最新精选初中数学中考考试题库

合集下载

中考数学题库(含答案和解析)

中考数学题库(含答案和解析)

中考数学题库(含答案和解析)一、选择题(本题共有10小题.每题3分.共30分)1.(3分)﹣2的绝对值等于()A.2 B.﹣2 C.D.±22.(3分)计算2a﹣a.正确的结果是()A.﹣2a3B.1 C.2 D.a3.(3分)要使分式有意义.x的取值范围满足()A.x=0 B.x≠0 C.x>0 D.x<0 4.(3分)数据5.7.8.8.9的众数是()A.5 B.7 C.8 D.9、5.(3分)如图.在Rt△ABC中.∠ACB=90°.AB=10.CD是AB边上的中线.则CD的长是()A.20 B.10 C.5 D.6.(3分)如图是七年级(1)班参加课外兴趣小组人数的扇形统计图.则表示唱歌兴趣小组人数的扇形的圆心角度数是()A.36°B.72°C.108°D.180°7.(3分)下列四个水平放置的几何体中.三视图如图所示的是()A.B.C.D.8.(3分)△ABC中的三条中位线围成的三角形周长是15cm.则△ABC的周长为()A.60cm B.45cm C.30cm D.cm 9.(3分)如图.△ABC是⊙O的内接三角形.AC是⊙O的直径.∠C =50°.∠ABC的平分线BD交⊙O于点D.则∠BAD的度数是()A.45°B.85°C.90°D.95°10.(3分)如图.已知点A(4.0).O为坐标原点.P是线段OA上任意一点(不含端点O.A).过P、O两点的二次函数y1和过P、A 两点的二次函数y2的图象开口均向下.它们的顶点分别为B、C.射线OB与AC相交于点D.当OD=AD=3时.这两个二次函数的最大值之和等于()A.B.C.3 D.4二、填空题(本题共有6小题.每题4分.共24分)11.(4分)当x=1时.代数式x+2的值是.12.(4分)因式分解:x2﹣36=.13.(4分)甲、乙两名射击运动员在一次训练中.每人各打10发子弹.根据命中环数求得方差分别是=0.6.=0.8.则运动员的成绩比较稳定.14.(4分)如图.在△ABC中.D、E分别是AB、AC上的点.点F在BC的延长线上.DE∥BC.∠A=46°.∠1=52°.则∠2=度.15.(4分)一次函数y=kx+b(k.b为常数.且k≠0)的图象如图所示.根据图象信息可求得关于x的方程kx+b=0的解为.16.(4分)如图.将正△ABC分割成m个边长为1的小正三角形和一个黑色菱形.这个黑色菱形可分割成n个边长为1的小三角形.若=.则△ABC的边长是.三、解答题(本题共有8小题.共66分)17.(6分)计算:+(﹣2)2+tan45°.18.(6分)解方程组.19.(6分)如图.已知反比例函数y=(k≠0)的图象经过点(﹣2.8).(1)求这个反比例函数的解析式;(2)若(2.y1).(4.y2)是这个反比例函数图象上的两个点.请比较y1、y2的大小.并说明理由.20.(8分)已知:如图.在▱ABCD中.点F在AB的延长线上.且BF =AB.连接FD.交BC于点E.(1)说明△DCE≌△FBE的理由;(2)若EC=3.求AD的长.21.(8分)某市开展了“雷锋精神你我传承.关爱老人从我做起”的主题活动.随机调查了本市部分老人与子女同住情况.根据收集到的数据.绘制成如下统计图表(不完整)老人与子女同住情况百分比统计表老人与子女同住情况同住不同住(子女在本市)不同住(子女在市外)其他A50%B5%根据统计图表中的信息.解答下列问题:(1)求本次调查的老人的总数及a、b的值;(2)将条形统计图补充完整;(画在答卷相对应的图上)(3)若该市共有老人约15万人.请估计该市与子女“同住”的老人总数.22.(10分)已知.如图.在梯形ABCD中.AD∥BC.DA=DC.以点D 为圆心.DA长为半径的⊙D与AB相切于A.与BC交于点F.过点D 作DE⊥BC.垂足为E.(1)求证:四边形ABED为矩形;(2)若AB=4.=.求CF的长.23.(10分)为进一步建设秀美、宜居的生态环境.某村欲购买甲、乙、丙三种树美化村庄.已知甲、乙丙三种树的价格之比为2:2:3.甲种树每棵200元.现计划用210000元资金.购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍.恰好用完计划资金.求这三种树各能购买多少棵?(3)若又增加了10120元的购树款.在购买总棵树不变的前提下.求丙种树最多可以购买多少棵?24.(12分)如图1.已知菱形ABCD的边长为2.点A在x轴负半轴上.点B在坐标原点.点D的坐标为(﹣.3).抛物线y=ax2+b (a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2).过点B作BE⊥CD于点E.交抛物线于点F.连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<)①是否存在这样的t.使△ADF与△DEF相似?若存在.求出t的值;若不存在.请说明理由;②连接FC.以点F为旋转中心.将△FEC按顺时针方向旋转180°.得△FE′C′.当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时.求t的取值范围.(写出答案即可)参考答案与试题解析一、选择题(本题共有10小题.每题3分.共30分)1.【分析】根据绝对值的性质.当a是正有理数时.a的绝对值是它本身a;即可解答.【解答】解:根据绝对值的性质.|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质.①当a是正有理数时.a的绝对值是它本身a;②当a是负有理数时.a的绝对值是它的相反数﹣a;③当a是零时.a的绝对值是零.2.【分析】根据合并同类项的法则:把同类项的系数相加.所得结果作为系数.字母和字母的指数不变.进行运算即可.【解答】解:2a﹣a=a.故选:D.【点评】此题考查了同类项的合并.属于基础题.关键是掌握合并同类项的法则.3.【分析】根据分母不等于0.列式即可得解.【解答】解:根据题意得.x≠0.故选:B.【点评】本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.【分析】根据众数是一组数据中出现次数最多的数据解答即可.【解答】解:数据5、7、8、8、9中8出现了2次.且次数最多. 所以众数是8.故选:C.【点评】本题考查了众数的定义.熟记定义是解题的关键.需要注意.众数有时候可以不止一个.5.【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半.即可求出CD的长.【解答】解:∵在Rt△ABC中.∠ACB=90°.AB=10.CD是AB边上的中线.∴CD=AB=5.故选:C.【点评】本题考查了直角三角形斜边上的中线的性质.在直角三角形中.斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点).6.【分析】根据扇形统计图整个圆的面积表示总数(单位1).然后结合图形即可得出唱歌兴趣小组人数所占的百分比.也可求出圆心角的度数.【解答】解:唱歌所占百分数为:1﹣50%﹣30%=20%.唱歌兴趣小组人数的扇形的圆心角度数为:360°×20%=72°.故选:B.【点评】此题考查了扇形统计图.解答本题的关键是熟练扇形统计图的特点.用整个圆的面积表示总数(单位1).用圆的扇形面积表示各部分占总数的百分数.7.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看.所得到的图形.即可得出答案.【解答】解:从主视图、左视图、俯视图可以看出这个几何体的正面、左面、底面是长方形.所以这个几何体是长方体;故选:D.【点评】本题考查了由三视图判断几何体.关键是根据三视图和空间想象得出从物体正面、左面和上面看.所得到的图形.8.【分析】根据三角形的中位线平行且等于底边的一半.又相似三角形的周长的比等于相似比.问题可求.【解答】解:∵△ABC三条中位线围成的三角形与△ABC相似. ∴相似比是.∵△ABC中的三条中位线围成的三角形周长是15cm.∴△ABC的周长为30cm.故选:C.【点评】本题主要考查三角形的中位线定理.要熟记相似三角形的周长比、高、中线的比等于相似比.面积比等于相似比的平方.9.【分析】根据圆周角定理以及推论和角平分线的定义可分别求出∠BAC和∠CAD的度数.进而求出∠BAD的度数.【解答】解:∵AC是⊙O的直径.∴∠ABC=90°.∵∠C=50°.∴∠BAC=40°.∵∠ABC的平分线BD交⊙O于点D.∴∠ABD=∠DBC=45°.∴∠CAD=∠DBC=45°.∴∠BAD=∠BAC+∠CAD=40°+45°=85°.故选:B.【点评】本题考查的是圆周角定理.即在同圆或等圆中.同弧或等弧所对的圆周角相等.直径所对的圆周角是直角.10.【分析】过B作BF⊥OA于F.过D作DE⊥OA于E.过C作CM⊥OA于M.则BF+CM是这两个二次函数的最大值之和.BF∥DE∥CM.求出AE=OE=2.DE=.设P(2x.0).根据二次函数的对称性得出OF=PF=x.推出△OBF∽△ODE.△ACM∽△ADE.得出=.=.代入求出BF和CM.相加即可求出答案.【解答】解:过B作BF⊥OA于F.过D作DE⊥OA于E.过C作CM⊥OA于M. ∵BF⊥OA.DE⊥OA.CM⊥OA.∴BF∥DE∥CM.∵OD=AD=3.DE⊥OA.∴OE=EA=OA=2.由勾股定理得:DE=.设P(2x.0).根据二次函数的对称性得出OF=PF=x.∵BF∥DE∥CM.∴△OBF∽△ODE.△ACM∽△ADE.∴=.=.∵AM=PM=(OA﹣OP)=(4﹣2x)=2﹣x.即=.=.解得:BF=x.CM=﹣x.∴BF+CM=.故选:A.【点评】本题考查了二次函数的最值.勾股定理.等腰三角形性质.相似三角形的性质和判定的应用.主要考查学生运用性质和定理进行推理和计算的能力.题目比较好.但是有一定的难度.二、填空题(本题共有6小题.每题4分.共24分)11.【分析】把x=1直接代入代数式x+2中求值即可.【解答】解:当x=1时.x+2=1+2=3.故答案为:3.【点评】本题考查了代数式求值.明确运算顺序是关键.12.【分析】直接用平方差公式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣36=(x+6)(x﹣6).【点评】本题主要考查利用平方差公式分解因式.熟记公式结构是解题的关键.13.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量.方差越小.表明这组数据分布比较集中.各数据偏离平均数越小.即波动越小.数据越稳定.即可求出答案.【解答】解:∵=0.6.=0.8.∴<.甲的方差小于乙的方差.∴甲的成绩比较稳定.故答案为:甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量.方差越大.表明这组数据偏离平均数越大.即波动越大.数据越不稳定;反之.方差越小.表明这组数据分布比较集中.各数据偏离平均数越小.即波动越小.数据越稳定.14.【分析】先根据三角形的外角性质求出∠DEC的度数.再根据平行线的性质得出结论即可.【解答】解:∵∠DEC是△ADE的外角.∠A=46°.∠1=52°.∴∠DEC=∠A+∠1=46°+52°=98°.∵DE∥BC.∴∠2=∠DEC=98°.故答案为:98.【点评】本题考查的是平行线的性质及三角形的外角性质.用到的知识点为:两直线平行.内错角相等.15.【分析】先根据一次函数y=kx+b过(2.3).(0.1)点.求出一次函数的解析式.再求出一次函数y=x+1的图象与x轴的交点坐标.即可求出答案.【解答】解∵一次函数y=kx+b过(2.3).(0.1)点.∴.解得:.一次函数的解析式为:y=x+1.∵一次函数y=x+1的图象与x轴交于(﹣1.0)点.∴关于x的方程kx+b=0的解为x=﹣1.故答案为:x=﹣1.【点评】本题考查了一次函数与一元一次方程.关键是根据函数的图象求出一次函数的图象与x轴的交点坐标.再利用交点坐标与方程的关系求方程的解.16.【分析】设正△ABC的边长为x.根据等边三角形的高为边长的倍.求出正△ABC的面积.再根据菱形的性质结合图形表示出菱形的两对角线.然后根据菱形的面积等于两对角线乘积的一半表示出菱形的面积.然后根据所分成的小正三角形的个数的比等于面积的比列式计算即可得解.【解答】解:设正△ABC的边长为x.则高为x.S△ABC=x•x=x2.∵所分成的都是正三角形.∴结合图形可得黑色菱形的较长的对角线为x﹣.较短的对角线为(x﹣)=x﹣1.∴黑色菱形的面积=(x﹣)(x﹣1)=(x﹣2)2.∴==.整理得.11x2﹣144x+144=0.解得x1=(不符合题意.舍去).x2=12.所以.△ABC的边长是12.故答案为:12.【点评】本题考查了菱形的性质.等边三角形的性质.熟练掌握有一个角等于60°的菱形的两条对角线的关系是解题的关键.本题难点在于根据三角形的面积与菱形的面积列出方程.三、解答题(本题共有8小题.共66分)17.【分析】分别进行二次根式的化简、零指数幂.然后代入tan45°=1.进行运算即可.【解答】解:原式=4﹣1+4+1=8.【点评】此题考查了实数的运算.解答本题关键是掌握零指数幂的运算.二次根式的化简.属于基础题.18.【分析】①+②消去未知数y求x的值.再把x=3代入②.求未知数y的值.【解答】解:①+②得3x=9.解得x=3.把x=3代入②.得3﹣y=1.解得y=2.∴原方程组的解是.【点评】本题考查了解二元一次方程组.熟练掌握加减消元法的解题步骤是关键.19.【分析】(1)把经过的点的坐标代入解析式进行计算即可得解;(2)根据反比例函数图象的性质.在每一个象限内.函数值y随x的增大而增大解答.【解答】解:(1)把(﹣2.8)代入y=.得8=.解得:k=﹣16.所以y=﹣;(2)y1<y2.理由:∵k=﹣16<0.∴在每一个象限内.函数值y随x的增大而增大.∵点(2.y1).(4.y2)都在第四象限.且2<4.【点评】本题考查了待定系数法求反比例函数解析式.反比例函数图象的增减性.是中学阶段的重点.需熟练掌握.20.【分析】(1)由四边形ABCD是平行四边形.根据平行四边形的对边平行且相等.即可得AB=DC.AB∥DC.继而可求得∠CDE=∠F.又由BF=AB.即可利用AAS.判定△DCE≌△FBE;(2)由(1).可得BE=EC.即可求得BC的长.又由平行四边形的对边相等.即可求得AD的长.【解答】(1)证明:∵四边形ABCD是平行四边形.∴AB=DC.AB∥DC.∴∠CDE=∠F.又∵BF=AB.∴DC=FB.在△DCE和△FBE中.∵∴△DCE≌△FBE(AAS)(2)解:∵△DCE≌△FBE.∴EB=EC.∵EC=3.∴BC=2EB=6.∵四边形ABCD是平行四边形.∴AD=BC.【点评】此题考查了平行四边形的性质与全等三角形的判定与性质.此题难度适中.注意数形结合思想的应用.21.【分析】(1)有统计图表中的信息可知:其他所占的比例为5%.又人数为25人.所以可以求出总人数.进而求出a和b的值;(2)有(1)的数据可将条形统计图补充完整;(3)用该老人的总数15万人乘以与子女“同住”所占的比例30%即为估计值.【解答】解:(1)老人总数为250÷50%=500(人).b=%=15%.a=1﹣50%﹣15%﹣5%=30%.(2)如图:(3)该市与子女“同住”的老人的总数约为15×30%=4.5(万人).【点评】本题考查了条形统计图、用样本估计总数的知识.解题的关键是从统计图中整理出进一步解题的信息.22.【分析】(1)根据AD∥BC和AB切圆D于A.求出DAB=∠ADE =∠DEB=90°.即可推出结论;(2)根据矩形的性质求出AB=DE=4.根据垂径定理求出CF=2CE.设AD=3k.则BC=4k.BE=3k.EC=k.DC=AD=3k.在△DEC中由勾股定理得出一个关于k的方程.求出k的值.即可求出答案.【解答】(1)证明:∵⊙D与AB相切于点A.∴AB⊥AD.∵AD∥BC.DE⊥BC.∴DE⊥AD.∴∠DAB=∠ADE=∠DEB=90°.∴四边形ABED为矩形.(2)解:∵四边形ABED为矩形.∴DE=AB=4.∵DC=DA.∴点C在⊙D上.∵D为圆心.DE⊥BC.∴CF=2EC.∵.设AD=3k(k>0)则BC=4k.∴BE=3k.EC=BC﹣BE=4k﹣3k=k.DC=AD=3k.由勾股定理得DE2+EC2=DC2.即42+k2=(3k)2.∴k2=2.∵k>0.∴k=.∴CF=2EC=2.【点评】本题考查了勾股定理.切线的判定和性质.矩形的判定.垂径定理等知识点的应用.通过做此题培养了学生的推理能力和计算能力.用的数学思想是方程思想.题目具有一定的代表性.是一道比较好的题目.23.【分析】(1)利用已知甲、乙丙三种树的价格之比为2:2:3.甲种树每棵200元.即可求出乙、丙两种树每棵钱数;(2)假设购买乙种树x棵.则购买甲种树2x棵.丙种树(1000﹣3x)棵.利用(1)中所求树木价格以及现计划用210000元资金购买这三种树共1000棵.得出等式方程.求出即可;(3)假设购买丙种树y棵.则甲、乙两种树共(1000﹣y)棵.根据题意得:200(1000﹣y)+300y≤210000+10120.求出即可.【解答】解:(1)已知甲、乙丙三种树的价格之比为2:2:3.甲种树每棵200元.则乙种树每棵200元.丙种树每棵×200=300(元);(2)设购买乙种树x棵.则购买甲种树2x棵.丙种树(1000﹣3x)棵.根据题意:200×2x+200x+300(1000﹣3x)=210000.解得x=300∴2x=600.1000﹣3x=100.答:能购买甲种树600棵.乙种树300棵.丙种树100棵;(3)设购买丙种树y棵.则甲、乙两种树共(1000﹣y)棵.根据题意得:200(1000﹣y)+300y≤210000+10120.解得:y≤201.2.∵y为正整数.∴y最大取201.答:丙种树最多可以购买201棵.【点评】本题考查一元一次不等式组的应用.将现实生活中的事件与数学思想联系起来.读懂题列出不等式关系式即可求解.本题难点是(3)中总钱数变化.购买总棵树不变的情况下得出不等式方程.24.【分析】(1)根据已知条件求出AB和CD的中点坐标.然后利用待定系数法求该二次函数的解析式;(2)本问是难点所在.需要认真全面地分析解答:①如图2所示.△ADF与△DEF相似.包括三种情况.需要分类讨论:(I)若∠ADF=90°时.△ADF∽△DEF.求此时t的值;(II)若∠DF A=90°时.△DEF∽△FBA.利用相似三角形的对应边成比例可以求得相应的t的值;(III)∠DAF≠90°.此时t不存在;②如图3所示.画出旋转后的图形.认真分析满足题意要求时.需要具备什么样的限制条件.然后根据限制条件列出不等式.求出t的取值范围.确定限制条件是解题的关键.【解答】解:(1)由题意得AB的中点坐标为(﹣.0).CD的中点坐标为(0.3).分别代入y=ax2+b得.解得..∴y=﹣x2+3.(2)①如图2所示.在Rt△BCE中.∠BEC=90°.BE=3.BC=2∴sin C===.∴∠C=60°.∠CBE=30°∴EC=BC=.DE=又∵AD∥BC.∴∠ADC+∠C=180°∴∠ADC=180°﹣60°=120°要使△ADF与△DEF相似.则△ADF中必有一个角为直角.(I)若∠ADF=90°∠EDF=120°﹣90°=30°在Rt△DEF中.DE=.求得EF=1.DF=2.又∵E(t.3).F(t.﹣t2+3).∴EF=3﹣(﹣t2+3)=t2∴t2=1.∵t>0.∴t=1此时=2..∴.又∵∠ADF=∠DEF∴△ADF∽△DEF(II)若∠DF A=90°.可证得△DEF∽△FBA.则设EF=m.则FB=3﹣m∴.即m2﹣3m+6=0.此方程无实数根.∴此时t不存在;(III)由题意得.∠DAF<∠DAB=60°∴∠DAF≠90°.此时t不存在.综上所述.存在t=1.使△ADF与△DEF相似;②如图3所示.依题意作出旋转后的三角形△FE′C′.过C′作MN⊥x轴.分别交抛物线、x轴于点M、点N.观察图形可知.欲使△FE′C′落在指定区域内.必须满足:EE′≤BE且MN≥C′N.∵F(t.3﹣t2).∴EF=3﹣(3﹣t2)=t2.∴EE′=2EF=2t2.由EE′≤BE.得2t2≤3.解得t≤.∵C′E′=CE=.∴C′点的横坐标为t﹣.∴MN=3﹣(t﹣)2.又C′N=BE′=BE﹣EE′=3﹣2t2.由MN≥C′N.得3﹣(t﹣)2≥3﹣2t2.解得t≥或t≤﹣﹣3(舍).∴t的取值范围为:.【点评】本题是动线型中考压轴题.综合考查了二次函数的图象与性质、待定系数法、几何变换(平移与旋转)、菱形的性质、相似三角形的判定与性质等重要知识点.难度较大.对考生能力要求很高.本题难点在于第(2)问.(2)①中.需要结合△ADF与△DEF 相似的三种情况.分别进行讨论.避免漏解;(2)②中.确定“限制条件”是解题关键.。

初中数学中招试题及答案

初中数学中招试题及答案

初中数学中招试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.1010010001…(每两个1之间0的个数依次增加)B. 2.5C. πD. √42. 一个正数的平方根是2,那么这个正数是:A. 4B. -4C. 2D. -23. 一个三角形的三个内角之和是:A. 90°B. 180°C. 360°D. 720°4. 一个数的绝对值是其本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或零D. 可以是负数或零5. 以下哪个是二次方程?A. x + 5 = 0B. x^2 + 5x + 6 = 0C. x^3 - 2x^2 + 3x - 4 = 0D. 2x - 3 = 06. 一个数乘以分数的意义是:A. 求这个数的几倍B. 求这个数的几分之几C. 求这个数的相反数D. 求这个数的倒数7. 一个数的倒数是1/2,那么这个数是:A. 2B. 1/2C. 1D. 08. 一个数的立方根是3,那么这个数是:A. 27B. 9C. 3D. 19. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1010. 以下哪个选项是不等式?A. 3x + 5 = 8B. 2x - 4 > 6C. 7x = 35D. 5x - 3答案:1. C2. A3. B4. C5. B6. B7. A8. A9. A10. B二、填空题(每题3分,共30分)11. 一个数的相反数是-7,那么这个数是______。

12. 一个数的绝对值是5,那么这个数可以是______。

13. 一个三角形的两个内角分别是30°和60°,那么第三个内角是______。

14. 如果一个数的平方是25,那么这个数可以是______。

15. 一个数的立方是-8,那么这个数是______。

16. 一个数的1/3是4,那么这个数是______。

初中数学(初升高)中考全国真题题库3(含解析)

初中数学(初升高)中考全国真题题库3(含解析)

初中数学初升高(中考)全国真题题库3(含解析)一、选择题1.(2023·大庆)端午节是我国传统节日,端午节前夕,某商家出售粽子的标价比成本高25%,当粽子降价出售时,为了不亏本,降价幅度最多为( )A.20%B.25%C.75%D.80% 2.(2023·大庆)下列说法正确的是( )A.一个函数是一次函数就一定是正比例函数B.有一组对角相等的四边形一定是平行四边形C.两条直角边对应相等的两个直角三角形一定全等D.一组数据的方差一定大于标准差3.(2023·大庆)一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是( )A.B.C.D.4.(2021·河池)如图是由几个小正方体组成的几何体,它的左视图是( )A.B.C.D.5.(2021·河池)下列各式中,与 2a2b 为同类项的是( )A.−2a2b B.−2ab C.2a b2D.2a2 6.(2021·河池)二次函数 y=a x2+bx+c(a≠0) 的图象如图所示,下列说法中,错误的是( )A.对称轴是直线 x=12B.当−1<x<2 时, y<0C.a+c=b D.a+b>−c7.(2021·河池)下列图形中,既是轴对称图形又是中心对称图形的是( ) A.B.C.D.8.(2020·攀枝花)下列式子中正确的是( ).A.a2−a3=a5B.(−a)−1=a C.(−3a)2=3a2D.a3+2a3=3a3 9.(2020·攀枝花)中国抗疫取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要借鉴和支持,让中国人民倍感自豪.2020年1月12日,世界卫生组织正式将2019新型冠状病毒名为2019−nCoV .该病毒的直径在0.00000008米-0.000000012米,将0.000000012用科学记数法表示为 a×10n 的形式,则 n 为( ).A.-8B.-7C.7D.8 10.(2020·徐州)3的相反数是( ).A.-3B.3C.−13D.1311.(2020·攀枝花)若关于 x 的方程 x2−x−m=0 没有实数根,则m的值可以为( ).A.-1B.−14C.0D.112.(2020·攀枝花)下列说法中正确的是( ).A.0.09的平方根是0.3B.√16=±4C.0的立方根是0D.1的立方根是 ±1 13.(2020·攀枝花)实数a、b在数轴上的位置如图所示,化简 √(a+1)2+√(b−1)2−√(a−b)2 的结果是( ).A.-2B.0C.-2a D.2b 14.(2020·攀枝花)如图,直径 AB=6 的半圆,绕B点顺时针旋转 30° ,此时点A到了点 A′ ,则图中阴影部分的面积是( ).A.π2B.3π4C.πD.3π二、填空题15.(2023·大庆)1261年,我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表,人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图,根据图中各式的规律,¿展开的多项式中各项系数之和为 .16.(2023·大庆)一个圆锥的底面半径为5,高为12,则它的体积为 .17.(2023·大庆)若关于x的不等式组{3(x−1)>x−68−2x+2a≥0有三个整数解,则实数a的取值范围为 .18.(2023·大庆)在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.有一张矩形纸片ABCD如图所示,点N在边AD上,现将矩形折叠,折痕为BN,点A对应的点记为点M,若点M恰好落在边DC上,则图中与△NDM一定相似的三角形是 .19.(2023·大庆)已知(x−2)x+1=1,则x的值为 .20.(2021·河池)分式方程3x−2=1 的解是 x=¿ .21.(2021·河池)在平面直角坐标系中,一次函数 y=2x 与反比例函数 y=kx(k≠0) 的图象交于A(x1,y1) , B(x2,y2) 两点,则 y1+y2 的值是 .22.(2020·攀枝花)因式分解:a-ab2= .23.(2020·攀枝花)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有 人进公园,买40张门反而合算.三、计算题24.(2021·河池)先化简,再求值:(x+1)2−x(x+1) ,其中 x=2021.四、解答题25.(2023·大庆)为营造良好体育运动氛围,某学校用800元购买了一批足球,又用1560元加购了第二批足球,且所购数量是第一批购买数量的2倍,但单价降了2元,请问该学校两批共购买了多少个足球五、综合题26.(2023·大庆)如图,二次函数y=a x2+bx+c的图象与x轴交于A,B两点,且自变量x的部分取值与对应函数值y如下表:x⋯−101234⋯y⋯0−3−4−305⋯(1)求二次函数y=a x2+bx+c的表达式;(2)若将线段AB向下平移,得到的线段与二次函数y=a x2+bx+c的图象交于P,Q两点(P在Q 左边),R为二次函数y=a x2+bx+c的图象上的一点,当点Q的横坐标为m,点R的横坐标为m+√2时,求tan∠RPQ的值;(3)若将线段AB先向上平移3个单位长度,再向右平移1个单位长度,得到的线段与二次函数y=1t(a x2+bx+c)的图象只有一个交点,其中t为常数,请直接写出t的取值范围.27.(2021·河池)如图,在 Rt△ABC 中, ∠A=90° , AB=4 , AC=3 ,D,E分别是AB,BC边上的动点,以BD为直径的 ⊙O交BC于点F.(1)当 AD=DF 时,求证:△CAD≅△CFD;(2)当 △CED 是等腰三角形且△DEB 是直角三角形时,求AD的长.28.(2021·河池)为了解本校九年级学生的体质健康情况,李老师随机抽取35名学生进行了一次体质健康测试,根据测试成绩制成统计图表.组别分数段人数A x<602B60≤x<755C75≤x<90aD x≥9012请根据上述信息解答下列问题:(1)本次调查属于 调查,样本容量是 ;(2)表中的 a=¿ ,样本数据的中位数位于 组;(3)补全条形统计图;(4)该校九年级学生有980人,估计该校九年级学生体质健康测试成绩在D组的有多少人?29.(2021·河池)如图, ∠CAD 是 △ABC 的外角.(1)尺规作图:作 ∠CAD 的平分线AE(不写作法,保留作图痕迹,用黑色墨水笔将痕迹加黑);(2)若 AE/¿BC ,求证:AB=AC.30.(2020·攀枝花)实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线 MN 的距离皆为 100cm .王诗嬑观测到高度 90cm矮圆柱的影子落在地面上,其长为 72cm;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线 MN互相垂直,并视太阳光为平行光,测得斜坡坡度 i=1:0.75 ,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为 150cm ,且此刻她的影子完全落在地面上,则影子长为多少cm?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否符合题意?(3)若同一时间量得高圆柱落在坡面上的影子长为 100cm ,则高圆柱的高度为多少cm?答案解析部分1.【答案】A【解析】【解答】解:设粽子的降价幅度为x,成本价为a元,则标价为(1+25%)m元,根据题意得(1+25%)m(1-x)≥m,解之:x≥20%,∴当粽子降价出售时,为了不亏本,降价幅度最多为20%.故答案为:A.【分析】设粽子的降价幅度为x,成本价为a元,根据当粽子降价出售时,为了不亏本,可得到关于x的不等式,然后求出不等式的最小值即可.2.【答案】C【解析】【解答】解:A、一个函数是正比例函数就一定是一次函数,故A不符合题意;B、有一组对角相等的四边形不是平行四边形,故B不符合题意;C、两条直角边对应相等的两个直角三角形一定全等,故C符合题意;D、一组数据的方差不一定大于标准差,故D不符合题意;故答案为:C.【分析】利用一次函数不一定是正比例函数,可对A作出判断;利用平行四边形的判定定理可对B 作出判断;利用SAS可对C作出判断;利用一组数据的方差不一定大于标准差,可对D作出判断. 3.【答案】A【解析】【解答】解:从上往下看是一个矩形.故答案为:A.【分析】俯视图就是从几何体的上面往下看,所看到的平面图形,根据几何体可得到是俯视图的选项.4.【答案】A【解析】【解答】解:主视图是由前向后看得到的物体的视图,由前向后看共3列,中间一列有3个小正方形,左右两列各一个小正方形.故从坐左边看只有1列,三行,每一行都只有一个小正方形,故答案为:A.【分析】左视图是由视线从左向右看在侧面所得的视图,从左边看只有1列,三行,每一行都只有一个小正方形,则可解答.5.【答案】A【解析】【解答】与 2a2b 是同类项的特点为含有字母a,b ,且对应 a 的指数为2, b 的指数为1,只有A选项符合;故答案为:A.【分析】字母相同,并且相同字母的指数也相同的两个式子叫同类项. 同类项的条件有两个:1、所含的字母相同;2、相同字母的指数也分别相同. 根据条件分别判断即可.6.【答案】D【解析】【解答】解:A、对称轴为:直线 x=−1+22=12 ,故答案为:A正确,不符合题意;B、由函数图象知,当-1<x<2时,函数图象在x轴的下方,∴当-1<x<2时,y<0,故答案为:B正确,不符合题意;C、由图可知:当x=-1时,y=a-b+c=0,∴a +c=b,故答案为:C正确,不符合题意;D、由图可知:当x=1时,y=a+b+c<0∴a+b<-c,故答案为:D错误,不符合题意;故答案为:D.【分析】根据抛物线与x轴的交点坐标求对称轴方程判断A;在图象中找出x下方部分x的范围判断B;根据x=-1时,y=a-b+c=0,变形可判断C;根据当x=1时,y=a+b+c<0,变形可判断D.7.【答案】B【解析】【解答】解:A、是轴对称图形,不是中心对称图形,故A不符合题意;B、既是轴对称图形,又是中心对称图形,故B符合题意;C、是中心对称图形,不是轴对称图形,故C不符合题意;D、是轴对称图形,不是中心对称图形,故A不符合题意;故答案为:B.【分析】根据轴对称和中心对称图形特点分别分析判断,轴对称图形沿一条轴折叠180°,被折叠两部分能完全重合,中心对称图形绕其中心点旋转180°后图形仍和原来图形重合。

数学2023中考试卷

数学2023中考试卷

数学2023中考试卷一、选择题(每题3分,共30分)1. 下列实数中,是无理数的是()A. 3.14B. (1)/(3)C. √(4)D. √(5)2. 如图,直线a∥ b,∠ 1 = 50^∘,则∠ 2的度数为()A. 50^∘B. 130^∘C. 40^∘D. 60^∘3. 计算( - 2x^2)^3的结果是()A. -6x^6B. 8x^6C. -8x^6D. -6x^54. 若关于x的一元二次方程x^2-2x + k = 0有两个相等的实数根,则k的值为()B. -1C. 2D. -25. 一组数据2,4,3,x,4的平均数是3,则x的值为()A. 2B. 3C. 1D. 46. 在平面直角坐标系中,点P(-3,4)关于y轴对称的点的坐标是()A. (3,4)B. ( - 3,-4)C. (3,-4)D. (4,-3)7. 已知函数y=(k)/(x)(k≠0)的图象经过点(2, - 3),则k的值为()A. -6B. 6C. (2)/(3)D. -(2)/(3)8. 一个圆锥的底面半径为3,母线长为5,则这个圆锥的侧面积为()B. 30πC. 24πD. 9π9. 若二次函数y = ax^2+bx + c(a≠0)的图象开口向下,对称轴为直线x = 1,且图象经过点(3, - 2),则a + b + c的值()A. 大于-2B. 等于-2C. 小于-2D. 无法确定。

10. 如图,在ABC中,∠ ACB = 90^∘,AC = BC = 4,将ABC绕点A顺时针旋转60^∘得到ADE,连接BE,则BE的长为()A. 2√(3)-2B. 4C. 3√(3)D. 2√(2)二、填空题(每题3分,共18分)11. 分解因式:x^2-9=_(x + 3)(x - 3)。

12. 不等式3x - 2>4的解集是_x>2。

13. 若正多边形的一个外角是45^∘,则这个正多边形的边数是_8。

数学中考试题(含答案)(精品)

数学中考试题(含答案)(精品)

数学中考试题(含答案)(精品)一、选择题(每题4分,共40分)1. 已知函数f(x) = 2x + 1,那么f(f(x)) =____.A. 2x + 3B. 2x + 5C. 2x + 7D. 2x + 92. 若平行四边形ABCD的对角线交于点E,已知BE = 4,CE = 6,那么BD的长度为____.A. 5B. 10C. 12D. 163. 已知等差数列{an}的首项为2,公差为3,那么第10项a10的值为____.A. 29B. 30C. 31D. 324. 已知函数g(x) = x² - 2x + 1,那么g(g(x))的最小值为____.A. 0B. 1C. 2D. 35. 若菱形ABCD的的对角线AC和BD交于点E,已知AE = 3,CE = 4,那么菱形的面积为____.A. 12B. 24C. 36D. 486. 已知三角形ABC中,a = 8, b = 10, sinA = 3/5,那么sinB的值为____.A. 4/5B. 5/6C. 5/7D. 4/77. 已知等比数列{bn}的首项为2,公比为3,那么第5项b5的值为____.A. 16B. 48C. 12D. 248. 已知函数h(x) = |x - 1| + |x + 1|,那么h(h(x))的最小值为____.A. 2B. 3C. 4D. 59. 已知三角形DEF是等边三角形,边长为6,那么该三角形的面积为____.A. 9B. 12C. 18D. 2710. 已知数列{cn}满足c1 = 1, cn+1 = 2cn + 1,那么该数列的前10项和为____.A. 1023B. 1024C. 1025D. 1026二、填空题(每题4分,共40分)11. 若函数f(x) = x² - 4x + 3,那么f(3) = ____.12. 已知正方体的体积为64,那么它的表面积为____.13. 若等差数列{an}的首项为3,公差为2,那么第8项a8的值为____.14. 已知函数g(x) = |x - 1| - |x + 1|,那么g(0) = ____.15. 若三角形ABC中,a = 5, b = 6, sinA = 3/5,那么sinB的值为____.16. 已知数列{bn}满足b1 = 1, bn+1 = 2bn - 1,那么该数列的第6项b6的值为____.17. 若平行四边形ABCD的对角线交于点E,已知BE = 4, CE = 6,那么∠BEC的大小为____.18. 已知圆的半径为5,圆心角为120°,那么该圆的面积为____.19. 若等比数列{an}的首项为2,公比为3,那么第5项a5的值为____.20. 已知函数h(x) = |x - 1| + |x + 1|,那么h(h(x))的最小值为____.三、解答题(共20分)21. (10分)已知函数f(x) = x² - 4x + 3,求f(x)的最小值及取得最小值的x值.22. (10分)已知等差数列{an}的首项为3,公差为2,求该数列的前10项和.。

中考数学试题试卷及答案

中考数学试题试卷及答案

中考数学试题试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式2x-3>0的解集?A. x>1B. x<1C. x>3/2D. x<3/2答案:C2. 一个圆的半径为3cm,其面积是多少平方厘米?A. 28.26B. 18.84C. 9.42D. 15.7答案:B3. 如果一个数的立方根等于它本身,那么这个数可能是?A. 0B. 1C. -1D. A和B答案:D4. 计算下列哪个表达式的结果为-1?A. (-2)^3B. (-2)^2C. (-1)^3D. (-1)^2答案:C5. 以下哪个函数的图像是一条直线?A. y = 2x + 3B. y = x^2C. y = √xD. y = 3/x答案:A6. 一个等腰三角形的两边长分别为5cm和10cm,那么它的周长是多少?A. 20cmB. 15cmC. 25cmD. 不能构成三角形答案:D7. 计算下列哪个表达式的结果是正数?A. (-3) × (-2)B. (-3) × 2C. 3 × (-2)D. (-3) × (-2) + 1答案:A8. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A9. 下列哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:A10. 一个等差数列的首项是3,公差是2,那么第5项是多少?A. 13B. 11C. 9D. 7答案:A二、填空题(每题3分,共30分)11. 一个直角三角形的两个直角边长分别是3cm和4cm,那么斜边的长度是_________。

答案:5cm12. 一个数的绝对值是5,那么这个数可能是_________或_________。

答案:5或-513. 一个正数的平方根是2,那么这个数是_________。

答案:414. 一个数除以-1/2等于乘以_________。

初中数学中考试题及答案

初中数学中考试题及答案

初中数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -2B. 0C. 3D. -52. 计算下列哪个表达式的结果为负数?A. 3 - 2B. 2 - 3C. 4 - 1D. 5 - 53. 哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 44. 一个数的平方是9,这个数是?A. 3B. -3C. 3或-3D. 以上都不是5. 圆的周长公式是?A. C = πrB. C = 2πrC. C = πdD. C = 2πd6. 一个三角形的两边长分别为3cm和4cm,第三边的长度范围是?A. 1cm到7cmB. 1cm到5cmC. 3cm到7cmD. 3cm到5cm7. 下列哪个选项是不等式3x - 5 > 2的解?A. x > 2B. x < 2C. x > 3D. x < 38. 计算下列哪个表达式的结果为0?A. 5 + (-5)B. 5 - (-5)C. 5 × (-5)D. 5 ÷ (-5)9. 一个直角三角形的两个直角边长分别为3cm和4cm,斜边的长度是?A. 5cmB. 6cmC. 7cmD. 8cm10. 一个数的立方是-8,这个数是?A. 2B. -2D. -8二、填空题(每题3分,共15分)11. 一个数的绝对值是5,这个数可能是______。

12. 一个数除以-2等于3,这个数是______。

13. 一个数的相反数是-4,这个数是______。

14. 一个数的倒数是2,这个数是______。

15. 一个数的平方根是3,这个数是______。

三、解答题(每题5分,共55分)16. 计算表达式:(-3) × (-2) + 4 ÷ 2。

17. 解方程:5x - 3 = 2x + 8。

18. 计算一个数的平方,如果这个数是-4。

19. 一个长方形的长是6cm,宽是4cm,求它的周长和面积。

精选初中数学中考测试题库(含答案)

精选初中数学中考测试题库(含答案)

精选初中数学中考测试题库(含答案)精选初中数学中考测试题库(含答案)同学们,数学是我们初中生活中非常重要的一门学科,也是中考中必考的科目之一。

为了帮助大家更好地备战中考,我为大家准备了精选初中数学中考测试题库,并提供了答案。

希望这些题目能够帮助大家巩固知识,提高解题能力。

祝愿大家在中考中取得优异成绩!一、选择题1. 下列哪个数是分数 2/3 的两倍?A) 1/2 B) 1 1/4 C) 1 2/3 D) 2 1/22. 如果 a + b = 10,且 a^2 + b^2 = 34,那么 ab 的值等于多少?A) 11 B) 10 C) 9 D) 83. 有一个面积为 64 平方米的正方形花坛,若要在这个花坛内铺设宽度为 1 米的小石子边行道,需要多少条石子边行道?A) 8 B) 16 C) 32 D) 644. 一根长为15 厘米的绳子剪成两段,其中一段比另一段长7 厘米。

较短一段的长度是多少厘米?A) 7 B) 8 C) 9 D) 10二、填空题1. 若对任意正数 a,b,都有 a ÷ b + b ÷ a = 2,那么 a 的值为______,b 的值为______。

2. 若 x-2y = 5,3x+y = 10,则 x 的值为______,y 的值为______。

3. 甲、乙两班学生的平均身高都是 160 厘米,但甲班身高的标准差为 5 厘米,乙班身高的标准差为 8 厘米。

根据这些信息,我们可以推断甲班和乙班学生身高的分布情况是(填写正确选项):A) 甲班的学生身高更集中,乙班的学生身高更分散;B) 甲班和乙班的学生身高都很集中;C) 甲班和乙班的学生身高都很分散;D) 无法判断。

三、解答题1. 一辆以每小时 60 公里的速度行驶的列车从 A 站开往 B 站,经过两小时后,又以每小时 90 公里的速度行驶到达 B 站。

求 A、B 两站之间的距离。

2. 某书店原价出售一本书,72 元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年初中数学中考复习试题(含答案)
学校:__________
第I 卷(选择题)
请点击修改第I 卷的文字说明
一、选择题
1.若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是----------------------------------------------------------------------------------------------------------------------------------------( ) (A )m <
14 (B )m >-14 (C )m <14,且m ≠0 (D )m >-1
4
,且m ≠0 2.三角形三边长分别是6、8、10,那么它最短边上的高为---------------------------------( )
(A )6 (B )4.5 (C )2.4 (D )8 3.若方程2
2
1(1)104
x k x k -+++=有两个正实数根,则实数k 取值范围是 ( ) (A )32k ≥ (B )1k >- (C )1k ≥- (D )32
k >
4.= ( ) (A )2x ≠ (B )0x > (C )2x > (D )02x << 5.下列函数图象中,顶点不在坐标轴上的是 ( ) (A )y =2x 2 (B )y =2x 2-4x +2 (C )y =2x 2-1 (D )y =2x 2-4x
6.二次函数y =ax 2+bx +c 的图象如图所示,下列结论错误..
的是 【 ▲ 】
A .ab <0
B .ac <0
C .当x <2时,y 随x 增大而增大;当x >2时,y 随x 增大而减小
D .二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标就是方程ax 2+bx +c =0的根
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人 得分
二、填空题
7.在△ABC 中,∠C=90°,2
1
tan =
A ,那么cosA 等于______________ 8.6
2a a ⋅-= ;=--3
))((x x ;1
+m m
y
y =
9.(1)x 28=,则=x ;x
248=⨯,则=x ;
x 39273=⨯⨯,则=x ;
10.⋅5x =8x ;⋅a =6a ;⋅m x =m
x
3
11. 如图,抛物线对称轴是x=1,与x 轴交于A 、B 两点,若B 点坐标是(3,0),则A 点的坐标是______________
12.线y =a x 2+b x +c 经过A ,B ,C 三点,当x ≥0时,其图象如图所示. (1) 求抛物线的解析式,写出抛物线的顶点坐标; (2) 画出抛物线y =a x 2+b x +c 当x <0时的图象; (3) 利用抛物线y =a x 2+b x +c ,写出x 为何值时,y >0.
13.如上图,点P (3a ,a )是反比例函y =
k
x (k >0)与⊙O 的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为__________________;
14.如图,□ABCD 的周长为16cm ,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为________________
第12题
A
B
C
O
E
D
15.543222⨯⨯= ; 3
2y y y ⋅⋅=
16.如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC 就是格点三角形。

在建立平面直角坐标系后,点B 的坐标为(-1,-1)。

(1).把△ABC 向左平移8格后得到△A 1B 1C 1,画出△A 1B 1C 1的图形并写出点B 1的坐标: .
(2).把△ABC 绕点C 按顺时针方向旋转90°后得到△A 2B 2C ,画出△A 2B 2C 的图形并写出点B 2的坐标: .
(3).把△ABC 以点A 为位似中心放大,使放大前后对应边长的比为1:2,画出△AB 3C 3,△AB 3C 3的面积是△ABC 的面积的 倍.
17.若∆ABC 的面积为S ,且三边长分别为a b c 、、,则∆的内切圆的半径是 。

18.直线y=kx-4与y 轴相交所成的锐角的正切值为1
2
,则k 的值为 .
19.如图,为了测量河对岸某建筑物AB 的高度,在平地上点C 处测得建筑物顶端A 的仰角为30°,沿CB 方向前进12米到达D 处,在D 处测得建筑物顶端A 的仰角为45°,求建筑物AB 的高度(结果保留根号)。

E
B A
C
P 图12
O x y
D
20.知二次函数图象的顶点坐标为C(1,0),直线m x y +=与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在轴y 上. (1)求m 的值及这个二次函数的关系式;
(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x ,求h 与x 之间的函数关系式,并写出自变量x 的取值范围;
(3)D 为直线AB 与这个二次函数图象对称轴的交点,在线段AB 四边形DCEP 是平行四形?若存在,请求出此时P 点的坐标;若不存在,请说明理由.
21.函数5)2(32
+--=x y 的图象的开口向 ,对称轴为 ,顶点坐标为 ;当
=x 时,函数取最 值=y ;当 时,y 随着x 的增大而减小
22.若方程0132
=--x x 的两根分别是1x 和2x ,则
2
111x x += . 23.若1x 和2x 分别是一元二次方程03522
=-+x x 的两根. (1)求| 1x 2x -|的值 (2)求22
2111x x +的值
24.若0)27(82
=++-b a ,则3a +3b =__________
25.△ABC 中,∠C=90°,将△ABC 折叠使点A 和点B 重合,DE 为折痕,若AC=8,BC=6,则DC=_________DE=_________.
三、解答题
26.计算1111
(12233499100)
++++
⨯⨯⨯⨯。

27.对于自变量是x 的函数y ,我们把它记为=y ()f x ,如222
+-=x x y ,可记为
22)(2+-=x x x f
对于函数=y ()f x ,若存在0x R ∈,使00()f x x =,则称0x 是()f x 的一个不动点,已知函数2
()(1)(1)(0)f x ax b x b a =+++-≠, (1)当1,2a b ==-时,求函数()f x 的不动点;
(2)当2=b 时,函数()f
x 恒有两个相异的不动点,求a 的取值范围; (3
)对任意实数b ,函数()f x 恒有两个相异的不动点,求a 的取值范围。

28.(1)计算: ()(0
3
1
22014tan 602
2
-+
-
︒;
(2)解方程组:222,28.x y x y ⎧⎪⎨⎪⎩
+=+=
29.已知:矩形纸片ABCD 中,AB =26厘米,BC =18.5厘米,点E 在AD 上,且AE =6厘米,点P 是AB 边上一动点.按如下操作:
步骤一,折叠纸片,使点P 与点E 重合,展开纸片得折痕MN (如图25(1)所示); 步骤二,过点P 作PT AB ⊥,交MN 所在的直线于点Q ,连接QE (如图25(2)所示) (1)无论点P 在AB 边上任何位置,都有PQ QE (填“>”、“=”、“<”号);
(2)如图25(3)所示,将纸片ABCD 放在直角坐标系中,按上述步骤一、二进行操作: ①当点P 在A 点时,PT 与MN 交于点Q 1 ,Q 1点的坐标是( , ); ②当PA =6厘米时,PT 与MN 交于点Q 2 ,Q 2点的坐标是( , );
③当PA =12厘米时,在图25(3)中画出MN ,PT (不要求写画法),并求出MN 与PT 的交点Q 3的坐标;
(3)点P 在运动过程中,PT 与MN 形成一系列的交点Q 1 ,Q 2 ,Q 3 ,…观察、猜想:众多的交点形成的图象是什么?并直接写出该图象的函数表达式.
30.已知:如图,C 、F 在BE 上,∠A=∠D ,AB ∥DE ,BF=EC 。

求证:△ABC ≌DEF .
N A P B C M
D
(P )E
B
C
A N P
C
M D
E
Q
T
25(2)
25(3)
25(1) A
B C F
E
D。

相关文档
最新文档