圆的证明与计算

合集下载

圆的相关证明与计算(复习讲义)(原卷版)-中考数学重难点题型专题汇总

圆的相关证明与计算(复习讲义)(原卷版)-中考数学重难点题型专题汇总

题型五--圆的相关证明与计算(复习讲义)【考点总结|典例分析】考点01圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.考点02垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.考点03圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.考点04圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.考点05与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r ⇔点在⊙O 外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r考点06切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.考点07三角形与圆1.三角形外接圆外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.1.如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=()A.48︒B.24︒C.22︒D.21︒2.如图,A,B,C 是半径为1的⊙O 上的三个点,若,∠CAB=30°,则∠ABC 的度数为()A.95°B.100°C.105°D.110°3.如图,AB 是⊙O 的直径,AC,BC 是⊙O 的弦,若20A ∠=︒,则B Ð的度数为()A.70°B.90°C.40°D.60°4.如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是()A.3B.C.4D.25.如图,已知在⊙O 中, AB BCCD ==,OC 与AD 相交于点E.求证:(1)AD∥BC(2)四边形BCDE 为菱形.6.如图,A,B 是O 上两点,且AB OA =,连接OB 并延长到点C,使BC OB =,连接AC.(1)求证:AC 是O 的切线.(2)点D,E 分别是AC,OA 的中点,DE 所在直线交O 于点F,G,4OA =,求GF 的长.7.如图,Rt ABC 中,90ABC ∠=︒,以点C 为圆心,CB 为半径作C ,D 为C 上一点,连接AD 、CD ,AB AD =,AC 平分BAD ∠.(1)求证:AD 是C 的切线;(2)延长AD 、BC 相交于点E,若2EDC ABC S S = ,求tan BAC ∠的值.8.如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.9.如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.10.如图,已知点C 是以AB 为直径的圆上一点,D 是AB 延长线上一点,过点D 作BD 的垂线交AC 的延长线于点E ,连结CD ,且CD ED =.(1)求证:CD 是O 的切线;(2)若tan 2DCE ∠=,1BD =,求O 的半径.11.如图,AB 是⊙O 的直径,C 为⊙O 上一点,连接AC,CE⊥AB 于点E,D 是直径AB 延长线上一点,且∠BCE=∠BCD.(1)求证:CD 是⊙O 的切线;(2)若AD=8,BE CE=12,求CD的长.12.如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.13.如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO并延长,与⊙O 交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.=CD =DB ,连接AD,过点D作14.如图,AB为⊙O的直径,C、D为⊙O上的两个点,ACDE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.15.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.16.如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC 平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=3,求⊙O的半径.17.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若⊙O的半径为5,BC=16,求DE的长.。

2024年云南省人教版九年级中考数学二轮复习课件专题四 圆的证明与计算(35张PPT)

2024年云南省人教版九年级中考数学二轮复习课件专题四 圆的证明与计算(35张PPT)

∴∠ODF=30°.∴∠DOF=60°.
∵AB⊥DC,∴DF=FC.
∵BF=OF,AB⊥DC,
∴S△CFB=S△CFO=S△DFO.
×
∴S 阴影部分=S 扇形 BOD=

= π.

[典型例题2] (2023北京)如图所示,圆内接四边形ABCD的对角线AC,BD
交于点E,BD平分∠ABC,∠BAC=∠ADB.
∵CP与☉O相切,∴OC⊥PC.∴∠PCB+∠OCB=90°.
∵AB⊥DC,∴∠PAD+∠ADF=90°.∴∠PCB=∠PAD.
(2)若☉O的直径为4,弦DC平分半径OB,求图中阴影部分的面积.
(2)解:如图②所示,连接 OD,
∵弦 DC 平分半径 OB,∴BF=OF.

在 Rt△ODF 中,OF= OD.
∵AC为☉O的直径,∴∠ABC=90°.
∵BD是∠ABC的平分线,∴∠ABD=∠DBE=45°.
∴∠DOC=2∠DBE=90°.
∵AC∥DE,∴∠ODE=90°,即OD⊥DE.
∵OD是☉O的半径,∴DE是☉O的切线
(2)探究线段BE,CE,DE之间有何数量关系?写出你的结论,并证明.
2
(2)解:DE =CE·BE.证明如下:
2
又∵
2

=





,∴ =

.解得 CE=

2
.
2
2.如图所示,☉O的半径为1,A,P,B,C是☉O上的四个点,
∠APC=∠CPB=60°.
(1)判断△ABC的形状,并说明理由.
解:(1)△ABC是等边三角形.理由如下:
∵∠APC=∠CPB=60°,

涉及圆的证明与计算问题

涉及圆的证明与计算问题

涉及圆的证明与计算问题圆的证明与计算是中考必考点,也是中考的难点之一。

纵观全国各地中考数学试卷,能够看出,圆的证明与计算这个专题内容有三种题型:选择题、填空题和解答题。

一、与圆有关的概念1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

2.圆心角:顶点在圆心上的角叫做圆心角。

圆心角的度数等于它所对弧的度数。

3.圆周角:顶点在圆周上,并且两边分别与圆相交的角叫做圆周角。

4.外接圆和外心:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。

外接圆的圆心,叫做三角形的外心。

外心是三角形三条边垂直平分线的交点。

外心到三角形三个顶点的距离相等。

5.若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆。

6.和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

内心是三角形三个角的角平分线的交点。

内心到三角形三边的距离相等。

二、与圆有关的规律1.圆的性质:(1)圆具有旋转不变性;(2)圆具有轴对称性;(3)圆具有中心对称性。

2.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

3.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.4.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

5.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.7.圆内接四边形的特征①圆内接四边形的对角互补;②圆内接四边形任意一个外角等于它的内对角。

三、点和圆、线和圆、圆和圆的位置关系1.点和圆的位置关系①点在圆内⇔点到圆心的距离小于半径②点在圆上⇔点到圆心的距离等于半径③点在圆外⇔点到圆心的距离大于半径2.直线与圆有3种位置关系如果⊙O的半径为r,圆心O到直线l的距离为d,那么d<;①直线l和⊙O相交⇔rd=;②直线l和⊙O相切⇔rd>。

圆的证明与计算PPT

圆的证明与计算PPT

(7)切线长定理: 线段相等、垂直关系、角相等及全等。 2、圆中几个关键元素之间的相互转化:
弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和 计算中经常用到.
二、考题形式分析:


主要以解答题的形式出现,近两年来,此题考查形 式由原来的单图题演变成双图题;
第一小问也由原来的切线的证明,转变成应用圆中 简单性质进行计算和证明; 第二问则在第一问的基础上进行深化和运用,考查 学生灵活运用所学圆的相关知识解决线段长,面积、线 段比、三角函数的有关问题的能力。
圆的证明与计算
(双图题)专题探究
华科附中初三备课组 主讲人:常静
一、圆中的有关知识点:

1、圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明— —弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推论: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线.
原创例题2:
来源:课本九年级上册86页例2
第一问考查:
利用弦切角 找特殊直角三 角形
构题的出发点:
以切割线为背景合理 运用圆的有关性质和 勾股定理建立方程进 行计算。
第二问考查:(基本策略)
看见等弧找等弦;看见直径找直角; 看见三角函数找直角三角形; 看见切割线找相似 目标线段旁有特殊角的情况下,作垂 线构造直角三角形。
(3)如图(3):若CK⊥AB于K,则:①CK=CD;BK=DE; 1 CK= 2 BE=DC;AE+AB=2AK=2AD; ②⊿ADC∽⊿ACB AC2=AD•AB

圆的证明与计算范文

圆的证明与计算范文

圆的证明与计算范文圆是几何中的基本图形之一,它是平面上所有点与固定点之间距离保持不变的集合。

下面将从不同的角度对圆的性质进行证明,并介绍一些常见的圆的计算方法。

一、圆的性质及证明1.圆的定义证明对于平面上的一个点O以及一个长度r,定义集合E为与O的距离为r的点的集合。

我们要证明E是一个圆。

证明:(1)任意取平面上的一点A,若A∈E,证明OA=r。

假设A∈E,则OA的长度等于A与O的距离,即OA=r。

因此,E是以O为圆心,长度为r的圆。

(2)任意取平面上的一点B,若OB=r,证明B∈E。

假设OB=r,则OB的长度等于B与O的距离,即OB=BO=r。

因此,B∈E。

由(1)和(2)可得,对于平面上的一个点O以及一个长度r,定义集合E为与O的距离为r的点的集合是一个圆。

2.圆心角的证明圆心角是指圆上两条射线所夹的角,它的度数等于弧所对的圆周角的度数。

我们要证明圆心角的度数等于所对弧的度数。

证明:任意取圆上两点A和B,以圆心O为顶点,连接OA和OB两条射线。

延长AO和OB分别与圆交于点C和D,则∠AOB是圆心角,∠ACB是所对弧所对的圆周角。

(1)∠AOB的度数等于所对弧AD的度数。

由于AD是圆上的弧,所以∠ACO是所对弧AD的圆周角。

根据圆周角的性质,∠ACO的度数等于所对弧AD的度数。

(2)∠ACB的度数等于所对弧AD的度数。

同样根据圆周角的性质,∠ACB的度数等于所对弧AD的度数。

由(1)和(2)可得,圆心角∠AOB的度数等于所对弧AD的度数。

通过证明,我们可以得出圆心角的度数等于所对弧的度数这一结论。

二、圆的计算在实际应用中,我们有时需要计算圆的周长、面积以及部分圆的面积。

以下是圆的计算公式:1.周长的计算2.面积的计算3.部分圆的面积的计算对于已知圆的半径r和所对的圆心角θ,部分圆的面积计算公式为:A=(πr²×θ)/360,其中A表示部分圆的面积,r表示半径,θ表示圆心角。

圆的证明与计算

圆的证明与计算

《圆的证明与计算》一、重要考点:考点(一)垂径定理及推论:1、垂径定理:垂直于弦的直径,并且平分弦所对的2、推论:平分弦(不是直径)的直径,并且平分弦所对的垂径定理及其推论可概括为:过圆心垂直于弦一直线平分弦知二推三平分弦所对的优弧平分弦所对的劣弧【名师提醒:1、圆中常作的辅助线是过圆心作弦的线2、垂径定理常用作计算,在半径r、弦长a、弦心距d和弓形高h中已知两个可求另外两个】考点(二)、圆心角、弧、弦之间的关系:定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】考点(三)圆周角定理及其推论:圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角都等于这条弧所对的圆心角的推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧推论2、半圆(或直径)所对的圆周角是900的圆周角所对的弦是【名师提醒:作直经所对的圆周角是圆中常作的辅助线】考点(四)切线的性质和判定:⑴性质定理:圆的切线垂直于经过切点的【名师提醒:根据这一定理,在圆中遇到切线时,常用连接圆心和切点,即可的垂直关系】⑵判定定理:经过半径的且这条半径的直线式圆的切线【名师提醒:在切线的判定中,当直线和圆的公共点标出时,用判定定理证明。

当公共点未标出时,可证圆心到直线的距离d=r来判定相切,即“有公共点连半径,无公共点作垂直”】O D C B A O ED CB A FOE D C B A考点(五)、切线长定理切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 考点(六)、弧长和扇形面积 1、圆周长C =2πR ;2、弧长180Rn L π=2、圆面积:2R S π=; 2、扇形面积:3602R n S π=扇形二、考题形式:主要以解答题的形式出现,第1问主要是判定切线;第2问主要是与圆有关的计算:①求线段长(或阴影面积);②求线段比;③求角度的三角函数值(实质还是求线段比)。

圆中的相关证明与计算

圆中的相关证明与计算

圆中的相关证明与计算圆是平面上到一个给定点的距离恒定的所有点的集合。

通过研究圆的性质和相关的定理,我们可以了解圆的性质和概念,并可以进行相关的证明和计算。

以下是一些关于圆的相关证明和计算的例子:1.圆的半径与直径的关系证明:首先,我们知道直径是通过圆心并且两端点在圆上的线段。

现在我们要证明直径是半径的两倍。

证明:假设圆的半径为r,直径为d。

根据直径的定义,我们知道直径是通过圆心的,并且它的两个端点在圆上。

所以直径d可以看作是两个半径r的长度相加,即d=r+r=2r。

所以我们可以得出结论:直径等于半径的两倍。

即d=2r。

2.圆周率的计算:周长的计算公式为:C=2πr,其中r为圆的半径。

面积的计算公式为:A=πr^2,其中r为圆的半径。

例如,如果一个圆的半径为5厘米,则它的周长为:C=2π*5=10π≈31.42厘米;面积为:A=π*5^2=25π≈78.54平方厘米。

3.弦和半径的垂直关系证明:在圆中,连接圆周上的两点的线段称为弦。

现在我们要证明如果一个弦与半径相交,那么这个弦就是半径的垂直平分线。

证明:假设在圆中有一个弦AB,如果它与半径OC相交于点M,我们要证明AM=MB。

根据圆的性质,半径OC与弦AB相交于点M,则角OMC是直角,因为OC是半径,所以OM=MC。

又由于弦AB与半径OC相交于点M,所以AM=MC,MB=MC。

综上所述,AM=MB,即弦AB是半径OC的垂直平分线。

通过以上证明和计算,我们可以更深入地了解圆的性质和相关的定理。

圆是几何学中重要的概念之一,它在各种数学和科学领域中都有广泛的应用。

希望以上内容对您有所帮助。

圆中的计算和证明

圆中的计算和证明

1、如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD。

(1)求证:AD=AN;(2)若AB=24,ON=1,求⊙O的半径。

2、在⊙O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连结CD。

(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,求出∠DCA的度数。

知识点(圆相关概念和性质)知识点一:垂径定理1.垂径定理:于弦的直径这条弦且这条弦所对的。

2.推论(1):①平分()的垂直于弦且弦所对的;②弦的经过且弦所对的两条弧;③弦所对的一条的直径弦且平分弦所对的另一条弧。

推论(2):圆的两条弦所夹的弧。

知识点二:圆心角、弧、弦、弦心距间的关系1.定理:在或中,相等的圆心角所对的相等,所对的相等,相等。

2.推论:同圆或等圆中,如果①两个相等,②两条相等,③两条相等,④两条弦的中有一组量相等,那么它们所对应的其余各组量都分别相等。

知识点三:圆周角定理及其推论1.定理:在同圆或等圆中,或所对的相等,都等于这条弧所对的的。

2.推论①:同弧或等弧所对的相等;同圆或等圆中,相等的圆周角所对的弧是。

推论②:或所对的是直角;是直角(90°的)所对的弧是,所对的弦是。

推论③:若三角形一边上的中线等于这边的一半,那么这个三角形是。

知识点四:圆内接四边形性质定理1.概念:所有顶点都在同一个圆上的四边形叫做圆内接四边形。

2.定理:圆内接四边形的对角,并且任何一个外角都等于它的。

知识点五:直线与圆的位置关系直线和圆的位置关系相交相切相离公共点个数圆心到直线的距离d与半径r的关系公共点名称直线名称知识点六:圆的切线1.切线的性质(1)切线性质定理:圆的切线垂直于过切点的直径。

拓展:①经过圆心且垂直于切线的直线必经过切点;②经过切点且垂直于切线的直线必经过圆心;③切线与圆只有一个公共点;④圆心到切线的距离等于半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以圆为背景的证明、动态探究题1.如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O 分别交AC,BM于点D,E.(1)求证:MD=ME(2)填空:①若AB=6,当AD=2DM时,DE=___________;②连接OD,OE,当∠A的度数为____________时,四边形ODME是菱形.2.如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P 作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若⊙APO=30°,试证明⊙ACP是等腰三角形;(2)填空:①当DP= cm时,四边形AOBD是菱形;②当DP=________cm时,四边形AOBP是正方形.3.如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD,PO.(1)求证:△CDP≌△POB;(2)填空:①若AB=4,则四边形AOPD的最大面积为_________________;②连接OD,当∠PBA的度数为________时,四边形BPDO是菱形.4.如图,在⊙O中,AB是⊙O的直径,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.(1)求证:∠PCA=∠B;(2)已知∠P=40°,AB=12cm,点Q在优弧AC上,从点A开始以πcm/s的速度逆时针运动到点C停止(点Q与点A、C不重合),设运动时间为ts.①当t=________时,以点A、Q、B、C为顶点的四边形面积最大。

②当t=________时,△ABQ与△ABC全等。

5.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线交BC于点E,连接OE,⊙O的半径为3。

(1)求证:OE∥AB;(2)①当BC=_________时,四边形ODEC是正方形。

②当BC=_________时,AD=3DE.6.如图,AD是⊙O的直径,AD=2BD,点C是上的不与A、D重合的动点,连接BC、BA、AC.(1)求∠ACB的度数;(2)填空:已知⊙O半径为4,①当的长为___________时,四边形OBDC是菱形。

②当的长为___________时,四边形ABDC是矩形。

7.如图,在△ABC中AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作DF⊥AC,垂足为点F.(1)求证:DF为⊙O的切线。

(2)若过点A且与BC平行的直线交BE延长线于点G,连接CG,设⊙O的半径为5.①当CF=_________时,四边形ABCG是菱形。

4时,四边形ABCG的面积是__________.②当BC=58.如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边AC上一点O为圆心,OA为半径作圆,恰好经过边BC的中点D,并与边AC相交于另一点F. (1)求证:BD是⊙O的切线;(2)若AB=3,点E是半圆AmF上一动点,连接AE、AD、DE.填空:①当的长度是_________时,四边形ABDE是菱形;②当的长度是_________时,△ADE是直角三角形。

9.如图,⊙O是△ABC的外接圆,AB为直径,过点O的直线OM∥BC,交AC于点M。

(1)∠AMO的度数是________。

(2)延长OM交⊙O于点E,过点E作⊙O的切线,交BC的延长线于点F,连接FM并延长,交AB于点G.①试判断四边形CFEM的形状,并说明理由;②若AG=2,CM=3,则四边形CFEM的面积是__________.圆的证明计算题1.如图,AB为⊙O的直径,OP⊥AB交⊙O于点D,PM切⊙O于点M,AM交OP于点N,过点B作PM的平行线交⊙O于点C.(1)求证:PM=PN;3OD,求弦BC的长.(2)若AB=4,DP=22..如图,已知AB是⊙O的直径,过点O作OP,交弦AC于点D,交⊙O于点E,且使∠PCA=∠ABC.(1)求证:PC是⊙O的切线.(2)若∠P=60°,PC=2,求PE的长.3..如图,点E在以AB为直径的⊙O上,点C是弧BE的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是⊙O的切线;4,BF=15,求AC的长.(2)若cos∠CAD=54..如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE 上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长5.如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB =15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;3-6,求EF和半径OA的长.(2)若DH=36..如图AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证;DB=DE.(2)若AB=12,BD=5,求⊙O的半径.7..如图△ABC中,∠C=90°,点D是AB边上一点,以CD为直径的⊙O交BC 于点E,连接AE,交CD于点P,交⊙O于另一点F,连接DF,∠CAE=∠ADF. (1)求证:AB是⊙O的切线.(2)若PF:PC=1:2,AF=5,求PC的长.8..如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,点F在AC的延长线上,且∠CBF=12∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBFBC和BF的长.9..如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且⊙O的直径AB 在线段AE上.(1)试说明CE是⊙O的切线;(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;(3)设点D是线段AC上任意一点(不含端点),连接OD,当12CD+OD 的最小值为6时,求⊙O的直径AB的长.A10.如图,在⊙O中,AB是直径,AC是弦,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E,连接BD.(1)求证DE是⊙O的切线;(2)若AD=2BD,CE=1,求⊙O的半径.11.如图,PA、PB切⊙O于A、B,C是线段PB上的点,且OC∥PA,CD⊥PA,垂足为点D.(1)求证:OC=AD;(2)若⊙O的半径为3,PA=9,求OC的长.12.如图,△ABC内接于⊙O,BC是⊙O的直径,弦AF交BC于点E,延长BC到点D,连接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为5,CE=2,求EF的长.13.如图,直线PA交⊙O于A、B两点,AE是⊙O的直径,C是圆上一点,且AC平分∠PAE,CD⊥PA于点D.(1)求证:CD是⊙O的切线;(2)若CD+AD=6,AE=10,求线段AB的长;.14.如图,△ABC中,AB=AC,以AB为直径的圆O交BC于点E,交AC于点F.作EH⊥AC,垂足为点H.(1)求证:EH是⊙O的切线;(2)连接OH,若CH=1,OH=7,求⊙O的半径.15.如图,以AB为直径的圆交△ABC的边AC于点D,∠CBD=∠BAC.(1)求证:BC 是⊙O 的切线; (2)若AE=6,tan ∠BAC=32,tan ∠BEC=35,求圆的直径.圆的基本概念与定理1.如图,E 为正方形ABCD 的边CD 的中点,经过A ,B ,E 三点的⊙O 与边的值为__________.2.如图,点D 为边AC 上一点,点O 为边AB 上一点,AD =DO .以O 为圆心,OD 长为半径作半圆,交AC 于另一点E ,交AB 于F ,G 两点,连接EF .若∠BAC =22°,则∠EFG =______.P F OBAADECOG B3.如图,⊙O 的直径AB 与弦CD 相交于点E ,若AE =5,BE =1,CD =42,则∠AED =___________.4.如图,半圆O 的直径AB=7,两弦AC ,BD 相交于点E ,弦CD=,且BD=5,则DE 等于_________.5.如图,半圆的直径AB 的长为10,弦AC 的长为6,AD 平分∠BAC 交半圆于D ,连接CD ,则CD 的长为____________.6.如图,在平面直角坐标系中,点A 的坐标为(3,0),以点A 为圆心,以2为半径在第一象限内作半圆,点P 是半圆上一动点,PQ ⊥OP 交y 轴于点Q ,则OQ 长度的最小值是_____________.27CDA BO xyQPOAEACDB O EDCBA7.如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,过CD 延长线上一点E 作⊙O 的切线,切点为F .若∠ACF =65°,则∠E 的度数是____________.8.如图,BC 是⊙O 的直径,点A 、D 分别在CB 、BC 的延长线上,且AB =BC =CD ,点P 是圆上任意一点(不与点B 、C 重合),则tan ∠APB ·tan ∠DPC 的值为_____________.9.如图,⊙O 中,BC 是弦,AD 过圆心O ,AD ⊥BC ,E 是⊙O 上一点,F 是AE 延长线上一点,EF =AE ,连接CF .若AD =9,BC =6,则线段CF 长度的最小值是_____________.CADEFHO ABCODPAECQ10.如图,AB 是⊙O 的直径,点P 在AB 的延长线上,BP =OB =2,点Q 在⊙O 上,连接PQ 交⊙O 于点C ,若PC =CQ ,则弦AQ 的长为_____________. 11.如图,⊙O 的直径AB 与弦CD 互相垂直,垂足为E ,AB =4,CD =23,动点P 从B 点出发,沿劣弧BD 运动到D 点,AF ⊥CP 于F ,则线段AF 的中点M 所经过的路径长为__________,线段AF 所扫过的图形面积为__________.12.如图,AB 是⊙O 的直径,AD 、BC 是⊙O 的切线,P 是⊙O 上一动点,若ABCD O EPFMDAPOAD =3,AB =4,BC =6,则△PDC 的面积的最小值是_____________.13.如图,⊙O 的直径AB 与弦CD 相交于点E ,AE =1,BE =5,∠AEC =45°,则CD 的长为_____________.14.如图,⊙O 的内接四边形ABCD 两组对边的延长线分别相交于点E 、F ,则若∠E =α,∠F =β,∠A =______________.(用含α、β的代数式表示)15.如图,AB 、AC 、AE 是⊙O 的弦,CD ⊥AB 于D ,AC 平分∠BAE 的外角,若AD =3,AE =2,则BD =_____________.新 初中数学 命题解题群 340 529 648ABOEDCABODC EFABCD EO ABFDCE O16. AB 是⊙O 的直径,C 是⊙O 上一点,D 是直径AB 上一点,DF ∥AC ,交BC 于E ,交⊙O 于F ,若AB =13,AC =5,DEEF=54,则CF 的长是__________17如图,AB 是⊙O 的直径,CB 、CD 是O 的切线,切点分别为B 、D ,且CB =AB ,连接AC 、BD 交于点E ,则 AEEC的值为_____________.18.如图,正方形ABCD 的边长为2,点E 在边AD 上(不与A 、D 重合),点F 在边CD 上,且∠EBF =45°,若△ABE 的外接圆⊙O 与CD 边相切,则△BEF 的面积为_____________.ABCDOE ADBCEFOTHANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。

相关文档
最新文档