高精度车载定位系统方案设计
车辆定位管理系统方案

车辆定位管理系统方案背景随着社会的发展,交通事故频发,交通流量不断增加,对交通运输的安全和管理提出了更高的要求。
在这种情况下,车辆定位管理系统应运而生。
车辆定位管理系统通过为车辆提供实时位置信息,可以帮助交通管理部门更好地掌握路况和车辆运行状态,以加强交通安全管理。
系统设计车辆定位管理系统是基于GPS(全球卫星定位系统)技术的定位管理系统,主要由车载终端设备、服务器和管理平台组成。
车载终端设备车载终端设备是车辆定位管理系统的核心。
通过应用 GPS 技术,获取车辆实时的位置信息,不仅提高了车辆的定位准确度,还可实现对车辆的监控和管理。
这个设备的主要功能如下:•定位:车载终端设备通过识别 GPS 卫星的位置信息,实时上传车辆的位置信息到服务器。
•监控:车载终端设备可以实时监控车辆的状态,如车速、油量、水温等,将这些信息上传到服务器。
•通讯:车载终端设备可以与服务器进行通讯,上传车辆的位置和状态信息,也可以接收服务器下发的指令,如调度指令、报警指令等。
服务器服务器是车辆定位管理系统的中心,主要用于存储车辆的位置信息和状态信息,并根据需要进行数据分析和处理。
服务器的主要功能如下:•数据存储:服务器可以存储车辆的位置和状态信息,为管理平台提供数据支持。
•数据分析:服务器可以对车辆定位数据进行分析处理,生成各种报告和统计信息,为管理平台提供决策依据。
•数据传输:服务器可以将车辆的位置和状态信息实时推送到管理平台。
管理平台管理平台是车辆定位管理系统的用户界面,主要用于车辆管理、调度和监测等。
其主要功能如下:•车辆管理:管理平台可以实时监控车辆的位置和状态,对车辆进行管理。
•调度管理:管理平台可以根据车辆的位置和状态信息,进行车辆调度。
•报警管理:管理平台可以设置各种报警规则,当车辆发生异常时,及时报警。
技术选型GPS 技术GPS(全球卫星定位系统)是一种通过卫星实现地理位置定位的技术。
GPS 技术广泛应用于航空、军事和普通大众领域。
车辆定位解决方案

车辆定位解决方案随着人们生活水平的提高和经济的发展,汽车已经成为城市居民生活中必不可少的一部分。
而对于车辆管理方来说,车辆定位技术的运用将成为管理车辆的一项有效工具,可以大大提高车辆管理效率、降低管理成本、保障车辆安全性。
本文将介绍几种常见的车辆定位解决方案。
GPS定位技术GPS定位技术是一种卫星定位技术,被广泛应用于车辆行业中的车辆定位和车辆导航等领域。
利用GPS定位技术,车辆定位系统可以在地图上实时标注车辆位置,同时精度高、反应快速、容错率低的特点也提高了车辆管理的精准性和安全性。
如联盟国际云端车联网及物流管理平台G7,就利用了GPS定位技术,提供全球定位、实时监控、历史轨迹回放、报警提醒等一系列功能,满足了车辆管理方的需求。
4G定位技术4G定位技术是一种基于4G网络快速定位的技术,相比于GPS定位技术,4G定位技术定位更准确、成本更低、功能更多,同时还拥有更广的应用范围,对于在城市中建筑物密集、环境复杂等情况下,GPS定位技术的精度与效能会受到一定程度的影响。
而采用4G定位技术,就能够避免这些影响因素。
例如,TAPWAY就是一种采用了4G定位技术的车辆定位解决方案,该系统应用了4G无线网络和精准的GPS定位技术,可以快速获取车辆位置信息,并进行实时监控。
此外,该系统还可以提供历史轨迹回放、电量检测、车载视频等功能。
LBS定位技术LBS(Location-Based Services)定位技术是一种基于移动通信网络的定位技术,也是一种基于移动通信网络的地理信息服务。
它通过应用移动通信技术定位用户位置,并将用户位置信息与地图信息、POI信息等进行综合展示,以此实现LBS业务对用户地理位置的感知和对用户提交的位置请求的响应。
此外,LBS定位技术还可以结合一些NFC技术、蓝牙技术等,将车辆定位与智能出行管理相结合,例如软银公司的Stella Share车辆共享服务平台,就使用了LBS定位技术,进行车辆共享、预定、保养、还车等管理。
车辆实时定位方案

车辆实时定位方案随着物联网技术的发展, 实时定位系统广泛应用于车辆管理、路况监控、紧急救援等领域。
本文将介绍一种车辆实时定位的方案,详细说明其设计过程、原理以及实现方法。
方案概述本方案采用GPS定位技术,结合GPRS/4G网络通信,实现车辆的实时定位。
具体实现流程如下:1.车辆装有GPS设备,以及SIM卡。
2.GPS设备获取车辆的位置信息,并通过GPRS/4G网络上传至服务器。
3.服务器接收到GPS数据后,进行解析和计算,得到车辆的实时位置。
4.用户通过Web或移动端的应用程序,查询车辆的位置信息。
设计原理GPS定位技术是本方案的核心。
GPS(Global Positioning System) 全球卫星定位系统,是一种卫星导航系统,由美国政府运营。
该系统由一组卫星、地面控制站以及用户接收设备组成。
通过GPS设备接收到卫星发射的位置信号,就能够确定设备的位置。
GPS定位的优点是定位精度高、覆盖面广,可以全球范围内进行位置定位。
本方案采用GPS模块与单片机相结合的硬件设计,用MCU(Micro Control Unit)来采集GPS数据。
MCU通过串口中断方式接收GPS发送的NMEA协议格式数据,并通过GPRS/4G网络上传到云服务器。
服务器解析接收到的GPS数据,并得到了定位信息,即车辆的实时位置。
实现方法硬件部分1.GPS模块:采用U-blox公司的GPS模块进行定位。
2.单片机:采用STM32F103C8T6单片机进行数据采集。
3.SIM卡:使用3G/4G通信模块,需要插入支持GPRS/4G通信的SIM卡。
4.电源:使用汽车电瓶或者另加电源模块进行供电。
软件部分1.GPS模块驱动程序:根据U-blox公司提供的硬件接口手册来编写GPS模块的驱动程序。
2.数据上传程序:将GPS数据通过GPRS/4G网络上传至服务器。
3.服务器数据解析程序:解析上传的GPS数据,并把解析的数据存储在数据库中。
4.用户查询程序:Web或移动端应用程序,用于查询车辆的位置信息。
车辆高精度定位方案

车辆高精度定位方案随着汽车产业的不断创新和发展,车辆对于高精度定位和导航系统的需求也越来越高。
高精度定位方案可以为车辆提供更加准确和可靠的定位信息,提高车辆的安全性和驾驶体验。
本文将介绍目前主流的车辆高精度定位方案和市场现状。
1. GPS导航系统GPS(全球定位系统)是世界上最早也是最著名的卫星定位系统,在车辆导航系统中被广泛应用。
GPS可以通过卫星信号来确定车辆的位置,可以提供米级的定位精度。
但是,在城市高楼大厦密集的环境下,GPS的信号会受到干扰,导致信号不稳定或无法接收,影响其定位精度。
2. 基站辅助定位(A-GPS)基站辅助定位(A-GPS)是一种基于移动通信网络的车辆定位方案。
这种方案利用移动通信网络和卫星定位系统来迅速定位车辆,通过基站数据来提供初始位置,让GPS芯片更快地锁定卫星信号,提高定位成功率。
A-GPS能够提供更高的定位精度,但也面临着移动通信网络不稳定的问题,同时它还需要对定位芯片进行硬件和软件升级,增加了成本和技术难度。
3. 车载激光雷达定位系统近年来,激光雷达定位技术得到了广泛的关注和研究。
车载激光雷达定位系统可以通过发射激光束探测车辆周围环境,利用反射返回的激光信号来测量物体距离和形状,进而获取车辆位置信息。
激光雷达定位系统可以提供亚厘米级的定位精度,能够满足高精度地图绘制、自动驾驶和智能交通等领域的需求。
但是,激光雷达定位系统的成本较高,且系统的容错机制需要不断改进。
4. 车联网定位系统车联网定位系统是一种基于车载通信设备和互联网技术的车辆定位和导航系统。
这种方案可以通过无线通信技术实现车辆位置和行驶状态的实时监控,同时利用云计算技术来处理大量的定位数据,提供更加精准和实时的导航和交通信息。
车联网定位系统可以满足车辆定位、导航、路径规划、交通流量监测等多种应用场景,可以大大提高车辆的安全性和效率。
但是,车联网定位系统需要依靠稳定和高速的通信网络,如果信号受到干扰或者网络崩溃,这种方案的可靠性就会受到影响。
高精度北斗导航定位系统设计与实现

高精度北斗导航定位系统设计与实现导语:随着卫星导航技术的快速发展,全球定位系统(GPS)在生活中的应用越来越广泛。
而作为我国自主研发的全球卫星导航系统,北斗导航系统在提供导航定位服务方面具备独特的优势。
为了满足用户对于高精度定位需求,高精度北斗导航定位系统的设计与实现成为一个重要的研究方向。
本文将介绍高精度北斗导航定位系统的设计原理与实现方法。
一、设计原理高精度北斗导航定位系统主要包括信号接收与处理、数据计算与校正、定位算法与精度优化等模块。
下面将详细介绍这些模块的设计原理。
1. 信号接收与处理高精度北斗导航定位系统首先需要接收卫星发射的导航信号。
一般情况下,系统会选择多颗卫星进行信号接收,以提高定位精度。
接收到的信号需要进行预处理,包括频率同步、码相对齐等操作,以便后续的数据计算与校正。
2. 数据计算与校正接收到的导航信号中包含了多种参数,如卫星位置、钟差等。
系统需要对这些参数进行计算和校正,以获得更精确的定位结果。
数据计算与校正主要涉及导航星历解算、钟差修正等算法,采用高精度的数学模型来提高定位精度。
3. 定位算法与精度优化根据接收到的导航信号和经过计算与校正的参数,系统可以通过定位算法来估计用户的位置。
定位算法有多种,常用的包括最小二乘法(LS)、卡尔曼滤波(KF)等。
为了提高定位精度,系统还可以采用精度优化的方法,如差分定位、多智能体定位等技术。
二、实现方法高精度北斗导航定位系统的实现需要考虑多个方面的因素,包括硬件设备、软件算法以及系统架构等。
下面将介绍高精度北斗导航定位系统的实现方法。
1. 硬件设备高精度北斗导航定位系统的硬件设备包括天线、接收机、信号处理器等。
天线用于接收导航信号,接收机负责信号的放大和处理,信号处理器用于对信号进行解调和解码。
为了提高定位精度,硬件设备要具备高灵敏度和低噪声的特点。
2. 软件算法高精度北斗导航定位系统的软件算法是实现高精度定位的关键。
根据设计原理中提到的信号接收与处理、数据计算与校正、定位算法与精度优化等模块,可以选择合适的算法来实现系统功能。
GPS车载定位系统技术方案

天津市滨丽园混凝土有限公司GPS车载定位监控系统建议书2010年 6 月第一章GPS 定位系统GPS 监控是结合了GPS 技术、无线通信技术(GSM/GPRS/CDMA) 、图像处理技术及GIS 技术,用于对移动的人、宠物、车及设备进行远程实时监控的一门技术。
功能实现介绍如何实现GPS 监控功能要实现GPS 监控功能必须具备GPS 终端、传输网络和监控平台三个要素,这三个要素缺一不可。
通过这三个要素,组成三层结构的监控系统,使用在车辆调度监控领域,可以提供车辆防盗、反劫、行驶路线监控及呼叫指挥等功能;使用在对人宠物的跟踪领域,可以提供对老人、小孩及宠物的跟踪、老人、小孩遇到突发事件时的求救等功能。
GPS 监控的三要使用为:GPS 终端、监控平台、传输网络等。
GPS 终端GPS 终端是GPS 监控系统的前端设备,一般隐秘地安装在各种车辆内或佩带在人或宠物身上,GPS 终端设备主要由主CPU 、GPS 模块、GPRS 模块、I/O 接口及外围电路组成。
监控平台监控平台是GPS 监控的核心,是远程可视指挥和监控管理平台,一旦在车辆上安装GPS 监控设备或者在人身上佩带了GPS 监控设备,设备上的GPS 模块会实时地将车或人的位置信息通过无线网络发送到监控中心,在监控中心的电子地图上可以看到车辆、人或宠物所在的直观位置,监控中心可通过无线网络对车辆、人或宠物进行远程监控,也可对设备进行设置,例如通过下发指令设置上传间隔、远程重启设备等。
传输网络可使用GPRS 无线通信网络或CDMA 无线通信网络,也可以使用短信方式进行数据传输。
GPS 监控系统功能及特点概述GPS 监控功能( 1 )立即查询当监控中心发出立即命令之后, GPS 终端及时上传车辆、 人或宠物的位置信息 (包 括经度、纬度、方位角、速度、卫星数等信息)及状态信息。
( 2 )远程跟踪监控中心可在监控软件上对 GPS 终端进行定时跟踪设置,可设置某一固定时间 上传位置信息和状态信息,一旦设置成功, GPS 终端将根据监控中心所下发的指令 请求及时上传监控中心所需要的信息。
高精度GPS定位系统设计与实现

高精度GPS定位系统设计与实现1.系统介绍高精度GPS定位系统是一种用于精确测量和确定地球上其中一点位置的技术系统。
该系统主要由全球定位系统(GPS)接收器、天线、计算机及相关软件等组成。
通过接收来自卫星的信号,系统可以测量出接收机与卫星之间的距离,从而实现高精度的位置定位。
2.系统设计(1)天线设计:选择合适的天线类型非常重要,因为天线可以影响系统的接收灵敏度和方向性。
一般来说,使用高增益、低噪声的天线可以提高系统的接收灵敏度,从而减小定位误差。
(2)接收机设计:接收机主要用于接收和解码来自卫星的信号,并将信号传输给计算机进行处理。
接收机应该具备高灵敏度的前端放大器和频率可调谐的中频放大器,以提高信号的接收质量。
(3)计算机与软件设计:计算机负责接收、处理和显示定位信息。
系统应具备高性能的计算机和相应的软件,以实现高精度的数据处理和分析。
3.系统实现(1)卫星信号接收与解码:接收机通过天线接收来自卫星的信号,然后使用解码算法将信号转换成数字信号。
通过解码可以得到卫星的编号、位置信息、时间标记等数据。
(2)距离测量:接收机根据卫星信号的传输时间和信号传输速度计算出接收机与卫星之间的距离。
由于信号传输速度为光速,可以得到非常精确的距离信息。
(3)位置计算:系统通过测量接收机与多颗卫星之间的距离,并结合卫星的位置信息,采用三角法等方法计算出接收机的具体位置坐标。
位置计算是系统的核心部分,其精度直接影响定位结果的精度。
(4)误差补偿:由于系统中存在多种误差源,如钟差误差、大气层延迟误差等,需要对这些误差进行补偿,以提高定位结果的精度。
误差补偿可以通过一系列的算法和模型来实现。
(5)结果显示:最后,通过计算机和相应的软件将计算得到的位置坐标以图形化的方式显示出来,同时还可以显示相关的定位信息,如定位精度、速度等。
4.应用领域高精度GPS定位系统广泛应用于航空航天、地理测量、导航、军事等领域。
在航空航天领域,高精度的定位信息对于导航、飞行控制等非常重要;在地理测量领域,可以通过高精度GPS定位系统来进行地图绘制、地形测量等工作;在导航领域,可以为车辆、船舶等提供实时导航服务;在军事领域,可用于导弹制导、坦克定位、军事测绘等。
高精度GPS定位系统设计与研究

高精度GPS定位系统设计与研究摘要:GPS(Global Positioning System)定位技术是一种现代化的全球卫星导航系统,它在交通、军事、地质勘探以及民用领域中有着广泛的应用。
然而,传统的GPS定位系统在精度方面存在一定的限制,因此对于高精度GPS定位系统的设计与研究具有重要意义。
本文通过分析目前广泛应用的高精度GPS定位系统技术,探讨了其原理、构架和关键技术,并对其性能进行了评估和改进。
同时,本文还对未来高精度GPS定位系统的发展趋势进行了展望。
关键词:GPS定位系统、高精度、原理、构架、关键技术、性能评估、发展趋势1. 引言GPS定位系统是一种基于卫星导航的定位技术,通过接收来自卫星的信号来计算接收器的位置。
随着现代科技的不断发展,GPS定位系统的精度也不断提高。
然而,在某些领域,如精密农业、自动驾驶、航空航天等,传统的GPS定位系统精度存在一定的不足。
因此,设计与研究高精度的GPS定位系统成为了现实需求。
2. 高精度GPS定位系统的原理高精度GPS定位系统的原理基本上与传统GPS定位系统相似,但在信号处理、数据融合和算法改进方面进行了优化。
高精度GPS定位系统通过接收来自多颗卫星的信号,并利用测量学方法来计算接收器的位置信息。
具体来说,高精度GPS定位系统通过解算卫星发射信号与接收器接收信号之间的距离差,利用多个卫星的信号进行三角定位,以提高定位的精度。
3. 高精度GPS定位系统的构架高精度GPS定位系统的构架包括接收机、卫星、用户终端和数据处理设备。
接收机负责接收卫星信号,并对信号进行处理和解算。
卫星通过发送信号来提供定位信息。
用户终端接收接收机解算得到的定位信息,并将其用于实际应用。
数据处理设备负责对接收到的卫星信号进行处理和计算,以提高GPS定位的精度。
4. 高精度GPS定位系统的关键技术4.1 多频率信号处理技术传统的GPS定位系统只使用单频GPS信号进行定位。
而高精度GPS定位系统则采用多频GPS信号,通过分析不同频率信号的差异来提高定位的精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高精度车载定位系统目录第1章系统概述 (2)1.1系统建设背景 (2)1.2系统实现目标 (4)第2章高精度车载定位系统解决方案 (5)2.1系统架构 (5)第3章实施本方案需考虑要素 (10)第1章系统概述1.1 系统建设背景随着国家信息化程度的提高及计算机网络和通信技术的飞速发展,电子政务、电子商务、数字城市、数字省区和数字地球的工程化和现实化,需要采集多种实时地理空间数据,因此,中国发展CORS系统的紧迫性和必要性越来越突出。
几年来,国内不同行业已经陆续建立了一些专业性的卫星定位连续运行网络,目前,为满足国民经济建设信息化的需要,一大批城市、省区和行业正在筹划建立类似的连续运行网络系统,一个连续运行参考站网络系统的建设高潮正在到来。
广东省深圳市建立了我国第一个连续运行参考站系统(SZCORS),目前已开始全面的测量应用。
全国部分省、市也已初步建成或正在建立类似的省、市级CORS系统,如:广东省、江苏省、北京、天津、上海、广州、东莞、成都、武汉、昆明、重庆等。
四川地震局建立的CDCORS,已经运行三年多,原本主要目标是用来做监控四川地区地震灾害,但是通过对其潜在功能的挖掘,在GPS大地测量方面开发利用,通过授权拨号登录,对外开放网络使用权,实现用户GPS实时高精度差分定位,取得了一定的收益。
建立CORS的必要性和意义“空间数据基础设施”是信息社会、知识经济时代的必备的基础设施。
城市连续运行参考站系统(CORS)是“空间数据基础设施”最为重要的组成部分,可以获取各类空间的位置、时间信息及其相关的动态变化。
通过建设若干永久性连续运行的GPS基准站,提供国际通用各式的基准站站点坐标和GPS测量数据,以满足各类不同行业用户对精度定位,快速和实时定位、导航的要求,及时地满足城市规划、国土测绘、地籍管理、城乡建设、环境监测、防灾减灾、交通监控,矿山测量等多种现代化信息化管理的社会要求。
建立CORS的必要性和意义主要体现在以下几个方面:1、CORS的建立可以大大提高测绘精度、速度与效率, 降低测绘劳动强度和成本, 省去测量标志保护与修复的费用, 节省各项测绘工程实施过程中约30% 的控制测量费用。
由于城市建设速度加快,对GPS-C、D、E级控制点破坏较大,一般在5-8年需重新布设,至于在路面的图根控制更不用说,一二年就基本没有了,各测绘单位不是花大量的人力重新布设,就是仍以支站方式,这不但保证不了精度,还造成了人力物力财力的大量浪费。
随着CORS基站的建设和连续运行,就形成了一个以永久基站为控制点的网络。
所以,可以利用已建成的CORS系统对外开发使用,收取一定的费用,收费标准可以根据各地的投入和实际情况制定,当然这一点上更多的是社会效益。
2、CORS的建立,可以对工程建设进行实时、有效、长期的变形监测, 对灾害进行快速预报。
CORS项目完成将为城市诸多领域如气象、车船导航定位、物体跟踪、公安消防、测绘、GIS 应用等提供精度达厘米级的动态实时GPS 定位服务, 将极大地加快该城市基础地理信息的建设。
3、CORS将是城市信息化的重要组成部份, 并由此建立起城市空间基础设施的三维、动态、地心坐标参考框架, 从而从实时的空间位置信息面上实现城市真正的数字化。
CORS 建成能使更多的部门和更多的人使用GPS 高精度服务, 它必将在城市经济建设中发挥重要作用。
由此带给城市巨大社会效益和经济效益是不可估量的, 它将为城市进一步提供良好的建设和投资环境。
4、南方CORS发展情况当前国内不同行业建设的CORS系统基本上还是独立运行的,很多单位的数据只在本单位甚至是本部门内共享和利用。
目前国内市场上的CORS建站方案动则百万甚至上千万的资金投入,相对于那些对CORS只停留在小规模的应用的单位而言就显得投入与产出太过于失衡,导致许多行业与单位只能对CORS系统望而怯步。
在当前技术水平和市场可供产品条件下,根据本部门实际情况,从提高投资效益角度出发,选择单基站CORS系统是比较适合一些地级市、县测绘部门的一个优选方案。
区别于测绘部门主导的CORS网,一些特色行业和部门根据实际情况,自建RTK基准站,比如驾校、矿区等。
RTK技术的关键在于使用了GPS的载波相位观测量,并利用了参考站和移动站之间观测误差的空间相关性,通过差分的方式除去移动站观测数据中的大部分误差,从而实现高精度(分米甚至厘米级)的定位。
RTK技术在应用中遇到的最大问题就是参考站校正数据的有效作用距离。
GPS误差的空间相关性随参考站和移动站距离的增加而逐渐失去线性,因此在较长距离下(单频>10km,双频>30km),经过差分处理后的用户数据仍然含有很大的观测误差,从而导致定位精度的降低和无法解算载波相位的整周模糊。
所以,为了保证得到满意的定位精度,传统的单机RTK的作业距离都非常有限。
为了克服传统RTK技术的缺陷,在20世纪90年代中期,人们提出了网络RTK技术。
在网络RTK技术中,线性衰减的单点GPS误差模型被区域型的GPS网络误差模型所取代,即用多个参考站组成的GPS网络来估计一个地区的GPS误差模型,并为网络覆盖地区的用户提供校正数据。
而用户收到的也不是某个实际参考站的观测数据,而是一个虚拟参考站的数据,和距离自己位置较近的某个参考网格的校正数据,因此网络RTK技术又被称为虚拟参考站技术(Virtual Reference基准站连续不间断的观测GPS的卫星信号获取该地区和该时间段的“局域精密星历”及其他改正参数,按照用户要求把静态数据打包存储并把基准站的卫星信息送往服务器上Eagle软件的指定位置。
移动站用户接收定位卫星传来的信号,并解算出地理位置坐标。
移动站用户的数据通讯模块通过局域网从服务器的指定位置获取基准站提供的差分信息后输入用户单元GPS进行差分解算。
移动站用户在野外完成静态测量后,可以从基准站软件下载同步时间的静态数据进行基线联合解算1.2 系统实现目标本系统的实现目标是构建一个高精度车载定位系统,通过借助测绘部门的CORS网络或自建CORS基站、配合高精度车载定位终端和系统平台,实现在预定范围内的高精度定位。
1、停车场应用根据装在汽车上的高精度定位终端以及标定好的停车位位置进行车辆停车入位的判断;2、公交车应用公交行车车道判断;3、港口水务应用;4、矿区车辆应用;5、其他需要进行高精度定位的领域;同时,基于单基站,实现如下范围的定位精度;第2章高精度车载定位系统解决方案2.1 系统架构2.1.1系统架构图图2-1系统结构示意图高精度定位系统(高精度差分定位)由一个或若干个固定的、连续运行的CORS参考站,利用现代计算机、数据通信和互联网(LAN/WAN)技术组成的网络实时精确定位作业车辆并将数据传输到用户终端。
高精度GPS定位系统包含设备端、通讯端、互联网、服务器和监控终端。
·设备端:设备端主要包括GPS终端、GPS基准站和手机终端,其中GPS设备终端主要是管理车辆;GPS基准站是查看卫星状态、存储静态数据、实时向Internet发送差分信息以及监控移动站作业情况;手机终端主要是进行信息采集和人员管理。
·通讯端:通过设备gsm/cdma模块使用移动运营商的移动通信网络向外发送数据,已内置设备无需购买。
·互联网:移动网络数据通过无线接入点进入互联网传递到服务器。
·服务器:包括防火墙、网关、交换机,使用固定IP和端口接受数据。
·监控端;通过连接互联网的pc端从服务器上获取数据。
2.1.2设计原则高精度差分定位系统需要精密的设计思想。
因为在特殊场合的复杂环境下,系统能达到最佳的稳定性和精确度,rtk技术能使系统大量运用于动态高精度定位领域。
1.经济性高精度差分定位系统作为一个强大的综合系统,由各种不同软硬件系统和各种不同的应用功能模块组成。
因此,整个系统除了具有完善的软件体系结构和标准的内部模块接口,还需要满足各种数据应用服务的灵活配置,提供不同类型信息查询、数据分析功能,并可以通过工作门户视图和权限管理设定不同角色视图,不仅可以给不同角色提供不同信息,也可以灵活方便的进行信息安全控制。
降低系统成本,为企业持续发展提供效益最大化。
2.可靠性高精度GPS定位系统应采用高可用性结构、容错结构或其他可靠性技术。
系统主要设备(如服务器等)必需具备冗余备份、容灾防御、按需切换功能。
支持对系统自身故障的管理能力,具有自我诊断和故障定位等功能。
以及,数据采集机应该具有可靠的重传机制,防止由于系统当机影响数据的及时更新。
另外,高精度GPS定位系统需要支持各项系统运行安全性指标,包括系统信息安全性,用户信息安全性和系统软件安全性等。
3.快速反应在停车场应用中,必须能够实现快速的定位,并上传至平台。
平台将信息下发至用户手机实现支付等功能。
在港口应用中,遇到问题时,系统能帮助调度员在最快时间内通知各相应岗位,避免使码头运输工作被迫停止和堆积堵塞等事故,造成港口的严重损失。
2.1.3系统硬件(一)高精度车载定位终端1、接线型优势:外接天线,信号稳定,适合于需要精准定位又可以接线的场合;2、OBD型优势:免接线,容易安装。
但是定位精度相对于接线型有所降低。
(二)GPS基准站2.1.4系统软件(一)系统结构组成(二)服务器部署根据系统设计原则规定,高精度GPS定位系统平台采用多层架构体系,实现界面表现与业务逻辑分离,采集系统独立的构件方式,通过数据服务总线连接所有的应用服务程序,并提供安全可靠的数据传输通道,保障实施数据的上送显示。
系统软件架构分为数据获取层、数据服务层和呈现平台层三层架构,并结合不同使用人员的需求,灵活进行功能和权限的定制管理。
数据获取层为系统接口平台:主要功能是负责和需要接入的系统连接,根据相关系统接口模型,实现和相应系统的交互,系统可支持文本文件、数据库中间表、Socket、ASCII、CORBXML等多种接口模式。
实用标准文档数据服务层为系统数据平台:主要功能是提供对系统数据进行处理、存储和应用等的服务,实现数据格式的合理性和规范性,减少数据在系统引用过程中的差错率,提高数据的共享和交互能力。
同时,在数据存储的过程中还可以增加时间周期维度、地理位置维度等信息,形成多维数据模型的数据仓库。
第3章实施本方案需考虑要素一、如果借助于测绘部门的CORS网,必须向当地主管部门申请,审批后方可入网接入(部分地区要求申请单位需有测绘资质),以福建为例,申请流程为:二、如果考虑自建RTK或单CORS基站,需整体考虑覆盖范围、站点选址、发射功率、系统成本等各要素;三、相对于普通定位终端,高精度定位终端在成本上会有整机,对天线的要求也更高;四、为获得好的定位效果,使用场景需信号较好。