏差。
参考图(一)所示,在电磁感应电力系统中发设端的线圈上讯号振幅大小即为输出功率的大小,在这个示意图中表示一组线圈与电容组合的谐振曲线;在曲线上横轴为操作的频率,在不同的工作频率下于线圈上有不同大小的振幅输出,而最大振幅的谐振电将出现在频率F=1/(2π√(LC))之上,在设计上并不会将系统设定在最高功率输出的谐振点上,而是会工作在比谐振点高一些的频率使输出功率维持在适当值,在系统中我们通常称这个频率为中心工作频率。
在感应供电过程中可能会需要加大或降低输出功率,这时只要调整工作频率就可以完成。
如图(一)所示,在需要加功率时需要降低些频率使其靠近谐振点,用以提高输出功率,反之要降低输出功率只要提高频率即可完成,在此将这个方式定义为变频式功率调整。
基于电磁感应原理的手机无线充电技术设计应用

基于电磁感应原理的手机无线充电技术设计应用一、本文概述随着科技的飞速发展和人们生活节奏的加快,手机作为日常生活中不可或缺的通讯和娱乐工具,其电池续航能力和充电效率成为了消费者日益关注的焦点。
传统的有线充电方式虽然在一定程度上满足了充电需求,但其带来的插拔不便、线缆混乱等问题也日益凸显。
因此,基于电磁感应原理的手机无线充电技术应运而生,以其高效、便捷的特性,逐渐成为了手机充电技术的新趋势。
本文旨在探讨基于电磁感应原理的手机无线充电技术的设计与应用。
我们将简要介绍电磁感应的基本原理及其在无线充电技术中的应用。
我们将详细分析手机无线充电系统的基本架构和关键技术,包括发射器与接收器的设计、功率传输与控制策略等。
在此基础上,我们将探讨无线充电技术在手机领域的应用现状和未来发展趋势。
我们将对无线充电技术面临的挑战和解决方案进行讨论,以期为该领域的研究者和开发者提供有益的参考和启示。
通过本文的阐述,我们期望能够增进对手机无线充电技术的理解和认识,推动其在实际应用中的普及和优化,为人们的日常生活带来更多便利和乐趣。
二、电磁感应原理及其在手机无线充电中的应用电磁感应原理是无线充电技术的核心理论基础。
简而言之,电磁感应是指当一个导体回路中的磁通量发生变化时,会在该回路中产生感应电动势,从而驱动电流的产生。
这一原理最早由迈克尔·法拉第在19世纪初发现,并被广泛应用于电机、发电机以及各类电磁设备中。
在手机无线充电领域,电磁感应原理的应用主要体现在两个方面:无线充电发射器和接收器。
无线充电发射器通常包含一个或多个线圈,通过交流电(AC)驱动产生变化的磁场。
手机内置的接收器同样是一个线圈,当它与发射器的磁场对准时,线圈中就会产生感应电流。
这个感应电流随后被用来为手机电池充电。
无线充电的效率、速度和距离主要受到几个因素的影响,包括发射器和接收器线圈的大小、形状和位置,以及它们之间的磁场耦合效率。
为了提高充电效率,现代无线充电系统通常采用高频交流电(如MHz级别)来驱动发射器线圈,同时利用磁场共振技术来提高磁场耦合效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应式无线充电核心技术(三):高效能功率传输
前面两节我们探讨了电磁感应式无线充电系统的数据传输、谐振控制。
在本文中将探讨目前在电磁感应式无线充电系统中三大核心技术的高效能功率传输,以及它们面临的难题与现有的解决方法。
高效能功率传输
要提高电磁感应式无线电力系统的电力传送效率与功率,最简单的方式就是选用高性能的电子组件,参考图(十四)典型的电磁感应式无线电力系统架构。
在系统中有四个主要传送功率的损耗点(从供电端直流电源输入开始看):1.供电端的驱动组件,主要是电流通过MOSFET的损耗、 2.供电与受电线圈与谐振电容通过电流的损耗、3.受电端整流器交流到直流的转换损耗、4.受电端稳压器转换损耗。
由这四个损耗点可以看出供电端占了两项、受电端占了三项,过去的实验中发现在受电端的损耗是供电端的两倍以上,因此在传送电力过程中受电端温度升高会比供电端明显,这也是受电端电路设计上会比供电端来的困难的原因。
刚所提及提高电力传输效能最容易的方法就是使用高性能的组件,但在量产品上是无法实行的,主要是充电器本身在市场的价位低所以在成本上有相当大的限制。
除了前述的方法外,有一个好的解决方试,就是供电端只发送受电端所需要的功率,在受电端上收到过大的功率会提高整流器与稳压器的转换损失,而要完成这个功能就需要先将系统中的谐振控制与数据传送功能完成。