动量守恒专题训练(含答案)汇编
动量-动量守恒定律专题练习(含答案)

动量-动量守恒定律专题练习(含答案)动量 动量守恒定律一、动量和冲量1、关于物体的动量和动能,下列说法中正确的是:A 、一物体的动量不变,其动能一定不变B 、一物体的动能不变,其动量一定不变C 、两物体的动量相等,其动能一定相等D 、两物体的动能相等,其动量一定相等2、两个具有相等动量的物体A 、B ,质量分别为m A 和m B ,且m A >m B ,比较它们的动能,则:A 、B 的动能较大 B 、A 的动能较大C 、动能相等 D 、不能确定3、恒力F 作用在质量为m 的物体上,如图所示,由于地面对物体的摩擦力较大,没有被拉动,则经时间t ,下列说法正确的是:A 、拉力F 对物体的冲量大小为零;B 、拉力F 对物体的冲量大小为Ft ;C 、拉力F 对物体的冲量大小是Ftcosθ;D 、合力对物体的冲量大小为零。
F4、如图所示,PQS 是固定于竖直平面内的光滑的14圆周轨道,圆心O 在S 的正上方,在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑。
以下说法正确的是 A 、a 比b 先到达S ,它们在S 点的动量不相等B 、a 与b 同时到达S ,它们在S 点的动量不相等C 、a 比b 先到达S ,它们在S 点的动量相等D 、b 比a 先到达S ,它们在S 点的动量不相等二、动量守恒定律1、一炮艇总质量为M ,以速度v 0匀速行驶,从船上以相对海岸的水平速度v 沿前进方向射出一质量为m 的炮弹,发射炮弹后艇的速度为v /,若不计水的阻力,则下列各关系式中正确的是 。
A 、'0()Mv M m v mv =-+B 、'00()()MvM m v m v v =-++ C 、''0()()Mv M m v m v v =-++ D 、'0Mv Mv mv =+2、在高速公路上发生一起交通事故,一辆质量为1500kg 向南行驶的长途客车迎面撞上了一辆质量为3000kg 向北行驶的卡车,碰后两车接在一起,并向南O P S Q5、光滑的水平面上有两个小球M和N,它们沿同一直线相向运动,M球的速率为5m/s,N球的速率为2m/s,正碰后沿各自原来的反方向而远离,M球的速率变为2m/s,N球的速率变为3m/s,则M、N两球的质量之比为A、3∶1B、1∶3C、3∶5D、5∶76、如图所示,一个木箱原来静止在光滑水平面上,都具有一定的质量。
动量守恒定律试题(含答案)

动量守恒定律试题(含答案)一、动量守恒定律 选择题1.如图甲所示,一轻弹簧的两端与质量分别为m 1和m 2的两物块A ,B 相连接,静止在光滑水平地面上,现使A 瞬时获得水平向右的速度3m/s ,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,下列说法正确的是( )A .物块A 在t 1和t 3两个时刻的加速度大小相等B .从开始计时到t 4这段时间内,物块A ,B 在t 2时刻相距最远C .t 1到t 3这段时间内弹簧长度一直在增大D .12:1:2m m2.如图所示,足够长的光滑细杆PQ 水平固定,质量为2m 的物块A 穿在杆上,可沿杆无摩擦滑动,质量为0.99m 的物块B 通过长度为L 的轻质细绳竖直悬挂在A 上,整个装置处于静止状态,A 、B 可视为质点。
若把A 固定,让质量为0.01m 的子弹以v 0水平射入物块B (时间极短,子弹未穿出)后,物块B 恰好能在竖直面内做圆周运动,且B 不会撞到轻杆。
则( )A .在子弹射入物块B 的过程中,子弹和物块B 构成的系统,其动量和机械能都守恒 B .子弹射入物块B 的初速度v 05gLC .若物块A 不固定,子弹仍以v 0射入时,物块上摆的初速度将小于原来物块A 固定时的上摆初速度D .若物块A 不固定,子弹仍以v 0射入,当物块B 摆到与PQ 等高时,物块A 的速率为5gL 3.水上飞行运动使用的是一种叫“喷射式悬浮飞行器”的装置,也称为“喷水飞行背包”,它通过向下喷射高压水柱的方式将操控者托举在水面 上空,利用脚上喷水装置产生的反冲动力,让你可以在水面之上腾空而起,另外配备有手动控 制的喷嘴,用于稳定空中飞行姿态.如图所示运动员在水上做飞行运动表演.他操控喷射式悬浮飞行器将水带竖直送上来的水反转180°后向下喷出,令自己悬停在空中.已知运动员与装备的总质量为100 kg ,两个圆管喷嘴的直径均为10cm ,已知重力加速度大小g =10m/s 2,水的密度ρ=1.0×103kg/cm 3,则喷嘴处喷水的速度大约为A .3.0 m/sB .5.4 m/sC .8.0 m/sD .10.2 m/s4.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为03v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()A .若m 0=3m ,则能够射穿木块B .若m 0=3m ,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动C .若m 0=3m ,子弹刚好能射穿木块,此时子弹相对于木块的速度为零D .若子弹以3v 0速度射向木块,并从木块中穿出,木块获得的速度为v 1;若子弹以4v 0速度射向木块,木块获得的速度为v 2;则必有v 1<v 25.如图所示,小车质量为M ,小车顶端为半径为R 的四分之一光滑圆弧,质量为m 的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g 为当地重力加速度)( )A .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为mgB .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为32mg C .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gR m M M m +D .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gR m M m +6.如图所示,一个质量为M 的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m =2M 的小物块.现使木箱瞬间获得一个水平向左、大小为v 0的初速度,下列说法正确的是A .最终小物块和木箱都将静止B .最终小物块和木箱组成的系统损失机械能为203Mv C .木箱速度水平向左、大小为02v 时,小物块的速度大小为04v D .木箱速度水平向右、大小为03v . 时,小物块的速度大小为023v 7.如图所示,质量为M 的长木板静止在光滑水平面上,上表面OA 段光滑,AB 段粗糙且长为l ,左端O 处固定轻质弹簧,右侧用不可伸长的轻绳连接于竖直墙上,轻绳所能承受的最大拉力为F .质量为m 的小滑块以速度v 从A 点向左滑动压缩弹簧,弹簧的压缩量达最大时细绳恰好被拉断,再过一段时间后长木板停止运动,小滑块恰未掉落.则( )A .细绳被拉断瞬间木板的加速度大小为F M B .细绳被拉断瞬间弹簧的弹性势能为212mv C .弹簧恢复原长时滑块的动能为212mv D .滑块与木板AB 间的动摩擦因数为22v gl8.如图所小,在粗糙水平面上,用水平轻绳相连的两个相同物体P 和Q ,质量均为m ,在水平恒力F 作用下以速度v 做匀速运动.在t =0时轻绳断开,Q 在F 的作用下继续前进,则下列说法正确的是( )A .t =0至2mv t F =时间内,P 、Q 的总动量守恒 B .t =0至3mv t F =时间内,P 、Q 的总动量守恒 C .4mv t F=时,Q 的动量为3mvD .3mv t F =时,P 的动量为32mv 9.如图所示,两滑块A 、B 位于光滑水平面上,已知A 的质量M A =1k g ,B 的质量M B =4k g .滑块B 的左端连有轻质弹簧,弹簧开始处于自由伸长状态.现使滑块A 以v =5m/s 速度水平向右运动,通过弹簧与静止的滑块B 相互作用(整个过程弹簧没有超过弹性限度),直至分开.则( )A .物块A 的加速度一直在减小,物块B 的加速度一直在增大B .作用过程中弹簧的最大弹性势能2J p E =C .滑块A 的最小动能为 4.5J KA E =,滑块B 的最大动能为8J KB E =D .若滑块A 的质量4kg A M =,B 的质量1kg B M =,滑块A 的最小动能为18J KAE =,滑块B 的最大动能为32J KB E =10.如图所示,一轻杆两端分别固定a 、b 两个半径相等的光滑金属球,a 球质量大于b 球质量.整个装置放在光滑的水平面上,将此装置从图示位置由静止释放,则( )A .在b 球落地前瞬间,a 球的速度方向向右B .在b 球落地前瞬间,a 球的速度方向向左C .在b 球落地前的整个过程中,轻杆对b 球的冲量为零D .在b 球落地前的整个过程中,轻杆对b 球做的功为零11.如图所示,质量为m = 245 g 的物块(可视为质点)放在质量为M = 0.5 kg 的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为μ = 0.4,质量为 m 0 = 5 g 的子弹以速度v 0 = 300 m/s 沿水平方向射入物块并留在其中(时间极短),g = 10 m/s 2,则在整个过程中A .物块和木板组成的系统动量守恒B .子弹的末动量大小为0.01kg·m/sC .子弹对物块的冲量大小为0.49N·sD .物块相对木板滑行的时间为1s12.如图所示,一质量为m 0=0.05 kg 的子弹以水平初速度v 0=200 m/s 打中一放在水平地面上A 点的质量为m =0.95 kg 的物块,并留在物块内(时间极短,可忽略),随后物块从A 点沿AB 方向运动,与距离A 点L =5 m 的B 处的墙壁碰撞前瞬间的速度为v 1=8 m/s,碰后以v 2=6 m/s 的速度反向运动直至静止,测得物块与墙碰撞的时间为t =0.05 s,g 取10 m/s 2,则A .物块从A 点开始沿水平面运动的初速度v =10 m/sB .物块与水平地面间的动摩擦因数μ=0.36C .物块与墙碰撞时受到的平均作用力大小F =266 ND .物块在反向运动过程中产生的摩擦热Q =18 J13.如图所示,一个质量为m 、半径足够大的1/4光滑圆弧体,静止放在光滑水平面上.有一个质量也为m 的小球,以v 0的初速度从最低点冲上圆弧体到又滑回到最低点的过程中,下列结论正确的是(已知重力加速度为g )( )A .整个过程中,圆弧体的速度先增大后减小B .小球能上升的最大高度为204v gC .圆弧体所获得的最大速度为v 0D .在整个作用的过程中,小球对圆弧体的冲量大于mv 014.光滑水平面上有一静止木块,质量为m 的子弹水平射入木块后木穿出,子惮与木块运动的速度图象如图所示。
物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
动量守恒定律大题专练(含答案)

动量守恒定律大题专练(含答案)1.在图中,地面被竖直线MN分隔成两部分。
M点左侧地面粗糙,动摩擦因数为μ=0.5,右侧光滑。
MN右侧空间有一范围足够大的匀强电场。
在O点用长为R-4=5m的轻质绝缘细绳,拴一个质量为mA=0.04kg,带电量为q=+2×10的小球A,在竖直平面内以v=10m/s的速度做顺时针匀速圆周运动,运动到最低点时与地面刚好不接触。
处于原长的弹簧左端连在墙上,右端与不带电的小球B接触但不粘连,B球的质量为mB=0.02kg,此时B球刚好位于M点。
现用水平向左的推力将B球缓慢推至P点(弹簧仍在弹性限度内),MP之间的距离为L=10cm,推力所做的功是W=0.27J,当撤去推力后,B球沿地面右滑恰好能和A球在最低点处发生正碰,并瞬间成为一个整体C(A、3B、C均可视为质点),碰后瞬间立即把匀强电场的场强大小变为E=6×10N/C,电场方向不变。
(取g=10m/s)求:1)A、B两球在碰前匀强电场的大小和方向。
2)碰撞后整体C的速度。
3)整体C运动到最高点时绳的拉力大小。
2.在图中,EF为水平地面,O点左侧是粗糙的、右侧是光滑的。
一轻质弹簧右端与墙壁固定,左端与静止在O点质量为m的小物块A连结,弹簧处于原长状态。
质量为m的物块B在大小为F的水平恒力的作用下由C处从静止开始向左运动,已知物块B与地面EO段间的滑动摩擦力大小为F,物块B运动到O点与物块A相碰并一起向右运动(设碰撞时间极短),运动到D点时撤去外力F。
已知CO=4S,OD=S。
求撤去外力后:1)弹簧的最大弹性势能。
2)物块B最终离O点的距离。
3.在图中,矩形盒B的质量为M,底部长度为L,放在水平面上,盒内有一质量为m的物体A,A与B、B与地面的动摩擦因数均为μ,开始时二者均静止,A在B的左端。
现瞬间使物体A获得一向右的水平初速度v,以后物体A与盒B的左右壁碰撞时,B始终向右运动。
当A与B的左壁最后一次碰撞后,B立刻停止运动,A继续向右滑行s(s<L)后也停止运动。
高考物理动量守恒定律真题汇编(含答案)含解析

高考物理动量守恒定律真题汇编(含答案)含解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.3.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
动量守恒定律试题(含答案)

动量守恒定律试题(含答案)一、动量守恒定律 选择题 1.如图所示,A 、B 两物体质量分别为m A =5kg 和m B =4kg ,与水平地面之间的动摩擦因数分别为μA =0.4和μB =0.5,开始时两物体之间有一压缩的轻弹簧(不拴接),并用细线将两物体拴接在一起放在水平地面上.现将细线剪断,则两物体将被弹簧弹开,最后两物体都停在水平地面上。
下列判断正确的是( )A .在弹簧弹开两物体以及脱离弹簧后两物体的运动过程中,两物体组成的系统动量不守恒B .在弹簧弹开两物体以及脱离弹簧后两物体的运动过程中,整个系统的机械能守恒C .在两物体被弹开的过程中,A 、B 两物体的机械能一直增大D .两物体一定同时停在地面上2.如图所示为水平放置的固定光滑平行直轨道,窄轨间距为L ,宽轨间距为2L 。
轨道处于竖直向下的磁感应强度为B 的匀强磁场中,质量分别为m 、2m 的金属棒a 、b 垂直于导轨静止放置,其电阻分别为R 、2R ,现给a 棒一向右的初速度v 0,经t 时间后两棒达到匀速运动两棒运动过程中始终相互平行且与导轨良好接触,不计导轨电阻,b 棒一直在宽轨上运动。
下列说法正确的是( )A .a 棒开始运动时的加速度大小为2203B L v RmB .b 棒匀速运动的速度大小为03v C .整个过程中通过b 棒的电荷量为023mv BL D .整个过程中b 棒产生的热量为203mv 3.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则A .子弹刚穿出木块时,木块的速度为0()m v v MB .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒D .木块上升的最大高度为2202mv mv Mg- 4.如图所示,将一光滑的、质量为4m 、半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m 的物块.今让一质量也为m 的小球自左侧槽口A 的正上方高为R 处从静止开始落下,沿半圆槽切线方向自A 点进入槽内,则以下结论中正确的是( )A .小球在半圆槽内第一次由A 到最低点B 的运动过程中,槽的支持力对小球做负功 B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为41︰C .小球第一次在半圆槽的最低点B 时对槽的压力为133mg D .物块最终的动能为15mgR 5.如图所示,质量为M 的木板静止在光滑水平面上,木板左端固定一轻质挡板,一根轻弹簧左端固定在挡板上,质量为m 的小物块从木板最右端以速度v 0滑上木板,压缩弹簧,然后被弹回,运动到木板最右端时与木板相对静止。
(完整word版)动量守恒专题训练(含答案)

动量守恒专题训练(含答案)动■守恒定律成立的条件(1)系统不受外力或者所受外力之和为零:⑵系统受外力,但外力远小于內力,可以忽略不计:(3)系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
⑷全过程的某一阶段系统受的合外力为零.则该介段系统动量守恒。
【例1】质量为"的楔形物块上冇圆弧轨道,静止在水平面上。
质量为m 的小球以速度记 向物块运动。
不计一切摩擦,圆弧小于90°且足够长。
求小球能上升到 的最人高度H 和物块的最终速度2.子弹打木块类问题【例3】设质量为加的子弹以初速度⑷射向静止在光滑水平面上的质量为"的木块,并留 在木块中不再射出,子弹钻入木块深度为乩求木块对子弹的 平均阻力的大小和该过程中木块前进的距离。
3・反冲问题在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再 相同而分开。
这类问题和互作用过程中系统的动能增大,有其它能向动能转化。
可以把这类问題统称为反冲。
【例4】质量为血的人站在质屋为",长为Z 的静止小船的 右端,小船的左端靠在岸边。
当他向左走到船的左端时,船左 端离岸多远?【例5】总质量为"的火箭模型从飞机上释放时的速度为速度方向水平。
火箭向后以 相对于地面的速率U 喷岀质量为m 的燃气后.火箭本身的速度变为至人?4.爆炸类问题1n 1 1 1 1t ------- $2------- ――4^-61—> • 51 -----------a【例6】抛出的手雷在最高点时水平速度为10m/s,这时忽然炸成两块,其中大块质堂300g仍按原方向飞行,其速度测得为50皿(,另一小块质量为200g,求它的速度的人小和方向。
5・某一方向上的动童守恒【例7】如图所示,M为一光滑水平横杆,杆上套一质量为〃的小圆环,环上系一长为厶质量不计的细绳,绳的另一端拴一质量为e的小球,现将绳拉U,且与初平行,由静止释放小球,则当线绳与戏8成〃角时,圆坏移动的距离是多少?6-物块与平板间的相对滑动【例8】如图所示• 一质量为"的平板车尸放在光滑水平面上,在其右端放一质量为加的小木块4间动摩擦因数为“,现给川和方以大小相等、方向相反的初速度iO,使方开始向左运动,〃开始向右运动,最后川不会滑离8,求:(1) A. F最后的速度大小和方向;(2) 从地面上看,小木块向左运动到离出发点垠远处时.平板车向右运动的位移人小。
(完整版)动量守恒定律综合专题练习与解答

动量守恒定律综合专题练习与解答1.如图所示,光滑水平面上有一带半径为R 的1/4光滑圆弧轨道的滑块,其质量为2m ,一质量为m 的小球以速度v 0沿水平面滑上轨道,并从轨道上端飞出,求 ⑴小球上升的到离水平面的最大高度H 是多少?⑵小球离开轨道的瞬间,轨道的加速度大小a 是多少?解答:⑴小球到达最高点时,球与轨道在水平方向有相同的速度,设为v 。
由于小球和滑块组成的系统在水平方向不受外力作用,故系统在水平方向动量守恒,由根据动量守恒定律有 ()02mv m m v =+ 由机械能守恒有22201112222mv mv m v mgh =+⋅⋅+ 联立上述方程可得 203v h g=⑵小球离开轨道的瞬间,轨道的圆心没有竖直方向的速度,小球相对于轨道圆心在竖直方向的速度大小为小球的竖直分速度,设为v 竖。
水平方向的速度和轨道速度相同。
由运动的可逆性知道 ()2v g h R =-竖在轨道最高点,弹力提供做向心力,则有22022()23v mv m N m g h R mg R R R==⋅-=-竖由运动定律可得,小球对轨道的水平弹力大小为20223mv N'mg R=-由运动定律得轨道的加速度为 2023v N'a g m R==-2.如图所示,abc 是光滑的轨道,其中ab 是水平的,bc 为与ab 相切的、位于竖直平面内的半圆,半径R =0.30m ,质量m =0.20kg 的小球A 静止在轨道上,另一质量M =0.60kg ,速度v 0=5.5m/s 的小球B 与小球A 正碰。
已知相碰后小球A 经过半圆的最高点c 落到轨道上距b 点为L =42R 处,重力加速度g =10m/s 2,求 ⑴碰撞结束时,小球A 和B 的速度大小。
⑵试论证小球B 是否能沿着半圆轨道到达c 点。
解答:设A 球过C 点时的速度为v A ,平抛后的飞行时间为t ,则242122A R v t R gt⎧=⋅⎪⎨=⎪⎩ 解得2226m/s A v gR ==设碰撞结束后,小球A 、B 的速度分别为v 1和v 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量守恒专题训练(含答案)动量守恒定律成立的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。
【例1】 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。
质量为m 的小球以速度v 1向物块运动。
不计一切摩擦,圆弧小于90°且足够长。
求小球能上升到的最大高度H 和物块的最终速度v 。
2.子弹打木块类问题【例3】 设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
3.反冲问题在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。
这类问题相互作用过程中系统的动能增大,有其它能向动能转化。
可以把这类问题统称为反冲。
【例4】 质量为m 的人站在质量为M ,长为L 的静止小船的 右端,小船的左端靠在岸边。
当他向左走到船的左端时,船左端离岸多远?【例5】 总质量为M 的火箭模型 从飞机上释放时的速度为v 0,速度方向水平。
火箭向后以相对于地面的速率u 喷出质量为m 的燃气后,火箭本身的速度变为多大?4.爆炸类问题【例6】抛出的手雷在最高点时水平速度为10m/s,这时忽然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。
5.某一方向上的动量守恒【例7】如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成θ角时,圆环移动的距离是多少?6.物块与平板间的相对滑动【例8】如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m 的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。
【例9】两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为,,它们的下底面光滑,上表面粗糙;另有一质量的滑块C(可视为质点),以的速度恰好水平地滑到A的上表面,如图所示,由于摩擦,滑块最后停在木块B上,B和C的共同速度为3.0m/s,求:(1)木块A的最终速度;(2)滑块C离开A时的速度。
习题1、如图所示,A B C是光滑轨道,其中BC部分是半径为R的竖直放置的半圆.一质量为M 的小木块放在轨道水平部分,木块被水平飞来的质量为m的子弹射中,并滞留在木块中.若被击中的木块沿轨道能滑到最高点C,已知木块对C点的压力大小为(M+m)g,求:子弹射入木块前瞬间速度的大小.2、如图所示,在足够长的光滑水平轨道上静止三个小木块A、B、C,质量分别为m A=1kg,m B=1kg,m C=2kg,其中B与C用一个轻弹簧固定连接,开始时整个装置处于静止状态;A 和B之间有少许塑胶炸药,A的左边有一个弹性挡板(小木块和弹性挡板碰撞过程没有能量损失)。
现在引爆塑胶炸药,若炸药爆炸产生的能量有E=9J转化为A和B沿轨道方向的动能,A和B分开后,A恰好在BC之间的弹簧第一次恢复到原长时追上B,并且在碰撞后和B粘到一起。
求:(1)在A追上B之前弹簧弹性势能的最大值;(2)A与B相碰以后弹簧弹性势能的最大值。
3.如图所示,在小车的一端高h的支架上固定着一个半径为R的1/4圆弧光滑导轨,一质量为m=0.2kg的物体从圆弧的顶端无摩擦地滑下,离开圆弧后刚好从车的另一端擦过落到水平地面,车的质量M=2kg,车身长L=0.22m,车与水平地面间摩擦不计,图中h =0.20m,重力加速度g=10m/s2,求R. mRhLM4.如图所示,光滑轨道的DP段为水平直轨道,PQ段为半径是R的竖直半圆轨道,半圆轨道的下端与水平轨道的右端相切于P点.一轻质弹簧两端分别固定质量为2m的小球A和质量为m的小球B,质量为m的小球C靠在B球的右侧.现用外力作用在A和C上,弹簧被压缩(弹簧仍在弹性限度内),这时三个小球均静止于距离P端足够远的水平轨道上.若撤去外力,C球恰好可运动到轨道的最高点Q.已知重力加速度为g,求撤去外力前的瞬间,弹簧的弹性势能E是多大?5.如图所示,质量为M=4kg的木板长L=1.4m,静止在光滑的水平地面上,其上端右侧静置一个质量为m=1kg的小滑块,小滑块与木板间的动摩擦因数为μ=0.4.今用一水平力F=28N向右拉木板,要使小滑块从木板上掉下来,求此力至少作用多长时间?(重力加速度g取10m/s2)【例1】在小球上升过程中,由水平方向系统动量守恒得:由系统机械能守恒得:解得全过程系统水平动量守恒,机械能守恒,得【例2】从动量的角度看,子弹射入木块过程中系统动量守恒:从能量的角度看,该过程系统损失的动能全部转化为系统的内能。
设平均阻力大小为f,【例3】解析:先画出示意图。
人、船系统动量守恒,总动量始终为零,所以人、船动量大小始终相等。
从图中可以看出,人、船的位移大小之和等于L。
设人、船位移大小分别为l1、l2,则:mv1=Mv2,两边同乘时间t,ml1=Ml2,而l1 l2=L,∴【例4】解析:火箭喷出燃气前后系统动量守恒。
喷出燃气后火箭剩余质量变为M-m,以v0方向为正方向,【例5】分析:手雷在空中爆炸时所受合外力应是它受到的重力G=( m1 m2 )g,可见系统的动量并不守恒。
但在爆炸瞬间,内力远大于外力时,外力可以不计,系统的动量近似守恒。
由动量守恒定律:m/s此结果表明,质量为200克的部分以50m/s的速度向反方向运动,其中负号表示与所设正方向相反【例6】MV=mv且在任意时刻或位置V与v均满足这一关系,加之时间相同,公式中的V和v可分别用其水平位移替代,则上式可写为:Md=m[(L-L cosθ)-d]解得圆环移动的距离:d=mL(1-cosθ)/(M m)【例7】解析:(1)由A、B系统动量守恒定律得:Mv0-mv0=(M m)v ①所以v= v0 方向向右(2)A向左运动速度减为零时,到达最远处,此时板车移动位移为s,速度为v′,则由动量守恒定律得:Mv0-mv0=Mv′ ①对板车应用动能定理得:-μmg s= mv′2- mv02 ②联立①②解得:s= v02【例8】(1)当C滑上A后,由于有摩擦力作用,将带动A和B一起运动,直至C滑上B后,A、B两木块分离,分离时木块A的速度为。
最后C相对静止在B上,与B以共同速度运动,由动量守恒定律有∴(2)为计算,我们以B、C为系统,C滑上B后与A分离,C、B系统水平方向动量守恒。
C离开A时的速度为,B与A的速度同为,由动量守恒定律有∴1、(14).解:设子弹射入木块瞬间速度为v ,射入木块后的速度为v B ,到达C 点 时的速度为v C 。
子弹射入木块时,系统动量守恒,可得:()0v M m mv += ① 木块(含子弹)在BC 段运动,满足机械能守恒条件,可得()22)(21)(221CB v M m g M m R v M m +++=+ ② 木块(含子弹)在C 点做圆周运动,设轨道对木块的弹力为T ,木块对轨道的压力为T ′,可得: Rv M m g M m T C2)()(+=++ ③又:T =T ′=(M+m)g ④ 由①、②、③、④方程联立解得: 子弹射入木块前瞬间的速度:Rg mM m v 6)(+=2、(15)(1)塑胶炸药爆炸瞬间取A 和B 为研究对象,假设爆炸后瞬间AB 的速度大小分别为v A 、v B ,取向右为正方向 由动量守恒:-m A v A +m B m B =0 爆炸产生的热量由9J 转化为AB 的动能:222121BB A A v m v m E +=带入数据解得:v A = v B = 3m/s由于A 在炸药爆炸后再次追上B 的时候弹簧恰好第一次恢复到原长,则在A 追上B 之前弹簧已经有一次被压缩到最短,(即弹性势能最大)爆炸后取BC 和弹簧为研究系统,当弹簧第一次被压缩到最短时BC 达到共速v BC ,此时弹簧的弹性势能最大,设为E p1 由动量守恒:m B v B =(m B +m C )v BC 由能量定恒定定律:P Bc C B B B E v m m v m ++=22)(2121带入数据得:E P1=3J(2)设BC 之间的弹簧第一次恢复到原长时B 、C 的速度大小分别为v B1和v C1,则由动量守恒和能量守恒: m B v B =m B v B1+m C v C121212212121C C B B B B v m v m v m +=带入数据解得:v B1=-1m/s v C1=2m/s (v B1=3m/s v C1=0m/s 不合题意,舍去。
) A 爆炸后先向左匀速运动,与弹性挡板碰撞以后速度大小不变,反向弹回。
当A 追上B , 发生碰撞瞬间达到共速v AB由动量守恒:m A v A +m B v B1=(m A +m B )v AB 解得:v AB =1m/s 当ABC 三者达到共同速度v ABC 时,弹簧的弹性势能最大为E P2由动量守恒:(m A +m B )v AB +m C v C1=(m A +m B +m C )v ABC由能量守恒:22212)(2121)(21P ABC C B A C AB B A E v m m m v m v m m +++=++ 带入数据得:E P2=0.5J3.解:物体从圆弧的顶端无摩擦地滑到圆弧的底端过程中,水平方向没有外力. 设物体滑到圆弧的底端时车速度为v 1,物体速度为v 2 对物体与车,由动量及机械能守恒得0=Mv 1-mv 2 (2分)mgR=21Mv 21+21m v 22 (2分) 物体滑到圆弧底端后车向右做匀速直线运动,物体向左做平抛运动,所以有h=21gt 2(2分)L=(v 1+v 2)t (2分)由以上各式带入数据解得 R =0.055m (2分)4.解:对A 、B 、C 及弹簧组成的系统,当弹簧第一次恢复原长时,设B 、C 共同速度大小为v 0,A 的速度大小为v A ,由动量守恒定律有:2 mv A = (m+m) v 0 ① (2分)即 v A = v 0 由系统能量守恒有:22)(21221v m m mv E A ++⋅=② (2分)此后B 、C 分离,设C 恰好运动至最高点Q 的速度为v ,由机械能守恒有:22021212mv mv R mg -=⋅ ③ (2分)在最高点Q ,由牛顿第二定律有:Rv m mg 2= ④ (2分)联立① ~ ④式解得:E =10mgR (2分)5.解:以地面为参考系,整个过程中,小滑块向右做初速为零的匀加速直线运动.撤去拉力F 前,木板向右做初速为零的匀加速直线运动;撤去拉力F 后,木板向右做匀减速直线运动.要使小滑块从木板上掉下来,拉力F 作用的最短时间对应的过程是:小滑块滑到木板左端时恰好与木板保持相对静止(即与木板达到共同的速度). 设拉力F 作用的最短时间为t ,撤去拉力前木板的位移为s 0,小滑块滑到木板左端并恰好与木板达到的共同速度为v .整个过程对系统由动量定理得:v m M Ft )+=( (3分)撤去拉力F 前木板的位移为:2021t Mmg F s μ-=(3分)整个过程对系统由功能关系得:20)(21v m M mgL Fs ++=μ (4分)联立以上各式,代入已知数据求得:t =1s. (2分)。