湖南省株洲市茶陵县2020-2021学年九年级上学期期末数学试题 (1)
2020-2021学年度第一学期九年级数学期末考试试卷及答案

2020-2021学年度第⼀学期九年级数学期末考试试卷及答案2020-2021学年度第⼀学期期末考试试卷九年级数学⼀、选择题:本⼤题共10⼩题,每⼩题3分,共30分,每⼩题只有⼀个正确选项,将此选项的字母填在题后括号内.1.下列图形中既是轴对称图形⼜是中⼼对称图形的是( )2.⼀元⼆次⽅程xx=-232化成⼀般形式后,⼆次项系数为3,它的⼀次项系数和常数项分别是( )A.1、2B.-1、-2C.3、2D.0、-23.⊙O的半径r=10cm,圆⼼到直线的距离OA=8cm,则直线与圆的位置关系是( )A.相交B.相切C.相离D.不确定4.有下列四个说法,其中正确说法的个数是( )①图形旋转时,位置保持不变的点只有旋转中⼼;②图形旋转时,图形上的每⼀个点都绕着旋转中⼼旋转了相同的⾓度;③图形旋转时,对应点与旋转中⼼的距离相等;④图形旋转时,对应线段相等,对应⾓相等,图形的形状和⼤⼩都没有发⽣变化A.1个B.2个C.3个D.4个5.对于抛物线3)1(2y2+--=x,下列判断正确的是( )A.抛物线的开⼝向上B.抛物线的顶点坐标为(-1,3)C.对称轴为直线x=1D.当x>1时,y随x的增⼤⽽增⼤6.如图,点A,B,C三点均在⊙O上,若∠A=30°,则∠BOC的度数是( )A.30°7.如图,AB是⊙O的直径,点C在⊙O上,若∠A=40°,则∠B的度数为( )A.80°B.60°C.50°D.40°8.某超市⼀⽉份的营业额为100万元,第⼀季度的营业额共800万元,如果平均每⽉增长率为x,则所列⽅程应为( )A.100(1+x)2=800B.100+100×2x=800C.100+100×3x=800D.100[1+(1+x)+(1+x)2]=8009.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内⊙C上⼀点,∠BMO=120°,则⊙C的直径为( )A.6B.5C.3D.2310.⼆次函数)0(2≠++=acbxaxy的顶点坐标为(﹣1,n),其部分图象如图所⽰.以下结论错误的是( )A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的⽅程12+=++ncbxax⽆实数根.⼆、填空题:本⼤题共8⼩题,每⼩题3分,共24分.11.中国汉字有许多具有⼏何图形的特性,观察“⽺,⼠,⽥,旦”这4个汉字有⼀个共同特性都是________图形,其中_______字可看成中⼼对称图形.12.点P(-1,2)关于原点的对称点坐标为.13.抛物线23xy=先向右平移2个单位,再向上平移5个单位,所得抛物线的解析式为___ __.14.如图,△ABC为等边三⾓形,D为△ABC内⼀点,△ABD逆时针旋转后到达△ACP 的位置,则(1)旋转中⼼是____;(2)旋转⾓度是______;(3)△ADP是______三⾓形.15.如图所⽰,图中五⾓星绕着中⼼O最⼩旋转度能与⾃⾝重合.16.若⽅程有两个相等的实数根,则k= _________.17.如图,⊙O是等边三⾓形ABC的外接圆,点D是⊙O上⼀点,则∠BDC= _________.题号⼀⼆三四总分得分第15题图第14题图第17题图第18题图第6题图第10题图第7题图第9题图第1页(共4页)。
湘教版2020-2021学年度第一学期期末质量检测九年级数学试卷

第1页 共10页 ◎第2页 共10页 湘教版2020-2021学年度第一学期期末质量检测九年级数学试卷 满分:120分考试时间:100分钟 题号 一 二 三 总分得分评卷人 得分一、单选题(共30分)1.(本题3分)下列方程中,属于一元二次方程的是 ( )A .x-1=2x-3B .2x-x²=0C .3x-2=yD .2130x x -+=2.(本题3分)下列说法正确的是( )A .所有的等腰梯形都相似B .所有的平行四边形都相似C .所有的圆都相似D .所有的等腰三角形都相似3.(本题3分)在正方形网格中,ABC 如图放置,则tan CAB ∠=( )A .32B .23C .21313D .12 4.(本题3分)若点(-2,)、(-1,)、(2,)在反比例函数y=-100x 的图象上,则( ) A .>> B .>> C .>> D .>> 5.(本题3分)有四组线段长度如下:①2,1,2,2;② 3,2,6,4;③10,1,5,2;④1,3,5,7能成比例的线段有( ). A .1组 B .2组 C .3组 D .4组 6.(本题3分)如图,已知D 、E 分别是ABC 的AB 、AC 边上的一点,//DE BC ,且:1:2AD AB =,则ADE 与四边形DBCE 的面积之比为( ) A .1:4 B .1:3 C .1:2 D .2:3 7.(本题3分)关于x 的一元二次方程x 2-2x +m=0有两个不相等的实数根,则m 的取值范围是( ) A .m >0 B .m <1 C .m >1 D .m≤1第3页 共10页 ◎ 第4页 共10页8.(本题3分)函数y=kx+k ,与y=x k 在同一坐标系中的图象大致如图,则( )A 、K ﹥0B 、K ﹤0C 、-1﹤K ﹤0D 、K ﹤-19.(本题3分)某学校七年级1班统计了全班同学在1~8月份的课外阅读数量(单位:本),绘制了右边的折线统计图,下列说法正确的是( ) A .极差是47B .中位数是58C .众数是42D .极差大于平均数 10.(本题3分)如图,在平面直角坐标系中,过y 轴正半轴上一点C 作直线l ,分别与2y x=-(x <0)和3y x =(x >0)的图象相交于点A 、B ,且C 是AB 的中点,则△ABO 的面积是( )A .32B .52C .2D .5 评卷人得分 二、填空题(共32分)11.(本题4分)x x =2,则方程的解为___________.12.(本题4分)若点P 是线段AB 的黄金分割点,AB=10cm ,则较长线段AP的长是_____cm .13.(本题4分)已知x=1是一元二次方程2x mx n 0-+=的一个根,则22m 2mn n -+的值为 .14.(本题4分)在正方形网格中,ABC △的位置如图所示,则sin A ∠的值为__________.第5页 共10页 ◎ 第6页 共10页15.(本题4分)若数据12345,,,,x x x x x 的平均数为4,则数据123452,2,3,3,15x x x x x +-+-+的平均数为__________.16.(本题4分)如图,AB GH CD ,点H 在BC 上,AC 与BD 交于点G ,2AB =,4CD =,则GH 的长为__________.17.(本题4分)如图,矩形ABCD 中,AD=6,CD=6+22,E 为AD 上一点,且AE=2,点F ,H 分别在边AB ,CD 上,四边形EFGH 为矩形,点G在矩形ABCD 的内部,则当△BGC 为直角三角形时,AF 的值是 . 18.(本题4分)如图,双曲线3(0)y x x =>的图像经过正方形OCDF 的对角线交点A ,则这条双曲线与CD 的交点B 的坐标为____________.评卷人得分 三、解答题(共58分)19.(本题9分)计算:()0o 2020+4tan 45+3---20.(本题9分)解下列方程:(1) 2x - 4x - 1 = 0(2) ()24x += 5 (x +4 )21.(本题9分)如图,在△ABC中,∠B=∠AED,AB=5,AD=3,CE=6,求证:(1)△ADE∽△ABC;(2)求AE的长.22.(本题9分)如图,为了测得某建筑物的高度AB,在C处用高为1米的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A的仰角为60°.求该建筑物的高度AB.(结果保留根号)第7页共10页◎第8页共10页23.(本题10分)某商场销售一批名牌衬衣,平均每天可售出20件,每件衬衣盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衣降价10元,商场平均每天可多售出20件.若商场平均每天盈利1200元,每件衬衣降价多少元?24.(本题12分)阅读并回答问题:小亮是一位刻苦学习、勤于思考、勇于创新的同学.一天他在解方程2x1=-时,突发奇想:2x1=-在实数范围内无解,如果存在一个数i,使2i1=-,那么当2x1=-时,有x i=±,从而x i=±是方程2x1=-的两个根.据此可知:()1i可以运算,例如:32i i i1i i=⋅=-⨯=-,则4i=____,2011i=____,2012i=____;()2方程2x2x20-+=的两根为________(根用i表示).第9页共10页◎第10页共10页参考答案1.B【分析】【详解】A 、最高次数是1次,是一次方程,故选项错误;B 、正确;C 、含有2个未知数,故选项错误;D 、是分式方程,故选项错误.故选B .2.C【解析】A 选项中,因为“两个等腰梯形不一定相似”,所以A 中说法错误;B 选项中,因为“两个平行四边形不一定相似”,所以B 中说法错误;C 选项中,因为“所有的圆都是相似的”,所以C 中说法正确;D 选项中,因为“两个等腰三角形不一定相似”,所以D 中说法错误;故选C.点睛:根据相似多边形的定义:“对应边都成比例,对应角都相等的两个多边形相似”结合等腰梯形、平行四边形、圆和等腰三角形的特征分析即可得到正确结论.3.B【分析】依据正切函数的定义:正切函数是直角三角形中,对边与邻边的比值叫做正切.由Rt ABC 中3AB =,2BC =,求解可得.【详解】解:在Rt ABC 中,3AB =,2BC =, 则23BC tan CAB AB ∠==, 故选:B .【点睛】本题主要考查解直角三角形,解题的关键是掌握正切函数的定义.4.B【解析】∵反比例函数y=-100x的k =−100<0, ∴函数图象的两个分式分别位于二、四象限,且在每一象限内y 随x 的增大而增大. ∵−2<−1<0,∴点(−2,y 1),(−1,y 2)位于第二象限,∴y 2>y 1>0,∵点(2,y 3)位于第四象限,∴y 3<0,∴y 2>y 1>0> y 3.故选:B.5.C【解析】试题分析:成比例的线段的定义:若四条线段a 、b 、c 、d 满足a :b=c :d ,则称这四条线段成比例;也可运用bc=ad 即其中两对数的乘积相等,也可说明这四条线段成比例. ①2)2(12=⨯,②6243⨯=⨯,③52110⨯=⨯,均能成比例④无法找到其中有两对数的乘积相等,故不能成比例故选C.考点:成比例的线段的定义点评:本题属于基础应用题,只需学生熟练掌握成比例的线段的定义,即可完成. 6.B【解析】【分析】因为DE ∥BC ,所以可得△ADE ∽△ABC ,根据相似三角形的面积比等于相似比的平方解答即可.【详解】∵DE ∥BC ,∴△ADE ∽△ABC ,∴21==4ADE ABC S AD SAB ⎛⎫ ⎪⎝⎭,∴1=3ADE DBCE S S 四边形,故选B . 【点睛】本题考查了相似三角形的判定与性质,熟记相似三角形面积的比等于相似比的平方是解题的关键.7.B【分析】根据根的判别式,令△>0即可求出根的判别式.【详解】∵关于x 的一元二次方程x 2−2x+m=0有两个不相等的实数根,∴△=(−2)2−4×m>0,∴4−4m>0,解得m<1.故答案选B.【点睛】本题考查的知识点是根的判别式,解题的关键是熟练的掌握根的判别式.8.A .【解析】试题分析:由图可知,函数k kx y +=在第一、二、三象限中,可得k>0,又 反比例函数xk y =在第一、三象限中,∴k>0,综上所述,k>0. 考点:1、一次函数图像与性质;2、反比例图像与性质.9.B【详解】解:A. 极差为:83−28=55,故错误;B. 中位数为:(58+58)÷2=58,正确;C. ∵58出现的次数最多,是2次,∴众数为:58,故错误;D.计算可知平均数为56.25大于极差.故错误.故选B .10.B【解析】【分析】根据题意A 、B 的横坐标化为相反数,所以设A (2,m m ---)则B (m ,3m),根据题意中位线等于上下底和的一半,求得表示出OC ,然后根据S △ABO =S △AOC +S △BOC 即可求得.【详解】∵C 是AB 的中点,∴设A (2,m m ---)则B (m ,3m), ∴OC =132522mm m ⎛⎫+= ⎪⎝⎭ ∴S △ABO =S △AOC +S △BOC =1552222m m ⨯⨯= 故选:B .【点睛】 本题考查了反比例函数和一次函数的交点,根据题意表示出交点的坐标是解题的关键. 11.,1,021==x x【解析】试题分析:x x =2,20,(1)0x x x x -=-=,所以,1,021==x x考点:解一元二次方程.12. 5【解析】∵P 是线段AB 的黄金分割点,AP >BP ,∴AP=12AB , ∵AB=10cm ,∴AP=105=.故答案为5.点睛:若点P 是线段AB 的黄金分割点,且AP>BP ,则AP 2=BP·AB ,即AP=51-AB. 13.1.【解析】 试题分析:∵x=1是一元二次方程2x mx n 0-+=的一个根,∴1m n 0m n 1-+=⇒-=. ∴()2222m 2mn n m n 11-+=-==.试题解析:考点:1. 方程的根;2. 求代数式的值;3.整体思想的应用. 14.1010【解析】过C 作CD ⊥AB 于D ,∵AB 224+4=42,BC =2,∴12×AB ⋅CD =12BC ×4, ∴CD 2,∵AC 222+4=25∴sin ∠A =2101025CD AC ==, 故答案为10. 15.7【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据1x ,2x ,3x ,4x ,5x 的和,然后再用平均数的定义求新数据的平均数.【详解】解:一组数据1x ,2x ,3x ,4x ,5x 的平均数是4,有123451()45x x x x x ++++=, ∴1234520x x x x x ++++=,那么12x +,22x -,33x +,43x -,515x +的平均数为:1234512345111(223315)(15)357555x x x x x x x x x x ++-+++-++=+++++=⨯=; 故答案为:7.【点睛】本题考查的是算术平均数的求法及运用,解题的关键是掌握算术平均数的定义. 16.43【解析】∵AB CD ,∴ABD D ∠∠=,A ACD ∠∠=,∴ABG CDG ∽, ∴BG AB 21DG CD 42===, ∵GH CD ,∴BHG BCD ∽, ∴BG HG 1BD CD 3==, ∴14GH CD 33==. 17.2或4【解析】试题分析:如图过点G 作MN ⊥AB 垂足为M ,交CD 于N ,作GK ⊥BC 于K .∵四边形EFGH 是矩形,∴GH=EF ,GH ∥EF ,∠A=90°,∴∠DNM+∠NMA=90°,∴∠AMN=∠DNM=90°,∵CD ∥AB ,∴∠NHG=∠AFE ,在△HNG 和△FAE 中,{HNG FAENHG AFE GH EF∠=∠∠=∠=,∴△HNG ≌△FAE ,∴AE=NG=2,ED=GM=4,∵四边形NGKC 、四边形GMBK 都是矩形,∴CK=GN=2,BK=MG=4,当∠CGB=90°时,∵△CGK ∽△GBK ,∴CK GK GK BK=, ∴GK=MB=CN=22,∴DN=AM=AB ﹣MB=6,∴四边形AMND 是正方形,设AF=x ,则FM=6﹣x ,∵△AEF ∽△MFG ,∴AE AF MF MG=, ∴264x x =- ∴x 2﹣6x+8=0,∴x=2或4.∴AF=2或4.故答案为2或4考点:矩形的性质、全等三角形得到和性质、相似三角形的判定和性质18.2⎛⎫ ⎪ ⎪⎝⎭【分析】根据题意先求出正方形的边长,然后确定B 的横坐标,代入解析式即可求得B 的纵坐标.【详解】解:设正方形的边长为2a ,则点A 的坐标为(a ,a ),因为A 在3y x =, ∴a ×a=3,即a =∴B 的横坐标为∵B 在3y x =上,∴y ==,∴点B 的坐标为2⎛⎝⎭,故答案为:2⎛ ⎝⎭.【点睛】本题主要了正方形的性质、反比例函数图象上点的坐标特征以及勾股定理等知识,求出点A 的坐标是关键.19.5【分析】利用零次幂的性质、二次根式的性质、特殊角的三角函数值、绝对值的性质进行计算,再算加减即可.【详解】解:原式12135.【点睛】此题主要考查了实数运算,关键是掌握零次幂、二次根式的性质、特殊角的三角函数值、绝对值的性质.20.(1)x 2=+ 或 x 2=(2)x 4=- 或 x 1=【解析】【分析】(1)根据配方法,即可解出方程的解;(2)根据因式分解法中的提公因式法,即可解出方程的解;【详解】解:(1)2410x x --=2445x x -+=()225x -=x 2-=∴x 2=或 x 2=-.(2)()24x += 5 (x +4 )∴()()24540x x +-+=()()x 4x 450++-=()()x 4x 10+-=∴x 4=- 或 x 1=【点睛】本题考查了解二元一次方程的解法,解题的关键是掌握配方法解题和因式分解法解题. 21.(1)证明见解析(2)9【解析】【分析】(1)利用“两角法”进行证明;(2)利用(1)中相似三角形的对应边成比例来求AE 的长度.【详解】(1)∵∠B=∠AED ,∠A=∠A ,∴△ADE ∽△ABC(2)解:由(1)知,△ADE ∽△ABC ,则AD AB = AE EC, 即 AD AB = AE AE EC + . ∵AB=5,AD=3,CE=6,∴ 35 = 6AE AE + , ∴AE=9【点睛】本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.22.该建筑物的高度AB 为(61+米.【分析】设AM x =米,根据等腰三角形的性质求出FM ,利用正切的定义用x 表示出EM ,根据题意列方程,解方程得到答案.【详解】解:设AM x =米,在Rt AFM ∆中,45AFM ︒∠=,∴FM AM x ==,在Rt AEM ∆中,AM tan EMAEM ∠=,则tan 3AM EM x AEM ==∠,由题意得,FM EM EF -=,即403x x -=,解得,60x =+,∴61AB AM MB =+=+答:该建筑物的高度AB 为(61+米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23.20元.【解析】【分析】利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可.【详解】解:设每件衬衫应降价x元.根据题意,得(40-x)(20+2x)=1200整理,得x2-30x+200=0解得x1=10,x2=20.∵“扩大销售量,减少库存”,∴x1=10应略去,∴x=20.答:每件衬衫应降价20元.【点睛】本题考查的知识点是一元二次方程的应用,解题关键是读清题意,进行解答. 24.(1)1;-i;1(2)1+i和1-i【分析】(1)原式各项根据阅读材料中的方法计算即可得到结果;(2)一元二次方程解法--配方法,结合阅读材料中的方法求出解即可.【详解】解:(1)由题意可得i4=1,i2012=1,i2013=i;故答案为1;1;i;(2)方程整理得:x2-2x=-2,配方得:x2-2x+1=-1,即(x-1)2=-1,开方得:x-1=±i,解得:x1=1+i,x2=1-i.故答案为x1=1+i,x2=1-i。
湖南省2020-2021学年九年级上学期期末数学试题

2020年下期九年级期终教学质量检测数学试卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题4分,共40分):1.下列函数中,表示的是x y 反比例函数的是( )A . x y 2=B . x y 2= C .xy 2= D .x y =2.在Rt △ABC 中,∠C =90°,若A ∠=30°,则A sin 的值是 ( )A .21B .22C .23D .13.若四边形ABCD 与四边形D C B A ''''相似,AB 与B A '',AD 与D A ''分别是对应边,cm AB 8=,cm B A 6='',cm AD 5=,则D A ''等于 ( )A . cm 215B . cm 415C .cm 320D .cm 5484.每年5月11日是由世界卫生组织确定的世界防治肥胖日,某校为了了解全校2 000名学生的体重情况,随机抽测了200名学生的体重,根据体质指数(BMI )标准,体重超标的有15名学生,则估计全校体重超标学生的人数为 ( )A. 100B. 150C. 200D. 20005.用配方法解方程362=-x x 时,变形正确的是 ( )A.3)3(2=-x B .9)3(2=-x C .12)3(2=-xD .12)3(2=+x6.⊙O 的直径为10,圆心O 到直线l 的距离为4,则直线l 与⊙O 的位置关系是( )A. 相交B. 相切C. 相离D. 无法确定7.对于二次函数212+-=-)(x y 的图像,下列说法正确的是( ) A. 图像有最低点,其坐标是),(21 B. 图像有最高点,其坐标是),(21- C. 的增大而减小随时,当x y x 1< D. 的增大而减小随时,当x y x 1> 8.在△ABC 中,13+=BC ,∠B =45°,∠C =30°,则△ABC 的面积为( )A .213- B .123+ C .213+ D .13+9.如图,在半径为4的⊙O 中,CD 是直径,AB 是弦,且CD ⊥AB ,垂足为点E,∠AOB=90°,则阴影部分的面积是( )A .44-πB .42-πC .π4D .π210.如图,已知顶点为)63(--,的抛物线c bx a y x ++=2经过点)41(--,,则下列结论:①ac b 42>;②62-≥++c bx a x ;③639-=+-c b a ;④关于x 的一元二次方程42-=++c bx a x 的根为15--和;⑤若点)2(m ,-,)5(n ,-在抛物线上,则n m >,其中正确结论的个数共有 ( )A .1个B .2个C .3个D .4个 二、填空题(本题共8小题,每小题4分,共32分): 11.一元二次方程0)3)(2(=+-x x 的根是 .12.将抛物线x y 23=先向左平移2个单位长度,再向上平移1个单位长度,所得新抛物线的表达式为 . 13.若53=b a ,则=+ba a_______. 14.数据1,2,3,4,5的方差为 .15.在△ABC 中,∠A ,∠B 均为锐角,且有03tan )21(cos 2=+--B A ,则△ABC 是 三角形.16.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC.若28==CD AB ,,则EC 的长为 .17.某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x ,则x =________.18.如图所示,在△ABC 中,68==AC AB ,,P 是AC 的中点,过P 点的直线交AB 于点Q ,若以A 、P 、Q 为顶点的三角形和以A 、B 、C 为顶点的三角形相似,则AQ 的长为________. 三、解答题(本大题共8小题,共78分): 19.(本小题满分6分)计算: ︒-︒+︒-︒30sin 2360cos 30tan 45sin 22220.(本小题满分8分,每小题4分)解下列方程: (1).1)1(2=-x (2). 24)5(=+x x21.(本小题满分8分)国家规定,“中小学生每天在校体育锻炼时间不小于1小时”,某地区就“每天在校体育锻炼时间”的问题随机调查了若干名中学生,根据调查结果制作如下统计图(不完整).其中分组情况:A 组:时间小于0.5小时;B 组:时间大于等于0.5小时且小于1小时;C 组:时间大于等于1小时且小于1.5小时;D 组:时间大于等于1.5小时.根据以上信息,回答下列问题:(1)A 组的人数是________人,并补全条形统计图; (2)本次调查数据的中位数落在________组;(3)根据统计数据估计该地区25 000名中学生中,达到国家规定的每天在校体育锻炼时间的人数约有多少人? 22.(本小题满分10分)在Rt △ABC 中,∠C=90°,△ACD 沿AD 折叠,使得点C 落在斜边AB 上的点E 处. (1)求证:△BDE ∽△BAC ;(2)已知AC=6,BC=8,求线段AD 的长度.23.(本小题满分10分)关于x 的一元二次方程xx xk x 212034,的两个实根是=-+-.(1)已知k =2,求x x x x 2121++; (2)若x x 213=,试求k 的值。
湘教版2020-2021学年度九年级数学第一学期期末模拟能力测试题(附答案详解)

湘教版2020-2021学年度九年级数学第一学期期末模拟能力测试题(附答案详解)一、单选题1.函数21k y x +=(k 为常数)的图象过点(2,y 1)和(5,y 2),则y 1与y 2的大小关系是( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .与k 的取值有关2.已知23+是关于x 的方程240x x c -+=的一个根,则方程的另一个根与c 的值是( )A .23- ,1B .63--,1583-C .32-,-1D .23+,743+3.已知R t A B C 中,A B∠≠∠,点P 是边AC 上一点(不与A 、C 重合),过P 点的一条直线与A B C 的边相交,所构成的三角形与原三角形相似,这样的直线有( )条A .1B .2C .3D .44.下列方程中,一元二次方程有( )①3x 2+x =20;②2x 2﹣3xy +4=0;③214x x -=;④x 2=1;⑤2303x x -+= A .2个 B .3个 C .4个 D .5个5.用配方法解方程x 2﹣8x +2=0,则方程可变形为( )A .(x ﹣4)2=5B .(x +4)2=21C .(x ﹣4)2=14D .(x ﹣4)2=8 6.下列是随机事件的是( )A .口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球B .平行于同一条直线的两条直线平行C .掷一枚图钉,落地后图钉针尖朝上D .掷一枚质地均匀的骰子,掷出的点数是77.如图,在扇形AOB 中,AC 为弦,140A O B ∠︒=,60C A O ∠︒=,6O A =,则B C 的长为( )A .43πB .83πC .23πD .2π8.2s in60︒的值等于( )A .1 B 2 C 3 D .29.关于一元二次方程x 2﹣4x +4=0根的情况,下列判断正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .有且只有一个实数根D .没有实数根二、填空题 10.如图,直线2y x b =+与双曲线()0k y k x=>交于点A 、D ,直线AD 交y 轴、x 轴于点B 、C ,直线23y x n =-+过点A ,与双曲线()0k y k x =>的另一个交点为点E ,连接BE 、DE ,若4A B E S ∆=,且:3:4A B E D B ES S ∆∆=,则k 的值为_____.11.一个扇形的面积为4πcm 2,弧长为2πcm ,则此扇形的圆心角为_____度.12.已知方程5x 2+kx ﹣6=0有一个根是2,则另一个根是_____,k =_____.13.如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是________.主视图 左视图 俯视图14.如图所示,Rt △ABC 与Rt △AB ′C ′关于点A 成中心对称,若∠C =90°,∠B =30°,BC =1,则BB ′的长度为_____.15.若1x ,2x 是一元二次方程2230x x +-=的两个根,则221212x x xx 的值是_________.16.如图,点A ,B ,C ,D 在O 上,2A B B C =,3A D B C=,延长B C ,AD 交于点P ,若C B D18∠=,则P ∠的大小为________.17.如图,在A B C △中,AD 是中线,F 是AD 上的点,:2:3AF F D =,BF 的延长线交AC 于点E ,则:A EE C =__________.18.如图,反比例函数 y =4x的图象经过矩形 OABC 的一个顶点 B ,则矩形 OABC 的面积等于___.19.已知Rt △ABC 中,∠C=90°,AC=3,BC=4,以C 为圆心,r 为半径的圆与边AB 有两个交点,则r 的取值范围是___________.三、解答题20.在1~100,若存在整数n ,使2x x n +-能分解为两个系数为整数的一次式的乘积,则这样的n 有几个?21.如图,正方形ABCD 的边长为2+1,对角线AC 、BD 相交于点O ,AE 平分∠BAC 分别交BC 、BD 于E 、F ,(1)求证:△ABF ∽△ACE ;(2)求tan ∠BAE 的值;(3)在线段AC 上找一点P ,使得PE+PF 最小,求出最小值.22.如图,已知一次函数y 1=x +m 的图象与x 轴y 轴分别交于点A 、B ,与反比例函数y 2=2k x (x <0)的图象分别交于点C 、D ,且C 点的坐标为(﹣1,2).(1)分别求出一次函数及反比例函数的关系式;(2)求出点D 的坐标并直接写出y 1>y 2的解集.23.计算: 03(1)2c o s 30π-+--︒ 24.已知关于x 的方程x 2﹣2(m+1)x+m 2﹣3=0.(1)当m 取何值时,方程有两个不相等的实数根?(2)设x 1、x 2是方程的两根,且(x 1+x 2)2﹣(x 1+x 2)﹣12=0,求m 的值.25.如图,已知射线DE 与x 轴和y 轴分别交于点(30)D ,和点E(04),.动点C 从点(50)M ,出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动点P 从点D 出发,也以1个单位长度/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒.(1)填空:点C 的坐标___________,点P 的坐标__________ (用含t 的代数式表示) (2)以点C 为圆心、12t 个单位长度为半径的C ,与x 轴交于A 、B 两点(点A 在点B 的左侧),连接P A 、PB .①当C 与射线DE 有公共点时,求t 的取值范围;②当P A B △为等腰三角形时,求t 的值.26.如图,在R t A B C ∆中,90C ∠=︒,D 是B C 的中点,D E A B ⊥,垂足为E ,且1tan 2B =,7A E =,求DE 的长.27.一天晚上,哥哥和弟弟拿两根等长的标杆,ABC D 直立在一盏亮着的路灯下,然后调整标杆位置,使它们在该路灯下的影子,BE DF 恰好在一条直线上(如图所示). (1)请在图中画出路灯灯泡P 的位置;(2)哥哥和弟弟测得如下数据:1.6A B C D ==米,1B E =米,2D F =米,两根标杆的距离3.6A C B D == 米,且//A C B D.请你根据以上信息计算灯泡P 距离地面的高度.参考答案1.C【解析】【分析】先根据反比例函数的解析式判断出反比例函数的图象所在的象限及增减性,再根据各点横坐标的值判断出y 1,y 2的大小关系即可.【详解】解:∵(k 2+1)>0, ∴函数21k y x+=(k 为常数)的图象位于第一、三象限,且在每一象限内,y 随x 的增大而减小.∴点(2,y 1,y 2)都在第四象限,∵2∴y 1>y 2.故选:C .2.A【解析】【分析】把代入方程x 2-4x+c=0就得到关于c 的方程,就可以解得c 的值,进而求出方程式和它的解.【详解】把2代入方程x 2-4x+c=0,得2(4(0c += 解得c=1;所以原方程是x 2-4x+1=0,解得方程的解是;∴另一解是故选:A【点睛】本题考查的是一元二次方程的根即方程的解的定义.3.D【解析】【分析】过点D作直线与另一边平行或垂直,或∠CPD=∠B即可.【详解】如图,过点P作AB的平行线,或作BC的平行线,或作AB的垂线,或作∠CPD=∠B,共4条直线,故选D.【点睛】考查相似三角形的判定,掌握相似三角形的几种判定方法是解题的关键.4.B【解析】【分析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选B.【点睛】判断一个方程是否是一元二次方程时,首先判断方程是整式方程,若是整式方程,再把方程进行化简,化简后是含有一个未知数,并且未知数的最高次数是2,在判断时,一定要注意二次项系数不是0.5.C【解析】【分析】按照配方法的过程进行配方,即可得出答案.【详解】解:x2﹣8x+2=0,x2﹣8x=﹣2,x2﹣8x+16=﹣2+16,(x﹣4)2=14,故选C.【点睛】本题考查了解一元二次方程的方法——配方法. 掌握配方法的步骤是解题的关键.6.C【解析】【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】A. 口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球,是不可能事件,故不符合题意;B. 平行于同一条直线的两条直线平行,是必然事件,故不符合题意;C. 掷一枚图钉,落地后图钉针尖朝上,是随机事件,故符合题意;D. 掷一枚质地均匀的骰子,掷出的点数是7,是不可能事件,故不符合题意,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.B【解析】【分析】连接O C ,根据等边三角形的性质得到80B O C ∠︒=,根据弧长公式计算即可. 【详解】连接O C ,60O A O C C A O ∠︒=,=, A O C∴为等边三角形, 60A O C ∴∠︒=, 1406080B O C A O B A O C ∴∠∠-∠︒-︒︒===, 则B C 的长80681803ππ⨯==, 故选B .【点睛】本题考查弧长的计算,等边三角形的判定和性质,掌握弧长公式:180n r l π=是解题的关键. 8.C【解析】【分析】根据特殊角的三角函数值计算即可.【详解】解:把sin45°3=2×33. 故选:C.【点睛】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.9.B【解析】【分析】根据方程根的判别式的值即可得解.【详解】解:∵方程x2-4x+4=0的二次项系数a=1,一次项系数b=-4,常数项c=4,∴△=b2-4ac=(-4)2-4×1×4=0,∴方程x2-4x+4=0有两个相等的实数根.故选B.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式:(1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;(3)当△=b2﹣4ac<0时,方程没有实数根.10.8 3【解析】【分析】过点A作AF⊥y轴于点F,过点D作DG⊥y轴于点G,先联立直线AB反比例函数的解析式求出A、D点的横坐标,得到AF与DG,再由三角形的面积比与相似三角形的比例线段得到k与b的关系,进而用b的代数式表示A点坐标,再将其代入AE的解析式中,用b表示n,进而联立AE与反比例函数解析式求出E的坐标,最后根据已知三角形的面积,得到b的方程求得b,问题便可迎刃而解.【详解】解:过点A作AF⊥y轴于点F,过点D作DG⊥y轴于点G,∴AF∥DG,∴△ABF∽△DBG,∴AF AB DG DB=, ∵S △ABE :S △DBE =3:4, ∴34A B D B =, 由2x +b =k x 得,2x 2+bx ﹣k =0, 解得,x, 即A,D, ∴AF,DG,34=, 解得,k =6b 2,∴A=32b ,纵坐标为263322k b b b ==4b , ∴A (32b ,4b ), 把A (32b ,4b )代入y =﹣23x +n 中,得n =5b , ∴AE 的解析式为:y =﹣23x +5b , 联立方程组22536y x b b y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得11324x b y b⎧=⎪⎨⎪=⎩ ,226x b y b =⎧⎨=⎩, ∴E (6b ,b ),∵B (0,b ),∴BE ∥x 轴,∴BE=6b,∴12A B ES B E B F=⨯=216392b b b⨯⨯=,∵S△ABE=4,∴9b2=4,∴b2=49,∴k=6b2=6×49=83.故答案为83.【点睛】本题是反比例函数图象与一次函数图象的交点问题,主要考查了求反比例函数与一次函数图象的交点坐标,相似三角形的判定与性质,三角形的面积公式的应用,关键是根据相似三角形得到b与的关系,以及由已知三角形的面积列出方程.11.90【解析】【分析】设扇形圆心角的度数为n,半径为r,再由扇形的面积公式求出r的值,根据弧长公式即可得出结论.【详解】解:设扇形圆心角的度数为n,半径为r,∵扇形的弧长为2π,面积为4π,∴4π=12×2πr,解得r=4.∵4180nπ⋅⨯=2π,∴n=90°.故答案为:90.【点睛】本题考查了扇形的面积公式,熟练掌握所写的面积公式是解题的关键.12.﹣35﹣7.【解析】【分析】先设方程5x 2+kx-6=0的另一个根为x 1,利用根与系数的关系,即可得2x 1=-65,x 1+2=-5k ,解此方程组即可求得答案.【详解】解:设方程5x 2+kx-6=0的另一个根为x 1,∵方程5x 2+kx-6=0有一个根是2,∴2x 1=-65, ∴x 1=-35, ∵x 1+2=-5k , 即-35+2=-5k , 解得:k=-7.故答案为:-35,-7. 【点睛】题考查了一元二次方程的解的定义与根与系数的关系.此题难度适中,解此题的关键是注意掌握若x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 13.22【解析】【分析】利用主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,进而判断图形形状,即可得出小正方体的个数.【详解】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二层有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.∴这个几何体的表面积是5×6-8=22, 故答案为:22.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”是解题的关键.14【解析】【分析】在直角△ABC 中求得AB ,而BB′=2AB ,据此即可求解.【详解】∵△ABC 与△A ′B ′C ′关于点A 中心对称;2,B B A B ∴'=∵在直角△ABC 中,301B B C ∠==,,∴c o s 3032B C A B ==∴2B B A B '= 【点睛】 考查中心对称的性质以及解直角三角形,熟练掌握锐角三角函数是解题的关键.15.6【解析】【分析】首先把221212x x xx 提公因式进行因式分解得到1212()xx x x ,然后运用韦达定理,1212,c b x x x x a a=+=-,最后代入求值. 【详解】 221212x x xx =1212()xx x x由韦达定理可知:12123,2x x x x =-+=-代入得: 1212()(3)(2)6x x xx 故答案为6【点睛】本题考查了一元二次方程两根之间的关系,由韦达定理可知,20a xb xc ++=的两根为12,x x ,则1212,cb x x x x a a=+=-. 16.36【解析】【分析】连接AC ,根据圆周角定理得到∠CAD=∠CBD=18°,设∠BAC=x ,根据三角形的内角和列方程得到∠BAD=45°,∠ABC=81°,于是得到结论【详解】连接AC ,∴∠CAD=∠CBD=18°, 设∠BAC=x ,∵2A B B C =,3A D B C=, ∴∠ABD=3∠BAC ,∠ADB=2∠BAC ,∴∠ABD=3x ,∠ADB=2x ,∴x+2x+3x+18°=180°,∴x=27°, ∴∠BAD=45°,∠ABC=99°, ∴∠P=180°-45°-99°=36°, 故答案为36°. 【点睛】本题考查了圆周角定理,三角形的内角和定理,熟练掌握三角形的内角和定理是解题的关键. 17.1:3【解析】【分析】过点D 作DG ∥AC ,证得△DGF ∽△AEF,得到23AE DG =,再依据DG ∥AC ,证得△BDG ∽△BCE ,得到2C E D G =,由此求得:A EE C =1:3. 【详解】如图,过点D 作DG ∥AC ,则△DGF ∽△AEF,∴DG DF AE AF=, ∵:2:3A F F D =, ∴32D G A E =,23AE DG =, ∵DG ∥AC ,则△BDG ∽△BCE, ∴12D G B D C E B C ==,即2C E D G =, ∴:A EE C =1:3, 故填1:3.【点睛】此题考察相似三角形的判定即性质,过点D 作DG ∥AC 是解题的关键,由平行线证得三角形相似,从而得到23AE DG =,2C E D G =,继而求得结果. 18.4【解析】【分析】因为过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积S 是个定值,即S=|k|.【详解】由于点B在反比例函数y=4x的图象上,k=4故矩形OABC的面积S=|k|=4.故答案为:4【点睛】本题考查了反比例函数系数k的几何意义,掌握过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|是解题的关键.19.123 5r<≤【解析】【分析】要使圆与斜边AB有两个交点,则应满足直线和圆相交,且半径不大于AC.要保证相交,只需求得相切时,圆心到斜边的距离,即斜边上的高即可.【详解】如图,∵BC>AC,∴以C为圆心,R为半径所作的圆与斜边AB有两个交点,则圆的半径应大于CD,小于或等于AC,由勾股定理知,22A CB C+.∵S△ABC=12AC•BC=12CD•AB=12×3×4=12×5•CD,∴CD=125,即R的取值范围是125<r≤3.故答案为:125<r≤3. 【点睛】 本题利用了勾股定理和垂线段最短的定理,以及直角三角形的面积公式求解.特别注意:圆与斜边有两个交点,即两个交点都应在斜边上.20.9个.【解析】【分析】根据根与系数的关系,可设x 2+x-n=(x+a )(x+b ),即可得a+b=1,ab=-n ,可得a ,b 符号相反,且a ,b 的绝对值是相邻的两个数,然后由小到大分类讨论即可求得.解题时注意不要漏解.【详解】解:由题意设22()()()x x n x a x b x a b x a b+-=+-=+--, 两边对应得1a b a b n -=⎧⎨=⎩, ∴1a b -=得1a b =+; 代入a b n =得(1)b b n ⨯+=,可见n 是两个连续自然数的乘积,所以在1~100,两个连续自然数相乘是,122⨯=,236⨯=,3412⨯=,4520⨯=,5630⨯=,6742⨯=,7856⨯=,8972⨯=,91090⨯=,因为1011100⨯>, 因此,满足条件的n 的所有值共有9个,分别为2,6,12,20,30,42,56,72,90.【点睛】本题考查的是一元二次方程的整数根与有理数,根据二次三项式分解为两个一次式的乘积,得到两个一次式的所有情况,然后确定n 的值.21.(1)证明见解析;(2)tan ∠EAB ﹣1;(3)PE+PF .【解析】【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)如图1中,作EH ⊥AC 于H .首先证明BE=EH=HC ,设BE=EH=HC=x ,构建方程求出x 即可解决问题;(3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小,最小值为线段EH 的长;【详解】(1)证明:∵四边形ABCD 是正方形,∴∠ACE =∠ABF =∠CAB =45°,∵AE 平分∠CAB ,∴∠EAC =∠BAF =22.5°,∴△ABF ∽△ACE .(2)解:如图1中,作EH ⊥AC 于H .∵EA 平分∠CAB ,EH ⊥AC ,EB ⊥AB ,∴BE =EB ,∵∠HCE =45°,∠CHE =90°,∴∠HCE =∠HEC =45°,∴HC =EH ,∴BE =EH =HC ,设BE =HE =HC =x ,则EC 2x ,∵BC 2+1,∴x+x 2+1,∴x =1,在Rt △ABE 中,∵∠ABE =90°,∴tan ∠EAB =221B E A B == ﹣1. (3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小.作EM ⊥BD 于M .BM =EM 2,∵AC 22A B B C+=2, ∴OA =OC =OB =12AC 22+ , ∴OH =OF =OA•tan ∠OAF =OA•tan ∠EAB 22+ •2﹣12,∴HM =OH+OM 22+,在Rt △EHM 中,EH 2222222E M H M 22⎛⎫⎛⎫+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭= 22+.. ∴PE+PF 22+.. 【点睛】本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型. 22.(1) 一次函数的解析式为y 1=x +3,反比例函数的解析式为:y 2=﹣2x;(2)D (﹣2,1),y 1>y 2的解集为﹣2<x <﹣1. 【解析】 【分析】(1)把点C (﹣1,2)分别代入一次函数y 1=x +m ,反比例函数y 2=2k x,即可求出一次函数及反比例函数的关系式;(2)联立解析式,解方程组即可求得D 的坐标,然后根据图象即可求得y 1>y 2为的解集. 【详解】(1)把点C (﹣1,2)代入y 1=x +m 得:2=﹣1+m ,解得:m =3,把点C (﹣1,2)代入y 2=2k x(x <0)得:2=21k -,解得:k 2=﹣2,故一次函数的解析式为y 1=x +3,反比例函数的解析式为:y 2=﹣2x. (2)解32y x y x =+⎧⎪⎨=-⎪⎩,得:12x y =-⎧⎨=⎩或21x y =-⎧⎨=⎩,∴D (﹣2,1),∴y 1>y 2的解集为﹣2<x <﹣1. 【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,难度适中.注意数形结合思想的应用. 23.1 【解析】 【分析】利用负数的绝对值等于本身的相反数,a 0=1(a≠0),cos30°代入计算.【详解】()012c o s 30π-+--︒12- =1. 【点睛】考查二次根式的运算,解题关键是牢记特殊角三角函数值以及公式a 0=1(a≠0)、绝对值的性质.24.(1)m >-2 (2)m=1 【解析】【分析】(1)若一元二次方程有两不等实数根,则根的判别式△=b 2-4ac >0,建立关于m 的不等式,求出m 的取值范围.(2)给出方程的两根,根据所给方程形式,可利用一元二次方程根与系数的关系得到x 1+x 2=2(m+1),代入且(x 1+x 2)2-(x 1+x 2)-12=0,即可解答. 【详解】解:(1)∵方程有两个不相等的实数根,∴△=b 2﹣4ac =[﹣2(m+1)]2﹣4×1×(m 2﹣3)=16+8m >0, 解得:m >﹣2;(2)根据根与系数的关系可得: x 1+x 2=2(m+1),∵(x 1+x 2)2﹣(x 1+x 2)﹣12=0, ∴[2(m+1)]2﹣2(m+1)﹣12=0, 解得:m 1=1或m 2=﹣(舍去) ∵m >﹣2; ∴m =1. 【点睛】本题考查根与系数的关系,解一元二次方程-因式分解法,根的判别式. 25.(1)C(5-t,0), 343,55t t P ⎛⎫- ⎪⎝⎭;(2)①41633t ≤≤; ②43t =或4t =或5t =或203t = 【解析】 【分析】(1)根据题意,得t 秒时,点C 的横坐标为5t -,纵坐标为0;过点P 作PQ x ⊥轴于点Q ,根据相似三角形对应边成比例列出比例式求出P Q 、D Q 再求出O Q ,从而得解; (2)①当点A 到达点D 时,所用的时间是t 的最小值,此时1532D CO C O D t t =-=--=,得到43≥t ;当圆C 在点D 左侧且与ED 相切时,为t 的最大值.如图,易得R t C D F R t E D O,有()3545t C F --=,求解得到t 的最大值. ②当P A B △为等腰三角形时,有三种情况:P A A B =,P A P B =,P B A B =,根据勾股定理,求得每种情况的t 的值. 【详解】(1)如图,t 秒时,有P D t =,5D E =,4O E =,3O D =,则:::P Q E O D Q O D P D E D ==, ∴45PQ t =,3D Q t 5=.∴C(5-t,0), 343,55t t P ⎛⎫- ⎪⎝⎭(2)①当⊙C 的圆心C 由点M(5,0)向左运动,使点A 到点D 并随⊙C 继续向左运动时 有3532t -≤,即43t ≥. 当点C 在点D 左侧时,过点C 作CF ⊥射线DE ,垂足为F ,则由∠CDF=∠EDO 得ΔCDF ∽ΔEDO ,则()3545t C F --=.解得485t CF -=. 由2t C F ≤即4852t t -≤,解得163t ≤.当⊙C 与射线DE 有公共点时,t 取值范围为41633t ≤≤.②当PA=AB 时,过P 作PQ ⊥x 轴,垂足为Q,有222P A P Q A Q=+ ∴2229184205t t t -+=, 即2972800t t -+=,解得143t =,2203t =. 当P A P B=时,有P C A B ⊥,此时P 、C 横坐标相等, ∴3535t t -=-.解得35t =.当P B A B =时,有222221613532525P BP Q B Q t t t ⎛⎫=+=+--+ ⎪⎝⎭. ∴221334205t t t ++=, 即278800t t --=. 解得44t =,5207t =-(不合题意,舍去). ∴当P A B△是等腰三角形时,43t =,或4t =,或5t =,或203t =. 又C 是从M 点向左运动的,故43t =,或4t =,或5t =或203t =.【点睛】本题为代数与几何有一定难度的综合题,它综合考查了用变量t 表示点的坐标,直线(射线)与圆的位置关系,相似三角形和方程不等式等方面的知识.重点考查学生是否认真审题,挖掘出题中的隐含条件,综合运用数学知识解决实际问题的能力,以及运用转化的思想,方程的思想,数形结合的思想和分类讨论的思想解决实际问题的能力.由于本题入口平台较高,不少学生在第(1)题中就畏缩不前,第(2)题中的第①题中,不少学生把射线DE 误为直线,在第(2)题中的第②题,分类讨论不全面. 26.73D E =. 【解析】 【分析】首先表示出BD 的长,进而得出AB=5x ,由AB=AE+BE ,得出5x=7+2x ,求出x 即可. 【详解】 ∵DE ⊥AB 于E ,1t a n 2D E B B E ∴==设DE =x , ∴BE =2x ,c o sB E B B D ∴=90,c o sB CBC B A BB ︒∠=∴==∵D 是BC 边的中点,2B C B ∴=,5A B B C x ∴= ∵AE =7, ∴AB =AE +BE , 5x =7+2x ,73x =,故73D E =. 【点睛】本题考查解直角三角形,勾股定理,一元一次方程的应用,解决本题的关键是在线段AB ,能根据三角函数表示出BE 和AB ,再根据AB =AE +BE ,列出方程是解决此题的关键. 27.(1)见解析;(2)3.52 【解析】 【分析】(1)连接FC 、EA 并延长,相交于点P ,则点P 即是灯泡的位置;(2)过P 作PH ⊥EF ,则PH 即是灯泡P 距离地面的高度,根据已知可得EF=6.6米,AB//PH//CD ,即可证明A B P H =E B E H ,C D P H =F D F H ,由AB=CD 可得E B E H =F D F H,根据EH+FH=EF=6.6,解方程即可求出EH 的长,进而根据A B P H =E BE H即可得答案. 【详解】(1)如图所示,连接FC 、EA 并延长,相交于点P ,则点P 即是灯泡的位置;(2)过P作PH⊥EF,则PH即是灯泡P距离地面的高度,∵AC=BD=3.6米,BE=1米,DF=2米,∴EF=BE+BD+DF=3.6+1+2=6.6(米),∵AB⊥EF,CD⊥EF,PH⊥EF,且AB、CD、PH在同一平面内,∴AB//CD//PH,∴A BP H=E BE H,C DP H=F DF H,∵AB=CD,∴E BE H=F DF H∵FH=EF-EH,∴E BE H=FDEF EH-,即126.6E H E H=-,解得:EH=2.2(米),∴A BP H=E BE H,即1.6P H=12.2解得:PH=3.52(米).答:灯泡P距离地面的高度是3.52米.【点睛】本题考查了中心投影及平行线分线段成比例定理,根据中心投影的性质正确找出P点位置是解题关键.。
湘教版2020-2021学年度九年级数学第一学期期末模拟能力达标测试卷(附答案详解)

湘教版2020-2021学年度九年级数学第一学期期末模拟能力达标测试卷(附答案详解)一、单选题1.已知α,β是关于x 的一元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足111αβ+=-,则m 的值是( ) A .3 B .1 C .3或1- D .3-或12.计算sin 245°+tan60°•cos30°值为( )A .2B .C .1D .3.毕业之际,某校九年级数学兴趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为( ) A .5人 B .6人 C .7人 D .8人4.如图,矩形ABCD 的边长AD=3,AB=2,E 为AB 的中点,F 在边BC 上,且BF=2FC ,AF 分别与DE 、DB 相交于点M ,N ,则MN 的长为( )A .22B .92C .32D .42 5.如图,在⊙O 中,∠ABC=50°,则∠AOC 等于( )A .50°B .80°C .90°D .100°6.如图,利用标杆BE 测量楼的高度,标杆BE 高1.5 m ,测得AB =2 m ,BC =14 m ,则楼高CD 为( )A .10.5 mB .9.5 mC .12 mD .14 m7.已知水平放置的圆柱形排水管道,管道截面半径是1 m ,若水面高0.2 m. 则排水管道截面的水面宽度为( )A .0.6 mB .0.8 mC .1.2 mD .1.6 m8.如图,OA 平分∠BOC ,P 是OA 上任意一点,以点P 为圆心的圆与OC 相切,那么⊙P 与OB 的位置关系是( )A .相离B .相切C .相交D .不能确定 9.如果()x y +:()x y 3-=,那么x :y 等于( )A .2-B .2C .3-D .310.在公园的O 处附近有E 、F 、G 、H 四棵树,位置如图所示(图中小正方形为边长均相等),现计划修建一座以O 为圆心,OA 为半径的圆形水池,要求池中不留树木,则E 、F 、G 、H 四棵树中需要被移除的为( )A .E 、F 、GB .F 、G 、HC .G 、H 、ED .H 、E 、F二、填空题 11.如图一张长方形纸片ABCD ,其长AD 为a ,宽AB 为b (a b >),在BC 边上选取一点M ,将ABM 沿AM 翻折后B 至B '的位置,若B '为长方形纸片ABCD 的对称中心,则a b的值为________.12.如图,AB 为O 的直径,CD 切O 于点C ,交AB 的延长线于D ,且CO CD =,则A ∠的度数为______.13.如图,二次函数y=ax2+bx+c的图象经过(﹣1,0)(3,0)两点,给出的下列6个结论:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③4a+2b+c<0;④当x>1时,y随x值的增大而增大;⑤当y>0时,﹣1<x<3;⑥3a+2c<0.其中不正确的有_____.14.如图,点在双曲线上,过点作轴,垂足为点,分别以点和点为圆心,大于的长为半径画弧,两弧相交于,两点,直线交于点,当时,的周长为__________.中,AB=AC,BC=4,以AB为直径作半圆O,交BC于点D,则BD 15.如图,在ABC的长是__.16.一个长方体从正面和左面看到的图形如图所示(单位cm),则从其上面看到的图形的面积是_____.17.张华讲义夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语3张、物理3张,他随机地从讲义夹中抽出1张,抽出的试卷恰好是数学试卷的概率为_____.18.如图,在平面直角坐标系中,点A的坐标(﹣4,0),△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,则此时边OB扫过的面积为__.19.把方程x(x-2)=4-5x改为方程的一般形式为_____________________________ 20.若sin cos40α=,则锐角α=__________。
九年级上册株洲数学期末试卷测试卷(解析版)

九年级上册株洲数学期末试卷测试卷(解析版)一、选择题1.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .2472.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人 B .6人C .4人D .8人3.已知3sin 2α=,则α∠的度数是( ) A .30° B .45°C .60°D .90°4.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( ) A .2011B .2015C .2019D .20205.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .3mC .150mD .36.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( ) A .k >﹣1B .k <1且k≠0C .k≥﹣1且k≠0D .k >﹣1且k ≠07.在Rt ABC ∆中,90C ∠=︒,3AC =,=1BC ,则sin A 的值为( ) A 10B 310C .13D 108.如图,AB 是⊙O 的弦,∠BAC =30°,BC =2,则⊙O 的直径等于( )A .2B .3C .4D .69.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( ) A .43B .23C .334D .32210.“一般的,如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x =1x﹣2实数根的情况是 ( ) A .有三个实数根B .有两个实数根C .有一个实数根D .无实数根11.下列方程中,是一元二次方程的是( ) A .2x +y =1B .x 2+3xy =6C .x +1x=4 D .x 2=3x ﹣212.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是 A .相离B .相切C .相交D .无法判断二、填空题13.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.14.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).15.抛物线21(5)33y x =--+的顶点坐标是_______. 16.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AEAC,AE =2,EC =6,AB =12,则AD 的长为_____.17.若32x y =,则x y y+的值为_____. 18.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.19.一元二次方程x 2﹣3x+2=0的两根为x 1,x 2,则x 1+x 2﹣x 1x 2=______.20.如图,港口A 在观测站 O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为 _____km.21.已知点P (x 1,y 1)和Q (2,y 2)在二次函数y =(x +k )(x ﹣k ﹣2)的图象上,其中k ≠0,若y 1>y 2,则x 1的取值范围为_____.22.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__. 23.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.24.如图,Rt △ABC 中,∠ACB =90°,BC =3,tan A =34,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,点F 是DE 上一动点,以点F 为圆心,FD 为半径作⊙F ,当FD =_____时,⊙F 与Rt △ABC 的边相切.三、解答题25.(1)计算:()212cos6020202π-⎛⎫++-︒ ⎪⎝︒⎭(2)若关于x 的方程22210x x m ++-=有两个相等的实数根,求m 的值.26.某校为了丰富学生课余生活,计划开设以下社团:A .足球、B .机器人、C .航模、D .绘画,学校要求每人只能参加一个社团小丽和小亮准备随机报名一个项目. (1)求小亮选择“机器人”社团的概率为______;(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率.27.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9. (1)这组数据的中位数是 ,众数是 ; (2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数. 28.从甲、乙两台包装机包装的质量为300g 的袋装食品中各抽取10袋,测得其实际质量如下(单位:g )甲:301,300,305,302,303,302,300,300,298,299 乙:305,302,300,300,300,300,298,299,301,305 (1)分别计算甲、乙这两个样本的平均数和方差; (2)比较这两台包装机包装质量的稳定性.29.已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是 ; (2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,点C 2的坐标是 ;(3)△A 2B 2C 2的面积是 平方单位.30.如图,已知ABC ∆中,3045ABC ACB ∠=︒∠=︒,,8AB =.求ABC ∆的面积.31.如图,矩形OABC 中,O 为原点,点A 在y 轴上,点C 在x 轴上,点B 的坐标为(4,3),抛物线238y x bx c =-++与y 轴交于点A ,与直线AB 交于点D ,与x 轴交于C E ,两点.(1)求抛物线的表达式;(2)点P 从点C 出发,在线段CB 上以每秒1个单位长度的速度向点B 运动,与此同时,点Q 从点A 出发,在线段AC 上以每秒53个单位长度的速度向点C 运动,当其中一点到达终点时,另一点也停止运动.连接DP DQ PQ 、、,设运动时间为t (秒).①当t 为何值时,DPQ ∆得面积最小?②是否存在某一时刻t ,使DPQ ∆为直角三角形?若存在,直接写出t 的值;若不存在,请说明理由.32.如图,在矩形ABCD 中,AB=2,E 为BC 上一点,且BE=1,∠AED=90°,将AED 绕点E 顺时针旋转得到A ED ''△,A′E 交AD 于P , D′E 交CD 于Q ,连接PQ ,当点Q 与点C 重合时,AED 停止转动. (1)求线段AD 的长;(2)当点P 与点A 不重合时,试判断PQ 与A D ''的位置关系,并说明理由;(3)求出从开始到停止,线段PQ的中点M所经过的路径长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据折叠得出∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,求出∠DFB =∠FEC,证△DBF∽△FCE,进而利用相似三角形的性质解答即可.【详解】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=5,∵沿DE折叠A落在BC边上的点F上,∴△ADE≌△FDE,∴∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,CE=y,AE=5﹣y,∵BF=2,BC=5,∴CF=3,∵∠C=60°,∠DFE=60°,∴∠EFC+∠FEC=120°,∠DFB+∠EFC=120°,∴∠DFB=∠FEC,∵∠C=∠B,∴△DBF∽△FCE,∴BD BF DFFC CE EF==,即2535x xy y-==-,解得:x =218, 即BD =218, 故选:C . 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.2.B解析:B 【解析】 【分析】找出这组数据出现次数最多的那个数据即为众数. 【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次, ∴这组数据的众数是6. 故选:B. 【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.3.C解析:C 【解析】 【分析】根据特殊角三角函数值,可得答案. 【详解】解:由sin 2α=,得α=60°, 故选:C . 【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.4.C解析:C 【解析】 【分析】根据方程解的定义,求出a-b ,利用作图代入的思想即可解决问题. 【详解】∵关于x 的一元二次方程240ax bx ++=的解是x=−1, ∴a−b+4=0, ∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019. 故选C. 【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.5.A解析:A 【解析】∵堤坝横断面迎水坡AB 的坡比是1,∴BCAC ,∵BC=50,∴,∴100==(m ).故选A6.D解析:D 【解析】∵一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根, ∴△=b 2﹣4ac=4+4k >0,且k≠0. 解得:k >﹣1且k≠0.故选D .考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.7.A解析:A 【解析】 【分析】先根据勾股定理求出斜边的长,再根据正弦的定义解答即可. 【详解】解:在Rt ABC ∆中,∵90C ∠=︒,3AC =,=1BC ,∴AB =∴sin10BC A AB ===. 故选:A. 【点睛】本题考查了勾股定理和正弦的定义,属于基本题型,熟练掌握基本知识是解题关键.8.C解析:C 【解析】 【分析】如图,作直径BD ,连接CD ,根据圆周角定理得到∠D =∠BAC =30°,∠BCD =90°,根据直角三角形的性质解答. 【详解】如图,作直径BD,连接CD,∵∠BDC和∠BAC是BC所对的圆周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直径,∠BCD是BD所对的圆周角,∴∠BCD=90°,∴BD=2BC=4,故选:C.【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.9.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积.【详解】解:由题意可得出圆的半径为1,∵△ABC为正三角形,AO=1,AD BC⊥,BD=CD,AO=BO,∴1DO2=,32AD=,∴223BD OB OD=-=,∴BC3=∴1333322ABCS=⨯=.故选:C.【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.10.C解析:C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.11.D解析:D【解析】【分析】利用一元二次方程的定义判断即可.【详解】解:A、原方程为二元一次方程,不符合题意;B、原式方程为二元二次方程,不符合题意;C、原式为分式方程,不符合题意;D、原式为一元二次方程,符合题意,故选:D.【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.12.C解析:C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,∵⊙O的半径为6,圆心O到直线l的距离为5,∴6>5,即:d<r.∴直线l与⊙O的位置关系是相交.故选C.二、填空题13.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.14.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab <0,①正确;∵二次函数y=ax2+b解析:①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-2b a=1, ∴ab <0,①正确; ∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.15.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h ,k ),题目比较解析:(5,3)【解析】【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.【详解】 解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 16.3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】解:∵=,AE =2,EC =6,AB =12,∴=,解得:AD =3,故答案为:3.【点睛】本题解析:3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】 解:∵AD AB =AE AC,AE =2,EC =6,AB =12, ∴12AD =226+, 解得:AD =3,故答案为:3.【点睛】 本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.17..【解析】【分析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.解析:52.【解析】【分析】根据比例的合比性质变形得:325.22 x yy++==【详解】∵32xy=,∴325.22 x yy++==故答案为:5 2 .【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.18.120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形解析:120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.19.1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=解析:1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=1.故答案为:1.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.20.2+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥O解析:23+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥OB于点D,由题意知,∠AOD=30°,OA=4km,则∠OAD=60°,∴∠DAB=45°,在Rt△OAD中,AD=OAsin∠AOD=4×sin30°=4×12=2(km),OD=OAcos∠AOD=4×cos30°=433km),在Rt△ABD中,BD=AD=2km,∴OB=OD+BD=32(km),故答案为:32.本题主要考查解直角三角形的应用−方向角问题,解题的关键是构建合适的直角三角形,并熟练运用三角函数进行求解.21.x1>2或x1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y=(x+k)(x﹣k﹣2解析:x1>2或x1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y=(x+k)(x﹣k﹣2)=(x﹣1)2﹣1﹣2k﹣k2,∵点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,∴y1=(x1﹣1)2﹣1﹣2k﹣k2,y2=﹣2k﹣k2,∵y1>y2,∴(x1﹣1)2﹣1﹣2k﹣k2>﹣2k﹣k2,∴(x1﹣1)2>1,∴x1>2或x1<0.故答案为:x1>2或x1<0.【点睛】此题考查的是比较二次函数上两点之间的坐标大小关系,掌握二次函数的顶点式和根据函数值的取值范围求自变量的取值范围是解决此题的关键.22.5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,解得m=5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公解析:5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,10m 3610m 45+=+++ 解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.23.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax 2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x 轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y =ax 2+bx+c (a≠0)的顶点为(2,-3),结论正确;②b 2﹣4ac =0,结论错误,应该是b 2﹣4ac>0;③关于x 的方程ax 2+bx+c =﹣2的解为x 1=1,x 2=3,结论正确;④m =﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.24.或【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE=AB=5解析:209或145【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,根据相似三角形的性质得到DF=209;如图2,当⊙F与Rt△ABC的边AC相切时,延长DE交AB于H,推出点H为切点,DH为⊙F的直径,根据相似三角形的性质即可得到结论.【详解】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,∴DF=HF,∵Rt△ABC中,∠ACB=90°,BC=3,tan A=BCAC=34,∴AC=4,AB=5,将Rt△ABC绕点C顺时针旋转90°得到△DEC,∴∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,∵FH⊥AC,CD⊥AC,∴FH∥CD,∴△EFH∽△EDC,∴FH CD =EF DE , ∴4DF =55DF -, 解得:DF =209; 如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,∵∠A =∠D ,∠AEH =∠DEC∴∠AHE =90°,∴点H 为切点,DH 为⊙F 的直径,∴△DEC ∽△DBH ,∴DE BD =CD DH , ∴57=4DH, ∴DH =285, ∴DF =145, 综上所述,当FD =209或145时,⊙F 与Rt △ABC 的边相切, 故答案为:209或145. 【点睛】 本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.三、解答题25.(1)6;(2)1m =.【解析】【分析】(1)根据负指数幂和0次幂法则,特殊三角函数值分别算出原算式中的每一项,然后进行实数运算即可. (2)根据一元二次方程根的判别式与根个数的关系,可得出b 2-4ac=0,列方程求解.【详解】解:(1)()2012cos6020202π-⎛⎫++- ⎪⎝⎭︒ 12412=⨯++ 6=;(2)∵22210x x m ++-=有两个相等的实数根,∴b 2-4ac=22-4(2m-1)=0,∴m=1.【点睛】本题考查实数运算和一元二次方程根的判别式与根个数的关系,掌握负指数幂,0次幂和特殊三角形函数值及根的判别式是解答此题的关键.26.(1)14;(2)716; 【解析】【分析】(1)属于求简单事件的概率,根据概率公式计算可得;(2)用列表格法列出所有的等可能结果,从中确定符合事件的结果,根据概率公式计算可得.【详解】解:(1)小亮随机报名一个项目共有4种等可能结果,分别为A.足球、B.机器人、C.航模、D.绘画,其中选择“机器人”的有1种,为B.机器人,所以选择“机器人”的概率为P=14. (2)用列表法表示所有可能出现的结果如图:从表格可以看出,总共有16种结果,每种结果出现的可能性相同,其中至少有一人参加“航模”社团有7种,分别为(A,C),(B,C),(C,A), (C,B),(C,C), (C,D),(D,C),所以两人至少有一人参加“航模”社团的概率P=716. 【点睛】 本题考查的是求简单事件的概率和两步操作事件的概率,用表格或树状图表示总结果数是解答此类问题的关键.27.(1)16,17;(2)14;(3)2800.【解析】【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;(2)根据平均数的概念,将所有数的和除以10即可;(3)用样本平均数估算总体的平均数.【详解】(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,故答案为16,17;(2)10791215173202610⨯+++++⨯++=()14, 答:这10位居民一周内使用共享单车的平均次数是14次;(3)200×14=2800答:该小区居民一周内使用共享单车的总次数为2800次.【点睛】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.28.(1)甲平均数301,乙平均数301,甲方差3.2,乙方差4.2;(2)甲包装机包装质量的稳定性好,见解析【解析】【分析】(1)根据平均数就是对每组数求和后除以数的个数;根据方差公式计算即可;(2)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可.【详解】解:(1)x 甲=110(1+0+5+2+3+2+0+0﹣2﹣1)+300=301, x 乙=110(5+2+0+0+0+0﹣2﹣1+1+5)+300=301, 2s 甲=110[(301﹣301)2+(301﹣300)2+(301﹣305)2+(301﹣302)2+(301﹣303)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2]=3.2;2 s乙=110[(301﹣305)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2+(301﹣301)2+(301﹣305)2]=4.2;(2)∵2s甲<2s乙,∴甲包装机包装质量的稳定性好.【点睛】本题考查了平均数和方差,正确掌握平均数及方差的求解公式是解题的关键. 29.(1)(2,﹣2);(2)(1,0);(3)10.【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.试题解析:(1)如图所示:C1(2,﹣2);故答案为(2,﹣2);(2)如图所示:C2(1,0);故答案为(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:××=10平方单位.故答案为10.考点:1、平移变换;2、位似变换;3、勾股定理的逆定理30.8+83【解析】 【分析】过点A 作AD ⊥BC ,垂足为点D ,构造直角三角形,利用三角函数值分别求出AD 、BD 、CD 的值即可求三角形面积.【详解】解:过点A 作AD ⊥BC ,垂足为点D ,在Rt △ADB 中,∵sin AD ABC AB ∠=, ∴sin AD AB ABC =⋅∠= 1842⨯= ∵cos BD ABC AB∠=, ∴3cos 843BD AB ABC =⋅∠=⨯= 在Rt △ADC 中,∵45ACB ︒∠=,∴45CAD ︒∠=,∴AD =DC =4∴ 111()(443)4883222ABC S BC AD BD CD AD ∆=⋅=+⋅=⨯+⨯=+【点睛】本题考查的知识点是利用勾股定理求三角形面积,通过作辅助线构造直角三角形结合三角函数值是解此题的关键.31.(1)233384y x x =-++;(2)① 32t =;②123453172417,3,,,26176t t t t t ===== 【解析】【分析】(1)根据点B 的坐标可得出点A ,C 的坐标,代入抛物线解析式即可求出b ,c 的值,求得抛物线的解析式;(2)①过点Q 、P 作QF ⊥AB 、PG ⊥AC ,垂足分别为F 、G ,推出△QFA ∽△CBA ,△CGP ∽△CBA ,用含t 的式子表示OF ,PG ,将三角形的面积用含t 的式子表示出来,结合二次函数的性质可求出最值;②由于三角形直角的位置不确定,需分情况讨论,根据点的坐标,再结合两点间的距离公式用勾股定理求解即可.【详解】解:(1)由题意知:A (0,3),C (4,0),∵抛物线经过A 、B 两点, ∴3316408c b c =⎧⎪⎨-⨯++=⎪⎩,解得,343b c ⎧=⎪⎨⎪=⎩, ∴抛物线的表达式为:233384y x x =-++. (2)① ∵四边形ABCD 是矩形,∴∠B =90O , ∴AC 2=AB 2+BC 2=5; 由2333384x x -++=,可得120,2x x ==,∴D (2,3). 过点Q 、P 作QF ⊥AB 、PG ⊥AC ,垂足分别为F 、G ,∵∠FAQ =∠BAC , ∠QFA =∠CBA ,∴△QFA ∽△CBA . ∴AQ QF AC BC=, ∴5335AQ QF BC t t AC =⋅=⋅=. 同理:△CGP ∽△CBA , ∴PG CP AB AB =∴CP PG AB AB =⋅,∴45PG t =, 1154162(5)2(3)22352DPQ ABC QAD PQC PBD S S S S S t t t t ∆∆∆∆∆=---=-⨯⨯-⨯-⨯-⨯⨯-222229323323(3)3()3342322t t t t t =-+=-+-+=-+ 当32t =时,△DPQ 的面积最小.最小值为32.② 由图像可知点D 的坐标为(2,3),AC=5,直线AC 的解析式为:3y 34x =-+. 三角形直角的位置不确定,需分情况讨论:当DPG 90∠=︒时,根据勾股定理可得出:()()22222255552t 3t 3434233434t t t t ⎛⎫⎛⎫⎛⎫⎛⎫-++-+-++-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 整理,解方程即可得解;当DGP 90∠=︒时,可知点G 运动到点B 的位置,点P 运动到C 的位置,所需时间为t=3;当PDG 90∠=︒时,同理用勾股定理得出:()()22222255552t 3t 3434233434t t t t ⎛⎫⎛⎫⎛⎫⎛⎫-++-=-++-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; 整理求解可得t 的值.由此可得出t 的值为:132t =,23t =,3176t =,42417t =,517145t -=.【点睛】本题考查的知识点是二次函数与几何图形的动点问题,掌握二次函数图象的性质是解此题的关键.32.(1)5;(2)PQ ∥A D '',理由见解析;(35 【解析】【分析】(1)求出AE 5ABE ∽△DEA ,由AD AE AE BE=可求出AD 的长; (2)过点E 作EF ⊥AD 于点F ,证明△PEF ∽△QEC ,再证△EPQ ∽△A'ED',可得出∠EPQ =∠EA'D',则结论得证;(3)由(2)知PQ ∥A ′D ′,取A ′D ′的中点N ,可得出∠PEM 为定值,则点M 的运动路径为线段,即从AD 的中点到DE 的中点,由中位线定理可得出答案.【详解】解:(1)∵AB =2,BE =1,∠B =90°,∴AE 22AB BE +2221+5∵∠AED =90°,∴∠EAD+∠ADE =90°,∵矩形ABCD 中,∠ABC =∠BAD =90°,∴∠BAE+∠EAD =90°,∴∠BAE =∠ADE ,∴△ABE ∽△DEA ,∴AD AE AE BE =, ∴55=, ∴AD =5; (2)PQ ∥A ′D ′,理由如下:∵5,5AD AE ==,∠AED =90° ∴22DE DA AE =-=225(5)-=25,∵AD =BC =5,∴EC =BC ﹣BE =5﹣1=4,过点E 作EF ⊥AD 于点F ,则∠FEC =90°,∵∠A'ED'=∠AED =90°,∴∠PEF =∠CEQ ,∵∠C =∠PFE =90°,∴△PEF ∽△QEC ,∴2142EP EF EQ EC ===, ∵51225EA EA ED ED ''===, ∴EP EA EQ ED ''=, ∴PQ ∥A ′D ′;(3)连接EM ,作MN ⊥AE 于N ,由(2)知PQ ∥A ′D ′,∴∠EPQ =∠A ′=∠EAP ,又∵△PEQ为直角三角形,M为PQ中点,∴PM=ME,∴∠EPQ=∠PEM,∵∠EPF=∠EAP+∠AEA′,∠NEM=∠PEM+∠AEA′∴∠EPF=∠NEM,又∵∠PFE=∠ENM﹣90°,∴△PEF∽△EMN,∴NM EMEF PE=PQ2PE为定值,又∵EF=AB=2,∴MN为定值,即M的轨迹为平行于AE的线段,∵M初始位置为AD中点,停止位置为DE中点,∴M的轨迹为△ADE的中位线,∴线段PQ的中点M所经过的路径长=1AE2=5.【点睛】本题考查了矩形的性质,相似三角形的判定与性质,勾股定理,平行线的判定,中位线定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.。
九年级上册株洲数学期末试卷测试卷(解析版)

九年级上册株洲数学期末试卷测试卷(解析版)一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .平均数B .方差C .中位数D .极差2.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .243.若将半径为24cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为( ) A .3cmB .6cmC .12cmD .24cm4.如图,在平面直角坐标系xOy 中,点A 为(0,3),点B 为(2,1),点C 为(2,-3).则经画图操作可知:△ABC 的外心坐标应是( )A .()0,0B .()1,0C .()2,1--D .()2,0 5.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( ) A .−2B .2C .−4D .46.△ABC 的外接圆圆心是该三角形( )的交点.A .三条边垂直平分线B .三条中线C .三条角平分线D .三条高7.如图,AB 是O 的直径,AC 切O 于点A ,若70C ∠=︒,则AOD ∠的度数为( )A .40°B .45°C .60°D .70°8.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月D .1月,2月,3月,12月9.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 10.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位 B .向左平移1个单位,再向上平移1个单位 C .向右平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位11.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④12.如图,点P (x ,y )(x >0)是反比例函数y=kx(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变二、填空题13.如图,A 、B 、C 是⊙O 上三点,∠ACB =30°,则∠AOB 的度数是_____.14.圆锥的母线长为5cm ,高为4cm ,则该圆锥的全面积为_______cm 2.15.如图,已知菱形ABCD 中,4AB =,C ∠为钝角,AM BC ⊥于点M ,N 为AB 的中点,连接DN ,MN .若90DNM ∠=︒,则过M 、N 、D 三点的外接圆半径为______.16.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.17.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .18.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 19.如图(1),在矩形ABCD 中,将矩形折叠,使点B 落在边AD 上,这时折痕与边AD 和BC 分别交于点E 、点F .然后再展开铺平,以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD 中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E 的坐标为_________________________.20.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,设增长率为x ,则可列方程为______.21.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.22.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,;④=3m .其中,正确的有___________________.23.如图,在⊙O中,分别将弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是__________________.24.如图,四边形ABCD中,∠A=∠B=90°,AB=5cm,AD=3cm,BC=2cm,P是AB 上一点,若以P、A、D为顶点的三角形与△PBC相似,则PA=_____cm.三、解答题25.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为AC的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=163,AB=6,求⊙O的半径.26.在矩形ABCD中,AB=3,AD=5,E是射线..DC上的点,连接AE,将△ADE沿直线AE 翻折得△AFE.(1)如图①,点F恰好在BC上,求证:△ABF∽△FCE;(2)如图②,点F在矩形ABCD内,连接CF,若DE=1,求△EFC的面积;(3)若以点E、F、C为顶点的三角形是直角三角形,则DE的长为.27.如图,宾馆大厅的天花板上挂有一盏吊灯AB,某人从C点测得吊灯顶端A的仰角为35︒,吊灯底端B的仰角为30,从C点沿水平方向前进6米到达点D,测得吊灯底端B 的仰角为60︒.请根据以上数据求出吊灯AB的长度.(结果精确到0.1米.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,2≈1.41,3≈1.73)28.如图,矩形OABC中,A(6,0)、C(0,23)、D(0,33),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.(1)①点B的坐标是;②当点Q与点A重合时,点P的坐标为;(2)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式及相应的自变量x的取值范围.29.如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s 的速度向右移动.(1)当点B于点O重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B点和E点重合时,AC与半圆相切于点F,连接EF,如图2所示.①求证:EF平分∠AEC;②求EF的长.30.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为AC的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=163,AB=6,求⊙O的半径.31.如图①,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积为6.(1)求这条抛物线相应的函数表达式;(2)在抛物线上是否存在一点P,使得∠POB=∠CBO,若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图②,M是抛物线上一点,N是射线CA上的一点,且M、N两点均在第二象限内,A、N是位于直线BM同侧的不同两点.若点M到x轴的距离为d,△MNB的面积为2d,且∠MAN=∠ANB,求点N的坐标.32.如图示,AB是O的直径,点F是半圆上的一动点(F不与A,B重合),弦AD平分BAF∠,过点D作DE AF⊥交射线AF于点AF.(1)求证:DE 与O 相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可. 【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少. 故选:C . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.D解析:D 【解析】 【分析】根据位似图形的性质,再结合点A 与点A '的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案. 【详解】解:∵△ABC 与△A B C '''是以坐标原点O 为位似中心的位似图形,且A 为O A '的中心, ∴△ABC 与△A B C '''的相似比为:1:2;∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=. 故答案为:D. 【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.3.C解析:C 【解析】 【分析】易得圆锥的母线长为24cm ,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径. 【详解】解:圆锥的侧面展开图的弧长为:2π24224π⨯÷=, ∴圆锥的底面半径为:()24π2π12cm ÷=. 故答案为:C. 【点睛】本题考查的知识点是圆锥的有关计算,熟记各计算公式是解题的关键.4.C解析:C 【解析】外心在BC 的垂直平分线上,则外心纵坐标为-1.故选C.5.B解析:B 【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k 的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0, 解得k=2. 故选B .点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.A解析:A 【解析】 【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可. 【详解】解:△ABC的外接圆圆心是△ABC三边垂直平分线的交点,故选:A.【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.7.A解析:A【解析】【分析】先依据切线的性质求得∠CAB的度数,然后依据直角三角形两锐角互余的性质得到∠CBA 的度数,然后由圆周角定理可求得∠AOD的度数.【详解】解:∵AC是圆O的切线,AB是圆O的直径,∴AB⊥AC,∴∠CAB=90°,又∵∠C=70°,∴∠CBA=20°,∴∠AOD=40°.故选:A.【点睛】本题主要考查的是切线的性质、圆周角定理、直角三角形的性质,求得∠CBA=20°是解题的关键.8.D解析:D【解析】【分析】【详解】当-n2+15n-36≤0时该企业应停产,即n2-15n+36≥0,n2-15n+36=0的两个解是3或者12,根据函数图象当n≥12或n≤3时n2-15n+36≥0,所以1月,2月,3月,12月应停产.故选D9.D解析:D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.10.C解析:C【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】 抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.11.B解析:B【解析】【分析】①由于AC 与BD 不一定相等,根据圆周角定理可判断①;②连接OD ,利用切线的性质,可得出∠GPD=∠GDP ,利用等角对等边可得出GP=GD ,可判断②;③先由垂径定理得到A 为CE 的中点,再由C 为AD 的中点,得到CD AE =,根据等弧所对的圆周角相等可得出∠CAP=∠ACP ,利用等角对等边可得出AP=CP ,又AB 为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;【详解】解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,∴∠+∠=︒,GDP ADO90=,OA OD∴∠=∠,ADO OAD∠=∠,∠+∠=︒,GPD APFAPF OAD90∴∠=∠,GPD GDP∴=,故②正确.GD GP⊥,③正确.AB CE∴AE AC=,=,AC CD∴CD AE=,∴∠=∠,CAD ACEPC PA∴=,AB是直径,∴∠=︒,90ACQCAP CQP∠+∠=︒,∴∠+∠=︒,90 ACP QCP90∴∠=∠,PCQ PQC∴==,PC PQ PA∠=︒,ACQ90∆的外心.故③正确.∴点P是ACQ④正确.连接BD.∠=∠=︒,PAF BAD90AFP ADB∠=∠,APF ABD∽,∴∆∆∴AP AF=,AB ADAP AD AF AB∴⋅=⋅,∠=∠=︒,AFC ACBCAF BAC∠=∠,90∴∆∆∽,ACF ABC可得2=,AC AF AB∠=∠,∠=∠,CAQ ABCACQ ACB∽,可得2∴∆∆CAQ CBA=⋅,AC CQ CBAP AD CQ CB∴⋅=⋅.故④正确,故选:B.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.12.D解析:D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.二、填空题13.60°【解析】【分析】直接利用圆周角定理,即可求得答案.【详解】∵A、B、C是⊙O上三点,∠ACB=30°,∴∠AOB的度数是:∠AOB =2∠ACB=60°.故答案为:60°.【点解析:60°【解析】【分析】直接利用圆周角定理,即可求得答案.【详解】∵A、B、C是⊙O上三点,∠ACB=30°,∴∠AOB的度数是:∠AOB=2∠ACB=60°.故答案为:60°.【点睛】考查了圆周角定理的运用,同弧或等弧所对的圆周角等于圆心角的一半.14.24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底解析:24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底面圆的半径为3,则底面周长=6π,∴侧面面积=12×6π×5=15π;∴底面积为=9π,∴全面积为:15π+9π=24π.故答案为24π.【点睛】本题利用了圆的周长公式和扇形面积公式求解.15.【解析】【分析】通过延长MN 交DA 延长线于点E ,DF⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt△DMF 和Rt△DCF 中,利用勾股定理列方程求DM 长,根1【解析】【分析】通过延长MN 交DA 延长线于点E ,DF ⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根据圆的性质即可求解.【详解】如图,延长MN 交DA 延长线于点E ,过D 作DF ⊥BC 交BC 延长线于F,连接MD,∵四边形ABCD 是菱形,∴AB=BC=CD=4,AD ∥BC,∴∠E=∠EMB, ∠EAN=∠NBM,∵AN=BN,∴△EAN ≌BMN,∴AE=BM,EN=MN,∵90DNM ∠=︒,∴DN ⊥EM,∴DE=DM,∵AM ⊥BC,DF ⊥BC,AB=DC,AM=DF∴△ABM ≌△DCF,∴BM=CF,设BM=x,则DE=DM=4+x,在Rt △DMF 中,由勾股定理得,DF 2=DM 2-MF 2=(4+x)2-42,在Rt △DCF 中,由勾股定理得,DF 2=DC 2-CF 2=4 2-x 2,∴(4+x)2-42=4 2-x 2,解得,x 1=2,x 2=232(不符合题意,舍去)∴DM=2,∴90DNM ∠=︒∴过M 、N 、D 三点的外接圆的直径为线段DM, ∴其外接圆的半径长为1312DM .31.【点睛】本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X字型”全等模型是解答此题的突破口,也是解答此题的关键.16.4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第解析:4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n行n个数,故前n个数字的个数为:1+2+3+…+n=(1)2n n+,∵当n=63时,前63行共有63642⨯=2016个数字,2020﹣2016=4,∴2020在第64行左起第4个数,故答案为:64,4.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.17..【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△AB解析:10 3.【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC∽△ADE∴AC:AE=BC:DE∴DE=83∴103AD=考点: 1.相似三角形的判定与性质;2.勾股定理.18.4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:2405Slrπ===8π,再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,可得822lrπππ===4cm.故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.19.(,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=解析:(32,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=52,∴BE=ED=52,AE=AD-ED=32,∴点E坐标(32,2).故答案为:(32,2).【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.20.3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解析:3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:3000(1+x)2=4320,故答案为:3000(1+x)2=4320.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.21.【解析】【分析】利用勾股定理求出AC,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD是△ABC的高,∴∠ADC=90°,∴,∵AE是直径,∴∠ABE=90°,【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC=, ∴3AB =∴AB =故答案为:5 【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.22.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax 2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m=﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.23.【解析】【分析】作OH⊥AB,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD是平行解析:163【解析】【分析】作OH⊥AB,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH⊥AB,垂足为H,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,则OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG= HB=GD∴AB=CD又∵AB ∥CD∴四边形ABCD 是平行四边形,在Rt △OHA 中,由勾股定理得:==∴AB=∴四边形ABCD 的面积=AB ×GH=故答案为:.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD 是矩形.24.2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则解析:2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则BP =AB ﹣AP =(5﹣x )cm以A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,①当AD :PB =PA :BC 时,352x x =-, 解得x =2或3.②当AD :BC =PA +PB 时,3=25x x-,解得x =3, ∴当A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,AP 的值为2或3. 故答案为2或3.【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.三、解答题25.(1)DE与⊙O相切;理由见解析;(2)4.【解析】【分析】(1)连接OD,由D为AC的中点,得到AD CD=,进而得到AD=CD,根据平行线的性质得到∠DOA=∠ODE=90°,求得OD⊥DE,于是得到结论;(2)连接BD,根据四边形对角互补得到∠DAB=∠DCE,由AD CD=得到∠DAC=∠DCA =45°,求得△ABD∽△CDE,根据相似三角形的性质即可得到结论.【详解】(1)解:DE与⊙O相切证:连接OD,在⊙O中∵D为AC的中点∴AD CD=∴AD=DC∵AD=DC,点O是AC的中点∴OD⊥AC∴∠DOA=∠DOC=90°∵DE∥AC∴∠DOA=∠ODE=90°∵∠ODE=90°∴OD⊥DE∵OD⊥DE,DE经过半径OD的外端点D∴DE与⊙O相切.(2)解:连接BD∵四边形ABCD是⊙O的内接四边形∴∠DAB+∠DCB=180°又∵∠DCE+∠DCB=180°∴∠DAB=∠DCE∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°∵AD CD=,∴∠ABD=∠CBD=45°∵AD=DC,∠ADC=90°∴∠DAC=∠DCA=45°∵DE∥AC∴∠DCA=∠CDE=45°在△ABD和△CDE中∵∠DAB=∠DCE,∠ABD=∠CDE=45°∴△ABD∽△CDE∴ABCD=ADCE∴6CD=163AD∴AD=DC=42, CE=163,AB=6,在Rt△ADC中,∠ADC=90°,AD=DC=42,∴AC=22AD DC+=8∴⊙O的半径为4.【点睛】本题考查了直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.26.(1)证明见解析;(2)513;(3)53、5、155(345)-【解析】【分析】(1)利用同角的余角相等,证明∠CEF=∠AFB,即可解决问题;(2)过点F作FG⊥DC交DC与点G,交AB于点H,由△FGE∽△AHF得出AH=5GF,再利用勾股定理求解即可;(3)分①当∠EFC=90°时; ②当∠ECF=90°时;③当∠CEF=90°时三种情况讨论解答即可.【详解】(1)解:在矩形ABCD中,∠B=∠C=∠D=90°由折叠可得:∠D=∠EFA=90°∵∠EFA=∠C=90°∴∠CEF+∠CFE=∠CFE+∠AFB=90°∴∠CEF=∠AFB在△ABF和△FCE中∵∠AFB=∠CEF,∠B=∠C=90°△ABF∽△FCE(2)解:过点F作FG⊥DC交DC与点G,交AB于点H,则∠EGF=∠AHF=90°在矩形ABCD中,∠D=90°由折叠可得:∠D=∠EFA=90°,DE=EF=1,AD=AF=5∵∠EGF=∠EFA=90°∴∠GEF+∠GFE=∠AFH+∠GFE=90°∴∠GEF=∠AFH在△FGE和△AHF中∵∠GEF=∠AFH,∠EGF=∠FHA=90°∴△FGE∽△AHF∴EFAF=GFAH∴15=GFAH∴AH=5GF在Rt△AHF中,∠AHF=90°∵AH2+FH2=AF2∴(5 GF)2+(5-GF)2=52∴GF=5 13∴△EFC的面积为12×513×2=513;(3)解:①当∠EFC=90°时,A 、F 、C 共线,如图所示:设DE=EF=x,则CE=3-x, ∵AC=22223534AD CD +=+=,∴CF=34-x, ∵∠CFE=∠D=90°, ∠DCA=∠DCA,∴△CEF ∽△CAD, ∴CE EF CA AD =,即534x =,解得:ED=x=5(345)-; ②当∠ECF=90°时,如图所示:∵AD=1AF =5,AB=3, ∴1BF 221AF AB -设1DE =x,则1E C =3-x,∵∠DCB=∠ABC=90°, 111CF E F AB ∠=∠∴11CE F ∽1BF A ,∴11111E C E F F B F A =,即345x x -=,解得:x=1E D =53; 由折叠可得 :222E F E D = ,设2E C x =,则2223E F DE x ==+,2549CF =+=, 在RT △22E F C 中,∵2222222CF CE E F +=,即9²+x²=(x+3)²,解得x=2E C =12, ∴231215DE =+=;③当∠CEF=90°时,AD=AF,此时四边形AFED是正方形,∴AF=AD=DE=5,综上所述,DE的长为:53、5、15、5(345).【点睛】本题考查了翻折的性质,相似三角形的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.27.吊灯AB的长度约为1.1米.【解析】【分析】延长CD交AB的延长线于点E,构建直角三角形,分别在两个直角三角形△BDE和△AEC 中利用正弦和正切函数求出AE长和BE长,即可求解.【详解】解:延长CD交AB的延长线于点E,则∠AEC=90°,∵∠BDE=60°,∠DCB=30°,∴∠CBD=60°﹣30°=30°,∴∠DCB=∠CBD,∴BD=CD=6(米)在Rt△BDE中,sin∠BDE=BE BD,∴BE=BD•sin∠BDE═6×sin60°=3≈5.19(米),DE=12BD=3(米),在Rt△AEC中,tan∠ACE=AE CE,∴AE=CE•tan∠ACE=(6+3)×tan35°≈9×0.70=6.30(米),∴AB=AE﹣BE≈6.30﹣5.19≈1.1(米),∴吊灯AB的长度约为1.1米.【点睛】本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,利用锐角三角函数进行解答.28.(1)①(6,23),②(3,33);(2)()()()()2434303313333523123595439xxx x xSx xx⎧+≤≤⎪⎪⎪-+-<≤⎪⎪=⎨⎪-+<≤⎪⎪⎪>⎪⎩【解析】【分析】(1)①由四边形OABC是矩形,根据矩形的性质,即可求得点B的坐标;②由正切函数,即可求得∠CAO的度数,③由三角函数的性质,即可求得点P的坐标;(2)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x>9时去分析求解即可求得答案.【详解】解:(1)①∵四边形OABC是矩形,∴AB=OC,OA=BC,∵A(6,0)、C(0,23),∴点B的坐标为:(6,23);②如图1:当点Q与点A重合时,过点P作PE⊥OA于E,∵∠PQO=60°,D(0,3∴3∴AE=3tan60PE=,∴OE=OA-AE=6-3=3, ∴点P 的坐标为(3,33);故答案为:①(6,23),②(3,33); (2)①当0≤x ≤3时,如图,OI =x ,IQ =PI •tan 60°=3,OQ =OI +IQ =3+x ;由题意可知直线l ∥BC ∥OA , ∴31333EF PE DC OQ PO DO ====, ∴EF =133+x () 此时重叠部分是梯形,其面积为:S 梯形=12(EF +OQ )•OC =43(3+x ) ∴4343x S =+. 当3<x ≤5时,如图AQ =OI +IO -OA =x +3-6=x -3AH 3x -3)S=S 梯形﹣S △HAQ =S 梯形﹣12AH •AQ 433+x 23x (-3) ∴231333S x x =+ ③当5<x ≤9时,如图∵CE ∥DP ∴CO CE DO DP = ∴2333CE x= ∴23CE x = 263BE x =- S=12(BE +OA )•OC =3(12﹣23x ) ∴23123S x =-+. ④当x >9时,如图∵AH ∥PI∴AO AH OI PI = ∴633x =∴183AH =S=12543.综上:24343033313333523123595439xxx x xSx xx⎧+≤≤⎪⎪⎪-+-<≤⎪⎪=⎨⎪-+<≤⎪⎪⎪>⎪⎩()()()().【点睛】此题考查了矩形的性质,相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质等知识.此题综合性较强,难度较大,注意数形结合思想与分类讨论思想的应用.29.(1)2s(2)①证明见解析,②33√【解析】试题分析:(1)由当点B于点O重合的时候,BO=OD+BD=4cm,又由三角板以2cm/s的速度向右移动,即可求得三角板运动的时间;(2)①连接OF,由AC与半圆相切于点F,易得OF⊥AC,然后由∠ACB=90°,易得OF∥CE,继而证得EF平分∠AEC;②由△AFO是直角三角形,∠BAC=30°,OF=OD=3cm,可求得AF的长,由EF平分∠AEC,易证得△AFE是等腰三角形,且AF=EF,则可求得答案.试题解析:(1)∵当点B于点O重合的时候,BO=OD+BD=4cm,∴t=42=2(s);∴三角板运动的时间为:2s;(2)①证明:连接O与切点F,则OF⊥AC,∵∠ACE=90°,∴EC⊥AC,∴OF∥CE,∴∠OFE=∠CEF,∵OF=OE,∴∠OFE=∠OEF,∴∠OEF=∠CEF,即EF平分∠AEC;②由①知:OF⊥AC,∴△AFO是直角三角形,∵∠BAC=30°,OF=OD=3cm,∴tan30°=3AF,∴AF=33cm,由①知:EF平分∠AEC,∴∠AEF=∠CEF=12∠AEC=30°,∴∠AEF=∠EAF,∴△AFE是等腰三角形,且AF=EF,∴EF=33cm.30.(1)DE与⊙O相切;理由见解析;(2)4.【解析】【分析】(1)连接OD,由D为AC的中点,得到AD CD=,进而得到AD=CD,根据平行线的性质得到∠DOA=∠ODE=90°,求得OD⊥DE,于是得到结论;(2)连接BD,根据四边形对角互补得到∠DAB=∠DCE,由AD CD=得到∠DAC=∠DCA =45°,求得△ABD∽△CDE,根据相似三角形的性质即可得到结论.【详解】(1)解:DE与⊙O相切证:连接OD,在⊙O中∵D为AC的中点∴AD CD=∴AD=DC∵AD=DC,点O是AC的中点∴OD⊥AC∴∠DOA=∠DOC=90°∵DE∥AC∴∠DOA=∠ODE=90°∵∠ODE=90°∴OD⊥DE∵OD⊥DE,DE经过半径OD的外端点D∴DE与⊙O相切.(2)解:连接BD∵四边形ABCD是⊙O的内接四边形∴∠DAB+∠DCB=180°又∵∠DCE+∠DCB=180°∴∠DAB=∠DCE∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°∵AD CD=,∴∠ABD=∠CBD=45°∵AD=DC,∠ADC=90°∴∠DAC=∠DCA=45°∵DE∥AC∴∠DCA=∠CDE=45°在△ABD和△CDE中∵∠DAB=∠DCE,∠ABD=∠CDE=45°∴△ABD∽△CDE∴ABCD=ADCE∴6CD=163AD∴AD=DC=42, CE=163,AB=6,在Rt△ADC中,∠ADC=90°,AD=DC=42,∴AC=22AD DC+=8∴⊙O的半径为4.【点睛】本题考查了直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.31.(1)y =x 2+2x ﹣3;(2)存在,点P 坐标为⎝⎭或⎝⎭;(3)点N 的坐标为(﹣4,1) 【解析】【分析】(1)分别令y =0 ,x =0,可表示出A 、B 、C 的坐标,从而表示△ABC 的面积,求出a 的值继而即可得二次函数解析式;(2)如图①,当点P 在x 轴上方抛物线上时,平移BC 所在的直线过点O 交x 轴上方抛物线于点P ,则有BC ∥OP ,此时∠POB =∠CBO ,联立抛物线得解析式和OP 所在直线的解析式解方程组即可求解;当点P 在x 轴下方时,取BC 的中点D ,易知D 点坐标为(12,32-),连接OD 并延长交x 轴下方的抛物线于点P ,由直角三角形斜边中线定理可知,OD =BD ,∠DOB =∠CBO 即∠POB =∠CBO ,联立抛物线的解析式和OP 所在直线的解析式解方程组即可求解.(3)如图②,通过点M 到x 轴的距离可表示△ABM 的面积,由S △ABM =S △BNM ,可证明点A 、点N 到直线BM 的距离相等,即AN ∥BM ,通过角的转化得到AM =BN ,设点N 的坐标,表示出BN 的距离可求出点N .【详解】(1)当y =0时,x 2﹣(a +1)x +a =0,解得x 1=1,x 2=a ,当x =0,y =a∴点C 坐标为(0,a ),∵C (0,a )在x 轴下方∴a <0∵点A 位于点B 的左侧,∴点A 坐标为(a ,0),点B 坐标为(1,0),∴AB =1﹣a ,OC =﹣a ,∵△ABC 的面积为6, ∴()()1162a a --=, ∴a 1=﹣3,a 2=4(因为a <0,故舍去),∴a =﹣3,∴y =x 2+2x ﹣3;(2)设直线BC :y =kx ﹣3,则0=k ﹣3,∴k =3;①当点P 在x 轴上方时,直线OP 的函数表达式为y =3x ,。
2020-2021年九年级上册期末数学试题(含答案)(1)

2020-2021年九年级上册期末数学试题(含答案)(1) 一、选择题1.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为( )A .42B .45C .46D .48 2.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( ) A .5d <B .5d >C .5d =D .5d ≤ 3.如图,已知O 的内接正方形边长为2,则O 的半径是( )A .1B .2C .2D .224.在平面直角坐标系中,点A(0,2)、B(a ,a +2)、C(b ,0)(a >0,b >0),若AB=42且∠ACB 最大时,b 的值为( )A .226+B .226-+C .242+D .2425.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤ 6.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A .方差B .平均数C .众数D .中位数7.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A.10πB.10C.10πD.π8.如图,点A、B、C都在⊙O上,若∠ABC=60°,则∠AOC的度数是()A.100°B.110°C.120°D.130°9.数据3、4、6、7、x的平均数是5,这组数据的中位数是()A.4 B.4.5 C.5 D.610.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为()A.9 cm B.10 cm C.11 cm D.12 cm11.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A .2332π-B .233π-C .32π-D .3π-12.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( )A .40B .60C .80D .100 13.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( ) A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的 14.下列说法正确的是( )A .所有等边三角形都相似B .有一个角相等的两个等腰三角形相似C .所有直角三角形都相似D .所有矩形都相似 15.已知抛物线与二次函数23y x =-的图像相同,开口方向相同,且顶点坐标为(1,3)-,它对应的函数表达式为( )A .23(1)3y x =--+B .23(1)3y x =-+C .23(1)3y x =+-D .23(1)3y x =-++ 二、填空题16.如图,⊙O 是△ABC 的外接圆,∠A =30°,BC =4,则⊙O 的直径为___.17.已知tan (α+15°)= 3,则锐角α的度数为______°. 18.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.19.二次函数y=x 2−4x+5的图象的顶点坐标为 .20.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____.21.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.22.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.23.如图,每个小正方形的边长都为1,点A 、B 、C 都在小正方形的顶点上,则∠ABC 的正切值为_____.24.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.25.一组数据:2,5,3,1,6,则这组数据的中位数是________.26.从2,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____.27.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.28.如图,45AOB ∠=,点P 、Q 都在射线OA 上,2OP =,6OQ =,M 是射线OB 上的一个动点,过P 、Q 、M 三点作圆,当该圆与OB 相切时,其半径的长为__________.29.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.30.如图,∠XOY=45°,一把直角三角尺△ABC 的两个顶点A 、B 分别在OX ,OY 上移动,其中AB=10,那么点O 到顶点A 的距离的最大值为_____.三、解答题31.(1)计算:()212cos6020202π-⎛⎫++-︒ ⎪⎝︒⎭(2)若关于x 的方程22210x x m ++-=有两个相等的实数根,求m 的值.32.如图,点O 为Rt △ABC 斜边AB 上的一点,以OA 为半径的⊙O 与边BC 交于点D ,与边AC 交于点E ,连接AD ,且AD 平分∠BAC .(1)试判断BC 与⊙O 的位置关系,并说明理由;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).33.如图,已知ABC ∆中,3045ABC ACB ∠=︒∠=︒,,8AB =.求ABC ∆的面积.34.计算:(1)2sin30°+cos45°-3tan60°(2) (3)0 -(12)-2 + tan 2 30︒ . 35.如图,某农户计划用长12m 的篱笆围成一个“日”字形的生物园饲养两种不同的家禽,生物园的一面靠墙,且墙的可利用长度最长为7m .(1)若生物园的面积为9m 2,则这个生物园垂直于墙的一边长为多少?(2)若要使生物园的面积最大,该怎样围? 四、压轴题36.已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A 、B(不与P ,Q 重合),连接AP 、BP . 若∠APQ=∠BPQ.(1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O 的半径;(2)如图2,选接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若∠NOP+2∠OPN=90°,探究直线AB 与ON 的位置关系,并证明.37.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长.(3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.38.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 .(2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC =②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法:①直角三角形的内心是它的等角点;②等腰三角形的内心和外心都是它的等角点;③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)39.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数;(2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由.②若线段AD EC =,求a b的值. 40.如图,在边长为5的菱形OABC 中,sin∠AOC=45,O 为坐标原点,A 点在x 轴的正半轴上,B ,C 两点都在第一象限.点P 以每秒1个单位的速度沿O→A→B→C→O 运动一周,设运动时间为t (秒).请解答下列问题:(1)当CP⊥OA 时,求t 的值;(2)当t <10时,求点P 的坐标(结果用含t 的代数式表示);(3)以点P 为圆心,以OP 为半径画圆,当⊙P 与菱形OABC 的一边所在直线相切时,请直接写出t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据中位数的定义,把8个数据从小到大的顺序依次排列后,求第4,第5位两数的平均数即为本组数据的中位数.【详解】解:把数据由小到大排列为:42,44,45,46,46,46,47,48 ∴中位数为4646462+=. 故答案为:46.【点睛】 找中位数的时候一定要先排好大小顺序,再根据奇数个数和偶数个数来确定中位数.如果是奇数个,则正中间的数字即为中位数;如果是偶数个,则找中间两个数的平均数为中位数.先将数据按从小到大顺序排列是求中位数的关键.2.B解析:B【解析】【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可.【详解】解:∵直线l 与半径为5的O 相离, ∴圆心O 与直线l 的距离d 满足:5d >.故选:B.【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d ,圆的半径为r ,当d >r 时,直线与圆相离;当d =r 时,直线与圆相切;当d <r 时,直线与圆相交. 3.C解析:C【解析】【分析】如图,连接BD ,根据圆周角定理可得BD 为⊙O 的直径,利用勾股定理求出BD 的长,进而可得⊙O 的半径的长.【详解】如图,连接BD ,∵四边形ABCD 是正方形,边长为2,∴BC=CD=2,∠BCD=90°,∴,∵正方形ABCD 是⊙O 的内接四边形,∴BD 是⊙O 的直径,∴⊙O 的半径是12⨯,故选:C.【点睛】本题考查正方形的性质、圆周角定理及勾股定理,根据圆周角定理得出BD 是直径是解题关键.4.B解析:B【解析】【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可.【详解】解:∵AB=42A(0,2)、B(a ,a +2) 22(22)42a a ++-=解得a =4或a =-4(因为a >0,舍去)∴B(4,6),设直线AB 的解析式为y=kx+2,将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+,将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得262b =(已舍去负值).故选:B.【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.5.A解析:A【解析】【分析】利用抛物线开口方向得到a <0,利用对称轴位置得到b >0,利用抛物线与y 轴的交点在x 轴下方得c <0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤.【详解】∵抛物线开口向下,∴a <0,∵对称轴为直线1x =∴b=-2a >0∵抛物线与y 轴的交点在x 轴下方,∴c <-1,∴abc >0,所以①错误;∵110x -<<,对称轴为直线1x =∴1212x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等,故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确;如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误; ∵当x=-1时,y=a-b+c=3a+c >0,当x=0时,y=c <-1∴3a >1,故13a >,⑤正确; 故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).也考查了二次函数的性质.6.A解析:A【解析】【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差7.C解析:C【解析】【分析】【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:2210AD CD+=又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为601010π⨯=.故选C.8.C解析:C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC和∠AOC所对的弧为AC,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.C解析:C【解析】【分析】首先根据3、4、6、7、x这组数据的平均数求得x值,再根据中位数的定义找到中位数即可.【详解】由3、4、6、7、x的平均数是5,即(3467)55++++÷=x得5x =这组数据按照从小到大排列为3、4、5、6、7,则中位数为5.故选C【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.10.B解析:B【解析】【分析】由CD ⊥AB ,可得DM=4.设半径OD=Rcm ,则可求得OM 的长,连接OD ,在直角三角形DMO 中,由勾股定理可求得OD 的长,继而求得答案.【详解】解:连接OD ,设⊙O 半径OD 为R,∵AB 是⊙O 的直径,弦CD ⊥AB 于点M ,∴DM=12CD=4cm ,OM=R-2, 在RT △OMD 中, OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB 的长为:2×5=10cm .故选B .【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.11.B解析:B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯ =233π 故选B . 12.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.13.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣x2+x=﹣(x12)2+14,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=12,故选项B错误;当x=12时取得最大值14,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.14.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.15.D解析:D【解析】【分析】先根据抛物线与二次函数23y x =-的图像相同,开口方向相同,确定出二次项系数a 的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数23y x =-的图像相同,开口方向相同, 3a ∴=-∵顶点坐标为(1,3)-∴抛物线的表达式为23(1)3y x =-++故选:D .【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键. 二、填空题16.8【解析】【分析】连接OB ,OC ,依据△BOC 是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O 的直径为8.【详解】解:如图,连接OB ,OC ,∵∠A=30°,∴∠BOC=解析:8【解析】【分析】连接OB ,OC ,依据△BOC 是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O 的直径为8.【详解】解:如图,连接OB ,OC ,∵∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直径为8,故答案为:8.【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.17.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=3 3∴α+15°=30°,∴α=15°故答案是15此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.18.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x 2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为 y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.19.(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.解析:(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数245y x x =-+配方得22()1y x =-+则顶点坐标为(2,1)考点:二次函数的图象和性质. 20.(6,4).【分析】作BQ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD⊥AC 于D ,PF⊥AB 于F ,P解析:(6,4).【解析】【分析】作BQ ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解之求出x 的值,从而得出点P 的坐标,即可得出答案.【详解】解:如图,过点B 作BQ ⊥AC 于点Q ,则AQ=5,BQ=12,∴AB=2213AQ BQ +=,CQ=AC-AQ=9,∴BC=2215BQ CQ +=设⊙P 的半径为r ,根据三角形的面积可得:r=14124141315⨯=++ 过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,∴BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解得:x=6,∴点P 的坐标为(6,4),故答案为:(6,4).【点睛】本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P 的坐标是解题的关键.21.【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x解析:15x -<<【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x 轴的一个交点为5,所以,另一交点为2-3=-1. ∴x 1=-1,x 2=5. ∴不等式20ax bx c ++>的解集是15x -<<.故答案为15x -<<【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.22.2﹣2【解析】【分析】取BC 中点G ,连接HG ,AG ,根据直角三角形的性质可得HG =CG =BG =BC =2,根据勾股定理可求AG =2,由三角形的三边关系可得AH≥AG ﹣HG ,当点H 在线段AG 上时,解析:2【解析】【分析】取BC 中点G ,连接HG ,AG ,根据直角三角形的性质可得HG =CG =BG =12BC =2,根据勾股定理可求AG =,由三角形的三边关系可得AH ≥AG ﹣HG ,当点H 在线段AG 上时,可求AH 的最小值.【详解】解:如图,取BC 中点G ,连接HG ,AG ,∵CH⊥DB,点G是BC中点∴HG=CG=BG=12BC=2,在Rt△ACG中,AG=22AC CG=25在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为25﹣2,故答案为:25﹣2【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式.23.1【解析】【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB =90°,再解直角三角形求出即可.【详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB解析:1【解析】【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB2=32+12=10,BC2=22+12=5,AC2=22+12=5∴AC2+BC2=AB2,AC=BC,即∠ACB=90°,∴∠ABC =45°∴tan ∠ABC=1【点睛】本题考查了解直角三角形和勾股定理及逆定理等知识点,能求出∠ACB =90°是解此题的关键.24.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率). 25.3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中解析:3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.26.【解析】分析:由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵从,0,π,3.14,6这五个数中随机解析:3 5【解析】分析:,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,∴抽到有理数的概率是:35.故答案为35.,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.27.【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,解析:4 9【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4, ∴飞镖落在阴影部分的概率是49, 故答案为:49. 【点睛】 此题考查几何概率,解题关键在于掌握运算法则.28.【解析】【分析】圆C 过点P 、Q ,且与相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再解析:4223-【解析】【分析】圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再根据等腰直角三角形的性质即可用r 表示出CD 、NC ,最后根据勾股定理列方程即可求出r .【详解】解:如图所示,圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D∵2OP =,6OQ =,∴PQ=OQ -OP=4根据垂径定理,PN=122PQ = ∴ON=PN +OP=4在Rt △OND 中,∠O=45°∴ON=ND=4,∠NDO=∠O=45°,242ON =设圆C 的半径为r ,即CM=CP=r∵圆C 与OB 相切于点M ,∴∠CMD=90°∴△CMD 为等腰直角三角形∴CM=DM=r ,=∴NC=ND -CD=4根据勾股定理可得:NC 2+PN 2=CP 2即()22242r -+=解得:12r r +==DM >OD ,点M 不在射线OB 上,故舍去)故答案为:.【点睛】此题考查的是等腰直角三角形的判定及性质、垂径定理、勾股定理和切线的性质,掌握垂径定理和勾股定理的结合和切线的性质是解决此题的关键.29.【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧2【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,AB ===PAB PBC ∠=∠,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.【详解】∵90ACB ∠=︒,3AC =,BC =,∴AB ===∴∠CAB=30°,∠ABC=60°∵PAB PBC ∠=∠,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小∴CO ⊥AB ,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴()2222237OC OB BC =+=+= ∴72CP OC OP =-=- 故答案为72-.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P 的位置.30.10【解析】【分析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】解:∵∴当∠ABO=90°时,点O 到顶点A 的距离最大.则OA解析:2【解析】【分析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】解:∵sin 45sin AB AO ABO=∠ ∴当∠ABO=90°时,点O 到顶点A 的距离最大.则.故答案是:.【点睛】本题主要考查了等腰直角三角形的性质,正确确定点O 到顶点A 的距离的最大的条件是解题关键.三、解答题31.(1)6;(2)1m =.【解析】【分析】(1)根据负指数幂和0次幂法则,特殊三角函数值分别算出原算式中的每一项,然后进行实数运算即可.(2)根据一元二次方程根的判别式与根个数的关系,可得出b 2-4ac=0,列方程求解.【详解】解:(1)()2012cos6020202π-⎛⎫++- ⎪⎝⎭︒ 12412=⨯++ 6=;(2)∵22210x x m ++-=有两个相等的实数根,∴b 2-4ac=22-4(2m-1)=0,∴m=1.【点睛】本题考查实数运算和一元二次方程根的判别式与根个数的关系,掌握负指数幂,0次幂和特殊三角形函数值及根的判别式是解答此题的关键.32.(1)BC 与⊙O 相切,理由见解析;(2)23π. 【解析】试题分析:(1)连接OD ,推出OD BC ⊥,根据切线的判定推出即可;(2)连接,DE OE ,求出阴影部分的面积=扇形EOD 的面积,求出扇形的面积即可. 试题解析:(1)BC 与O 相切,理由:连接OD ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省株洲市茶陵县2020-2021学年九年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.抛物线22(1)2y x =-+的顶点坐标是( ) A .(1,2)--B .(1,2)-C .(1,2)-D .(1,2)2.若()350a b b =≠,则下列各式一定成立的是( ) A .35a b = B .53a b = C .35a b = D .145a b += 3.在Rt ABC 中,∠C=90°,如果sin cos A A =,那么A ∠的值是( ) A .90°B .60°C .45°D .30°4.某排球队6名场上队员的身高(单位:cm )是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高( ) A .平均数变小,方差变小 B .平均数变小,方差变大 C .平均数变大,方差变小D .平均数变大,方差变大5.方程x (x ﹣5)=x 的解是( ) A .x=0B .x=0或x=5C .x=6D .x=0或x=66.在ABC 中,∠C=90°,AB=5,BC=4,以A 为圆心,以3为半径画圆,则点C 与⊙A 的位置关系是( ) A .在⊙A 外B .在⊙A 上C .在⊙A 内D .不能确定7.已知点(,1),(,3)A m B n 都在反比例函数(0)ky k x=>的图像上,那么( ) A .m n < B .m n =C .m n >D .m n 、的大小无法确定8.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB ,AD =2,BD =6,则边AC 的长为( )A .2B .4C .6D .89.如图⊙O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD 的长为( )A .B .4C .D .810.如图,若二次函数2(0)y ax bx c a =++≠的图象的对称轴为1x =,与x 轴的一个交点为(1,0)-,则:①二次函数的最大值为a b c ++ ;②0a b c -+<;③当1x >时,y 随x 的增大而增大;④当0y >时,13x,其中正确命题的个数是( )A .1B .2C .3D .4二、填空题11.已知关于x 的方程230x x m +-=的一个解为3-,则m=_______. 12.已知AB ∥CD ,AD 与BC 相交于点O.若BO OC =23,AD =10,则AO =____.13.如图是某幼儿园的滑梯的简易图,已知滑坡AB 的坡度是1:3 ,滑梯的水平宽是6m ,则高BC 为_______m .14.如图,A B C 、、是⊙O 上的点,若100AOB ∠=,则ACB ∠=___________度.15.已知ABC DEF ∽△△,且916ABC DEF S S =△△ ,且ABC 与DEF 的周长和为175 ,则ABC 的周长为 _________.16.在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,则参加聚会的有______名同学.17.已知1x ,2x 是方程2510x x --=的两个实根,则2212x x +=______.18.如图所示,在△ABC 中,BC=6,E 、F 分别是AB 、AC 的中点,动点P 在射线EF 上,BP 交CE 于D ,∠CBP 的平分线交CE 于Q ,当CQ=13CE 时,EP+BP= .三、解答题19.计算:()0sin 4512|3tan30︒-++︒ 20.解下列方程:(1)3(2)(2)x x x -=- (2)2430x x ++=21.某学校从360名九年级学生中抽取了部分学生进行体育测试,并就他们的成绩(成绩分为A 、B 、C 三个层次)进行分析,绘制了频数分布表与频数分布直方图(如图),请根据图表信息解答下列问题:(1)补全频数分布表与频数分布直方图;(2) 如果成绩为A 层次的同学属于优秀,请你估计该校九年级约有多少人达到优秀水平?22.如图,点E 是弧BC 的中点,点A 在⊙O 上,AE 交BC 于点D . (1)求证:2•BE AE DE ;(2)连接OB ,OC ,若⊙O 的半径为5,BC=8,求OBC 的面积.23.如图,在Rt △ABC 中,∠C =90°,BC =8,tan B =12,点D 在BC 上,且BD =AD .求AC 的长和cos ∠ADC 的值.24.如图,某反比例函数图象的一支经过点A (2,3)和点B (点B 在点A 的右侧),作BC ⊥y 轴,垂足为点C ,连结AB ,AC .(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.25.如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向点D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.△≌△;(1)求证:AEB CGB(2)若设AE=x,DH=y,当x取何值时,y有最大值?并求出这个最大值;∽?(3)连接BH,当点E运动到AD的何位置时有BEH BAE26.已知ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(用m表示);(2)求抛物线的解析式;(3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.参考答案1.D 【分析】根据抛物线的顶点式解答即可. 【详解】解:抛物线22(1)2y x =-+的顶点坐标是(1,2). 故选:D . 【点睛】本题考查了抛物线的性质,属于基础题型,熟知抛物线的顶点式是解此题的关键. 2.B 【分析】由0,b ≠ 等式的两边都除以3b ,从而可得到答案. 【详解】 解:()350,a b b =≠∴ 等式的两边都除以:3b ,35,33a bb b ∴= 5.3a b ∴= 故选B . 【点睛】本题考查的是把等积式化为比例式的方法,考查的是比的基本性质,等式的基本性质,掌握以上知识是解题的关键. 3.C 【分析】根据锐角三角函数的定义解得即可. 【详解】解:由已知,sin BCA AB=,cos AC A AB =∵sin cos A A = ∴BC AC =∵∠C=90° ∴A ∠=45° 故选:C 【点睛】本题考查了锐角三角函数的定义,解答关键是根据定义和已知条件构造等式求解. 4.A 【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为x =1801841881901921946+++++=188,方差为S 2=()()()()()()22222211801881841881881881901881921881941886⎡⎤-+-+-+-+-+-⎣⎦=683; 换人后6名队员身高的平均数为x =1801841881901861946+++++=187,方差为S 2=()()()()()()22222211801871841871881871901871861871941876⎡⎤-+-+-+-+-+-⎣⎦=593∵188>187,683>593,∴平均数变小,方差变小, 故选A.点睛:本题考查了平均数与方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 5.D 【分析】先移项,然后利用因式分解法解方程.【详解】解:x(x﹣5)﹣x=0,x(x﹣5﹣1)=0,x=0或x﹣5﹣1=0,∴x1=0或x2=6.故选:D.【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).6.B【分析】根据勾股定理求出AC的值,根据点与圆的位关系特点,判断即可.【详解】解:由勾股定理得:3,AC===∵AC=半径=3,∴点C与⊙A的位置关系是:点C在⊙A上,故选:B.【点睛】本题考查了点与圆的位置关系定理和勾股定理等知识点的应用,点与圆(圆的半径是r,点到圆心的距离是d)的位置关系有3种:d=r时,点在圆上;d<r点在圆内;d>r点在圆外.掌握以上知识是解题的关键.7.C【分析】由反比例函数的比例系数为正,那么图象过第一,三象限,根据反比例函数的增减性可得m 和n的大小关系.【详解】解:∵点A(m,1)和B(n,3)在反比例函数kyx=(k>0)的图象上,1<3,∴m>n.故选:C.【点睛】此题考查了反比例函数图象上点的坐标特征,解决本题的关键是根据反比例函数的比例系数得到函数图象所在的象限,用到的知识点为:k>0,图象的两个分支分布在第一,三象限,在每一个象限内,y随x的增大而减小.8.B【解析】【分析】证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题.【详解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴AC AD AB AC=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题. 9.C【详解】∵直径AB 垂直于弦CD ,∴CE=DE=12CD , ∵∠A=22.5°,∴∠BOC=45°,∴OE=CE ,设OE=CE=x ,∵OC=4,∴x 2+x 2=16,解得:即:,∴,故选C .10.B【分析】①根据二次函数的图象可知,1x =时,二次函数取得最大值,将1x =代入二次函数的解析式即可得;②根据1x =-时,0y =即可得;③根据二次函数的图象即可知其增减性;④先根据二次函数的对称性求出二次函数的图象与x 轴的另一个交点坐标,再结合函数图象即可得.【详解】由二次函数的图象可知,1x =时,二次函数取得最大值,将1x =代入二次函数的解析式得:y a b c =++,即二次函数的最大值为a b c ++,则命题①正确;二次函数的图象与x 轴的一个交点为(1,0)-,0a b c ∴-+=,则命题②错误;由二次函数的图象可知,当1x >时,y 随x 的增大而减小,则命题③错误;设二次函数的图象与x 轴的另一个交点为(,0)m ,二次函数的对称轴为1x =,与x 轴的一个交点为(1,0)-,112m -+∴=,解得3m =, 即二次函数的图象与x 轴的另一个交点为(3,0),由二次函数的图象可知,当0y >时,13x,则命题④正确;综上,正确命题的个数是2,故选:B .【点睛】本题考查了二次函数的图象与性质(对称性、增减性、最值)等知识点,熟练掌握二次函数的图象与性质是解题关键.11.0【分析】把3x =-代入原方程得到关于m 的一元一次方程,解方程即可得到答案.【详解】解:把3x =-代入原方程得: ()()23330,m ∴-+⨯--=0.m ∴=故答案为:0.【点睛】本题考查的是一元二次方程的解的含义,掌握方程的解的含义是解题的关键. 12.4.【解析】∵AB ∥CD , 223103AO BO AO OD OC AO ∴===-,即, 解得,AO=4,故答案是:4.【点睛】运用了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.13.2【分析】根据滑坡的坡度及水平宽,即可求出坡面的铅直高度.【详解】∵滑坡AB的坡度是1:3,滑坡的水平宽度是6m,∴AC=6m,∴BC= 13×6=2m.故答案为:2.【点睛】本题考查了解直角三角形的应用中的坡度问题,牢记坡度的定义是解题的关键.14.130°.【分析】在优弧AB上取点D,连接AD,BD,根据圆周角定理先求出∠ADB的度数,再利用圆内接四边形对角互补进行求解即可.【详解】在优弧AB上取点D,连接AD,BD,∵∠AOB=100°,∴∠ADB=12∠AOB =50°,∴∠ACB=180°﹣∠ADB=130°.故答案为130°.【点睛】本题考查了圆周角定理,圆内接四边形对角互补的性质,正确添加辅助线,熟练应用相关知识是解题的关键.15.75【分析】根据相似三角形的性质得△ABC 的周长:△DEF 的周长=3:4,然后根据ABC 与DEF 的周长和为175即可计算出△ABC 的周长.【详解】解:∵△ABC 与△DEF 的面积比为9:16,∴△ABC 与△DEF 的相似比为3:4,∴△ABC 的周长:△DEF 的周长=3:4,∵ABC 与DEF 的周长和为175 ,∴△ABC 的周长=37×175=75. 故答案是:75.【点睛】本题考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.16.11【解析】【分析】设参加聚会的有x 名学生,根据“在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品”,列出关于x 的一元二次方程,解之即可.【详解】解:设参加聚会的有x 名学生,根据题意得: ()x x 1110-=,解得:1x 11=,2x 10(=-舍去),即参加聚会的有11名同学,故答案为:11.【点睛】本题考查了一元二次方程的应用,正确找出等量关系,列出一元二次方程是解题的关键.17.27【分析】根据根与系数的关系,由x12+x22=(x1+x2)2−2x1x2,即可得到答案.【详解】∵x1,x2是方程 x2−5x−1=0的两根,∴x1+x2=5,x1∙x2=−1,∴x12+x22=(x1+x2)2−2x1x2=52-2×(-1)=27;故答案为27.【点睛】本题考查了一元二次方程的根与系数的关系,解题的关键是熟练掌握根与系数的关系,并正确进行化简计算.18.12.【分析】延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=13CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.【详解】如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC.∴∠M=∠CBM.∵BQ是∠CBP的平分线,∴∠PBM=∠CBM .∴∠M=∠PBM .∴BP=PM .∴EP+BP=EP+PM=EM .∵CQ=13CE , ∴EQ=2CQ .由EF ∥BC 得,△MEQ ∽△BCQ , ∴EM EQ 2BC CQ==. ∴EM=2BC=2×6=12,即EP+BP=12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ 构造出相似三角形,求出EP+BP=EM 并得到相似三角形是解题的关键,也是本题的难点. 19.3【分析】分别根据特殊角三角函数值、零次幂、绝对值的代数意义进行化简,最后进行加减运算即可.【详解】解:()0sin 451|2|3tan30︒-++︒=1233+-⨯3=. 【点睛】本题主要考查了实数的综合运算能力,解决此类题目的关键是熟练掌握负整数指数幂、零次幂、二次根式、绝对值等考点的运算.20.(1)121,23x x ==;(2)121,3x x =-=- 【分析】(1)把方程右边的项作为整体移到左边,利用因式分解的方法解方程即可;(2)利用配方法把方程化为:()221,x +=再利用直接开平方法解方程即可.【详解】解:(1)原方程可化为: ()()3220,x x x ---=∴ ()()3120x x --= 解得:121,23x x == (2)∵24311x x +++=()221,x ∴+=∴ 21x +=±解得:1213x x =-=-,.【点睛】本题考查的是一元二次方程的解法,掌握因式分解与配方法解方程是本题的解题关键. 21.(1)见解析;(2)144人【分析】(1)首先利用C 组的数据可以求出抽取了部分学生的总人数,然后利用频率或频数即可补全频数分布表与频数分布直方图;(2)根据(1)的几个可以得到A 等级的同学的频率,然后乘以360即可得到该校九年级约有多少人达到优秀水平.【详解】(1)补全频数分布表如下:补全直方图如下:(2)∵A 层次的同学人数为40人,频率为0.40,∴估计该校九年级约有 0.4×360=144人达到优秀水平. 【点睛】本题考查的知识点是频率分布表及用样本估计总体以及频率分布直方图,解题的关键是熟练的掌握频率分布表及用样本估计总体以及频率分布直方图.22.(1)见解析;(2)12【分析】(1)由点E 是BC 的中点根据圆周角定理可得∠BAE=∠CBE ,又由∠E=∠E (公共角),即可证得△BDE ∽△ABE ,然后由相似三角形的对应边成比例,证得结论.(2)过点O 作OF ⊥BC 于点F ,根据垂径定理得出BF=CF=4 ,再根据勾股定理得出OF 的长,从而求出OBC 的面积【详解】(1)证明:∵点E 是弧BC 的中点∴∠BAE=∠CBE=∠DBE 又∵∠E=∠E∴△AEB ∽△BED∴AE EB BE ED= ∴2•BE AE DE =(2)过点O 作OF ⊥BC 于点F ,则BF=CF=4在Rt OFB ∆中,3OF === ∴11831222OBC S BC OF ∆=⨯=⨯⨯=【点睛】此题考查了圆周角定理、垂径定理以及相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.23.AC =4; cos ∠ADC =35 【详解】解:在Rt △ABC 中,∵BC =8,1tan 2B =, ∴AC =4.设AD =x ,则BD =x ,CD =8-x ,由勾股定理,得(8-x )2+42=x 2.解得x =5. ∴3cos 5DC ADC AD ∠==.24.(1)y 6x=;(2)y 12=-x +4. 【解析】【分析】(1)把A 的坐标代入反比例函数的解析式即可求得;(2)作AD ⊥BC 于D ,则D(2,b),即可利用a 表示出AD 的长,然后利用三角形的面积公式即可得到一个关于b 的方程,求得b 的值,进而求得a 的值,根据待定系数法,可得答案.【详解】(1)由题意得:k =xy =2×3=6,∴反比例函数的解析式为y 6x=; (2)设B 点坐标为(a ,b),如图,作AD ⊥BC 于D ,则D(2,b),∵反比例函数y 6x =的图象经过点B(a ,b), ∴b 6a=, ∴AD =36a-, ∴S △ABC 12=BC•AD 12=a(36a -)=6, 解得a =6,∴b 6a==1, ∴B(6,1),设AB 的解析式为y =kx+b ,将A(2,3),B(6,1)代入函数解析式,得2361k b k b +=⎧⎨+=⎩,解得:124k b ⎧=-⎪⎨⎪=⎩, 所以直线AB 的解析式为y 12=-x+4. 【点睛】本题考查了利用待定系数法求反比例函数以及一次函数解析式,熟练掌握待定系数法以及正确表示出BC ,AD 的长是解题的关键.25.(1)见解析;(2)当12x =,y 有最大值14;(3)当点E 是AD 的中点 【分析】(1)由同角的余角相等得到∠ABE=∠CBG ,从而全等三角形可证;(2)先证明△ABE ∽△DEH ,得到AB AE DE DH =,即可求出函数解析式y=-x 2+x ,继而求出最值.(3)由(2)12EH HD BE EA ==,再由12AE AB =,可得12EH AE BE AB ==,则问题可证. 【详解】 (1)证明: ∵∠ABE+∠EBC=∠CBG+∠EBC=90°∴∠ABE=∠CBG在△AEB 和△CGB 中:∠BAE=∠BCG=90°,AB=BC , ∠ABE=∠CBG∴△AEB ≌△CGB (ASA )(2)如图∵四边形ABCD ,四边形BEFG 均为正方形∴∠A=∠D=90°, ∠HEB=90° ∴∠DEH+∠AEB=90°,∠DEH+∠DHE=90°∴∠DHE=∠AEB∴△ABE ∽△DEH ∴AB AE DE DH= ∴11x x y=- ∴2211()24y x x x =-+=--+故当12x =,y 有最大值14 (3)当点E 是AD 的中点时有 △BEH ∽△BAE .理由:∵ 点E 是AD 的中点时由(2)可得1124AE DH ==, 又∵△ABE ∽△DEH∴12EH HD BE EA ==, 又∵12AE AB = ∴12EH AE BE AB == 又∠BEH=∠BAE=90°∴△BEH ∽△BAE【点睛】本题结合正方形的性质考查二次函数的综合应用,以及正方形的性质和相似三角形的判定,解答关键是根据题意找出相似三角形构造等式.26.(1)(3﹣m ,0);(2)2(1)y x =-;(3)见解析【分析】(1)AO=AC−OC =m−3,用线段的长度表示点A 的坐标;(2)ABC 是等腰直角三角形,因此AOD △也是等腰直角三角形,即可得到OD =OA ,则D (0,m−3),又由P (1,0)为抛物线顶点,用待定系数法设顶点式,计算求解即可;(3)过点Q 作QM ⊥AC 与点M ,过点Q 作QN ⊥BC 与点N ,设点Q 的坐标为2(,(1))x x -,运用相似比求出FC ,EC 长的表达式,而AC =m ,代入即可.【详解】解:(1)由B (3,m)可知OC=3,BC =m ,∴AC =BC =m ,OA =m ﹣3,∴点A 的坐标为(3﹣m ,0)(2)∵∠ODA =∠OAD =45°∴OD =OA = m ﹣3,则点D 的坐标是(0,m ﹣3)又抛物线的顶点为P (1,0),且过B 、D 两点,所以可设抛物线的解析式为:2(1)y a x =-得:221(31)4(01)3a a m m a m =⎧-=⎧⎨⎨=-=-⎩⎩解得:∴抛物线的解析式为:2(1)y x =-(3)证明:过点Q 作QM ⊥AC 与点M ,过点Q 作QN ⊥BC 与点N ,设点Q 的坐标为2(,(1))x x -,则2(1)3QM CN x MC QN x ==-==-,∵QM ∥CE∴△PQM ∽△PEC 则2(1)12(1)2QM PM x x EC x EC PC EC --===-即得 ∵QN ∥FC∴△BQN ∽△BFC 则234(1)441QN BN x x FC FC BC FC x ---===+即得 又∵AC =m=4 ∴[]44()42(1)2(1)811FC AC EC x x x x +=+-=⨯+=++ 即()FC AC EC +为定值8【点睛】本题主要考查了点的坐标,待定系数法求二次函数解析式,相似三角形的判定与性质,合理做出辅助线,运用相似三角形的性质求出线段的长度是解题的关键.。