江苏省徐州市睢宁县2019-2020学年七年级上学期期中考试数学试卷(无答案)
2019-2020学年七年级数学第一学期期中调研考试试卷苏科版.docx

2019-2020 学年七年级数学第一学期期中调研考试试卷苏科版(考试时间:120 分钟满分150 分)成绩一、选择题(下列 1~8 题只有一个答案是正确的,请将正确答案的代号填在表内.每题3分,共 24 分)题号 12345678答案1. 3的相反数为(▲)A . 3B .1C . 3D .1332.地球与太阳的平均距离大约为 150000000 km ,用科学记数法表示这个距离为(▲)7A .1.5 ×10 km86B .1.5 ×10 kmC .15×10 km8D .0.15 ×10 km3.对于任意有理数 a , 下列各式一定是正数的是(▲)2B .a +10000C . | a +5|D2A .( a +2).a +0.014.下列各组中,两个单项式是同类项的是(▲)A .3 与 4B .1mn 21 2 nC . x 3 与 y 3D . 5 与 5mnnm2与mababcc 35.下列各式化简后与 - - 不相等的是(▲)a bA . a (b c)B . a (b c)C . ( a b) ( c)D. ( c) (b a)6.如果一个多项式的次数是 6,则这个多项式的任何一项的次数都(▲)A .小于 6B .等于 6C.不大于 6D .不小于 67.下列各式运算正确的是 (▲)A .3 +2 =5B .7 + =8C .5y 2- 2 2=3 D . 4 2 - 22=2a b aba a ayx y xy xy8.池塘里有一种水浮萍,每天可生长原来的一倍,如果26 天长满整个池塘,则第几天长池塘的四分之一?(▲)A.第 8 天B.第13天 C .第 20 天D.第24天二、填空(每小 3 分,共 30 分)9.等于 6 的有理数.10.已知中有四个正方形,最大的正方形 a ,阴影部分的面.11.如果某市去年售汽m,今年的量比去年增加a,那么第 10 题今年售汽.12.若式2x2y n与2x m y 3是同,n m的.313.三个整数中最小的一个数是n,那么它的和等于.14.某校初一新生行号,定末尾用 1 表示男生,用 2 表示女生,如果用七位数1210022 表示“ 2012 年入学的10 班 2 号同学,是位女生”,那么 2012 年入学的初一(6)班 28 号男生的号是.15. 某公交原来坐有 24 人, 4 个站点上下情况如下(上正,下):(+ 4,- 8),(- 5,+ 6),(- 3,+ 2),(+ 1,- 7),在上有人.16.已知 a13, b 3 ,a、b在数上的点分A、 B, A、 B 两点距离的最大等于.17.多式 82- 3 +5 与 33+22-5 + 7 相加后,不含x 的二次,常数的等x x x mx x m 于.18. 1~9 九个数字的乘方所得的果,其个位数字是有律的,如:21=2,22=4,23=8,24=16,25=32, 26=64,⋯⋯,由此知道2n(n是正整数)的个位数字按2,4,8,6,2,4, 8, 6,⋯⋯的律化,其它数字的乘方也有似的律.根据的律可知,6320的个位数字是.三、解答(共96 分)19. ( 本分 8 分 )画一条数,并把-4 ,-(-3.5),21,0,3各数在数上表示22出来 , 再用“<”把它接起来.20.(本分 8 分)将下列各数填在相的集合里.3.8 , 10202,,(3 ),,3.3030030003⋯⋯., 4.3 ,, 4057有理数集合: {⋯ };正数集合: {⋯ };数集合: {⋯ };无理数集合: {⋯ }.21.算(本分18 分,每小 3 分)(1)(1) ( 2) (5) (5)6767(2)(157) ( 36) 2612(3)24 5 ( 3) 6 (1)6(4)(12) (1) ( 2) 2( 3) 36(5)1623 310.5 28(6)0.7 1423( 15)0.751( 15) 949422.(本题满分8 分)某检修小组乘汽车沿东进路检修线路,约定向东为正,向西为负,某天自电信局钟楼出发到收工时所走路程(单位:千米)为:8 , 3 , 4 ,2,13 ,8 , 2 .(1)问收工时距出发地多远?在出发地东侧还是西侧?(2)若每千米耗油 0.2 升,问从出发地出发到收工时共耗油多少升?23.(本题满分 8 分)(1)写出一个含有字母x 的代数式,当 x =1时,代数式的值等于2;(2)写出一个含有字母x 的代数式,当 x =2和 x =2时,代数式的值都等于5;(3)写出两个含有字母x的二次三项式,使x不论取什么值,这两个多项式的和总是等于3(列式表示).24.(本题满分 6 分) 2005 年我国公布了个人收入所得税征收标准.个人月收入1600 元以下不征税,月收入超过1600 元,超过的部分按以下标准征税.不超过 500 元的5%超过 500 元 ~2000 元的部分10%超过 2000 元 ~5000 元的部分15%李明的妈妈月收入1800 元,爸爸月收入2500 元,他们各应缴纳个人所得税多少元?25.(本题满分 10 分)先化简,后求值:(42 3 ) (224) ,其中= 2.(1)a a a a a5(322) 4(232) ,其中a2 , b3 .(2)a b ab ab a b26.(本题满分10 分)某市出租车收费标准为:行驶路程不超过3km时收费 7 元,超过 3km 时,则超过部分按 1.8/ km元收费.(1)用代数式表示出租车收费m元与行驶路程 s km( s > 3 )之间的关系;(2)某人坐出租车行驶了 6 千米,应付司机多少元?(3)某人向司机付了 16 元,汽车行程是多少km?27.(本题满分 10 分)将长为 1,宽为a的长方形纸片(1a1) 如图那样折一下,剪下2一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作).(1)第一次操作后,剩下的长方形的长和宽分别为多少?(用含 a 的代数式表示)(2)第二次操作后,剩下的长方形的面积是多少?(列出代数式,不需化简)(3)假如第二次操作后,剩下的长方形恰好是正方形,则 a 的值是多少?第一次操作第二次操作28.(本分10 分)如,老王开从 A 到 D,全程共 72 千米.其中AB段平地,速是 30 千米 / 小, BC段上山路,速是 22.5 千米 / 小, CD段下山路,速是36 千米 / 小,已知下山路是上山路的 2 倍.(1)若 AB=6千米,老王开从 A到 D 共需多少?(2)当 BC的度在一定范内化,老王开从 A 到 D 所需是否会改?什么?(出算程)CA B初一年数学学科参考答案D一、 1—— 8CBDAACBD二、填空9 、 6 10、1a211 、m(1 a %)12、913 、 3n+3 214、120628115、 1416、717 、 -418、 1三、解答19、画数正确并表示数正确⋯⋯⋯⋯⋯⋯ 4分排序 -4< 0<31< -(-3.5),⋯⋯⋯⋯⋯⋯ 4 分< 22220、每个数集⋯⋯⋯⋯⋯⋯ 2 分有理数集合: { 3.8 ,10,4.3 ,20 ,42,0,(3) ,⋯ } ;75正数集合: {4.3 ,42,(3) ,,3.3030030003 ⋯⋯⋯ } ;5数集合: { 3.8 ,10,20⋯ } ;,7无理数集合: {, 3.3030030003 ⋯⋯⋯}。
2019-2020学年七年级(上)期中数学试卷

2019-2020学年七年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项的字母代号填在表格相应位置上1.给出四个数﹣2,0,1,8,其中最小的是()A.﹣2 B.0 C.1 D.82.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A.11×104B.0.11×107C.1.1×106D.1.1×1053.实数a、b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.|b|>a4.下列运算正确的是()A.﹣32=9 B.2ab﹣3ab=﹣abC.a3﹣a2=a D.2a+3b=5ab5.已知x﹣2y=﹣2,那么代数式3﹣2x+4y的值是()A.﹣1 B.5 C.6 D.76.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1D.3x2﹣y+5xy2是二次三项式7.下列说法正确的是()A.绝对值等于3的数是﹣3B.绝对值不大于2的数有±2,±1,0C.若|a|=﹣a,则a≤0D.一个数的绝对值一定大于这个数的相反数8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种二、填空题(本大题共10小题,每小题2分,共20分请将答案填在题中相应的横线上)9.的倒数是.10.小张妈妈有记账的习惯,如果收入180元记作+180元,那么支出120元记作11.写出一个比3大且比4小的无理数:.12.若a<0,且|a|=2,则a﹣1=13.若关于x的方程mx m﹣1﹣m+2=0是一元一次方程,则这个方程的解x=14.某超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,可得到方程为15.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=.16.已知A=3x3+2x2﹣5x+7m+2,B=2x2+mx﹣3,若多项式A+B不含一次项,则多项式A+B 的常数项是.17.一个两位数,个位上的数字为a,十位上的数字比个位上的数字小1,若将这个两位数放到数字3的左边组成一个三位数,则这个三位数可以用含a的代数式表示(结果能化简的要化简)18.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.4成立,正确的有(填写所有正确结论的序号)三、解谷题(本大题共7题,计56分)19.计算(1)23+(﹣17)+(+7)+(﹣13)(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)9920.化简与求值(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)(2)先化简,再求值:x﹣2(x﹣y)+(﹣x+y)其中x=﹣2,y=21.先列式,再计算(1)﹣1减去﹣与的所得差是多少?(2)已知多项式A=2x2﹣x+5,多项式A与多项式B的和为4x2﹣6x﹣3,求多项式B?22.为了有效控制酒后驾车,某市城管的汽车在一条东西方向的公路上巡逻,若规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他所处的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.15升)23.人在运动时每分钟心跳的次数通常和人的年龄有关,如果用a表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220﹣a).(1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少?(2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?24.某经销商去水产批发市场采购湖蟹,他看中了A,B两商家的某种品质相近的湖蟹,其中A商家零售价为60元/千克,B商家零售价为70元/千克,两商家的批发价信息如下A商家:批发数量不超过100千克,按零售价的95%出售;超过100千克但不超过200千克,按零售价的90%出售;超过200千克的按零售价的85%出售B商家:批发价信息如下表:(1)如果他批发80千克湖蟹,请通过计算说明他在哪家批发分别合算?(2)如果他批发x千克湖蟹(150<x<200),请你分别用含字母x的式子表示他在A、B 两家批发所需的费用.25.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.参考答案与试题解析一.选择题(共8小题)1.给出四个数﹣2,0,1,8,其中最小的是()A.﹣2 B.0 C.1 D.8【分析】先比较数的大小,再得出选项即可.【解答】解:﹣2<0<1<8,最小的数是﹣2,故选:A.2.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A.11×104B.0.11×107C.1.1×106D.1.1×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:110000=1.1×105,故选:D.3.实数a、b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.|b|>a【分析】根据数轴左边的数小于右边的数即可直接解答.【解答】解:根据实数实数a、0、b在数轴上的位置可以得知:b<0<a,且a距离原点比b近.,故|b|>a,故选:D.4.下列运算正确的是()A.﹣32=9 B.2ab﹣3ab=﹣abC.a3﹣a2=a D.2a+3b=5ab【分析】根据有理数的运算法则以及合并同类项法则即可求出答案.【解答】解:(A)原式=﹣9,故A错误;(C)原式=a3﹣a2,故C错误;(D)原式=2a+3b,故D错误;故选:B.5.已知x﹣2y=﹣2,那么代数式3﹣2x+4y的值是()A.﹣1 B.5 C.6 D.7 【分析】将3﹣2x+4y变形为3﹣2(x﹣2y),然后代入数值进行计算即可.【解答】解:∵x﹣2y=﹣2,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×(﹣2)=7;故选:D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1D.3x2﹣y+5xy2是二次三项式【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A、3a2b与ba2是同类项,故本选项错误;B、是整式,故本选项错误;C、单项式﹣x3y2的系数是﹣1,故本选项正确;D、3x2﹣y+5xy2是三次三项式,故本选项错误.故选:C.7.下列说法正确的是()A.绝对值等于3的数是﹣3B.绝对值不大于2的数有±2,±1,0C.若|a|=﹣a,则a≤0D.一个数的绝对值一定大于这个数的相反数【分析】利用绝对值的知识分别判断后即可确定正确的选项.【解答】解:A、绝对值等于3的数是3和﹣3,故错误;B、绝对值不大于2的整数有±2,±1,0,故错误;C、若|a|=﹣a,则a≤0,正确,D、负数的绝对值等于这个数的相反数,故错误,故选:C.8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种【分析】根据运算程序列出方程,然后求解即可.【解答】解:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5,5n+1=5,解得n=(不符合),所以,满足条件的n的不同值有3个二.填空题(共10小题)9.的倒数是﹣3 .【分析】根据倒数的定义.【解答】解:因为(﹣)×(﹣3)=1,所以的倒数是﹣3.10.小张妈妈有记账的习惯,如果收入180元记作+180元,那么支出120元记作﹣120元【分析】首先审清题意,明确“正”和“负”所表示的意义,再结合题意作答.【解答】解:如果收入180元记作+180元,那么支出120元记作﹣120元.故答案为﹣120元.11.写出一个比3大且比4小的无理数:π.【分析】根据无理数的定义即可.【解答】解:写出一个比3大且比4小的无理数:π,故答案为:π.12.若a<0,且|a|=2,则a﹣1=﹣3【分析】直接利用绝对值的性质得出a的值进而得出答案.【解答】解:∵a<0,且|a|=2,∴a=﹣2,∴a﹣1=﹣3.故答案为:﹣3.13.若关于x的方程mx m﹣1﹣m+2=0是一元一次方程,则这个方程的解x=0 【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵关于x的方程mx m﹣1﹣m+2=0是一元一次方程,∴m﹣1=1,解得:m=2,故2x=0,解得:x=0.故答案为:0.14.某超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,可得到方程为0.8x﹣10=90【分析】设某种书包原价每个x元,根据两次降价后售价为90元,即可得出关于x的一元一次方程,此题得解.【解答】解:设某种书包原价每个x元,根据题意得:0.8x﹣10=90.故答案为:0.8x﹣10=90.15.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=.【分析】原式利用已知新定义化简,计算即可得到结果.【解答】解:原式==,故答案为:16.已知A=3x3+2x2﹣5x+7m+2,B=2x2+mx﹣3,若多项式A+B不含一次项,则多项式A+B 的常数项是34 .【分析】首先求出A+B,根据多项式A+B不含一次项,列出方程求出m的值即可解决问题.【解答】解:∵A+B=(3x3+2x2﹣5x+7m+2)+(2x2+mx﹣3)=3x3+2x2﹣5x+7m+2+2x2+mx﹣3=3x2+4x2+(m﹣5)x+7m﹣1∵多项式A+B不含一次项,∴m﹣5=0,∴m=5,∴多项式A+B的常数项是34,故答案为3417.一个两位数,个位上的数字为a,十位上的数字比个位上的数字小1,若将这个两位数放到数字3的左边组成一个三位数,则这个三位数可以用含a的代数式表示110a﹣97 (结果能化简的要化简)【分析】根据个位上的数字为a,十位上的数字比个位上的数字小1可以求出三左边的数字,再加上个位上的三,即可求出答案.【解答】解:∵个位上的数字为a,十位上的数字比个位上的数字小1,∴3的左边的数是100(a﹣1)+10a,∴这个三位数可以表示为100(a﹣1)+10a+3=100a﹣100+10a+3=110a﹣97.故答案为:110a﹣97.18.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.4成立,正确的有④(填写所有正确结论的序号)【分析】利用题中的新定义判断即可.【解答】解:①[0)=1;②[x)﹣x无最小值;③[x)﹣x无最大值;④存在实数x,使[x)﹣x=0.4成立,故答案为:④三.解答题(共7小题)19.计算(1)23+(﹣17)+(+7)+(﹣13)(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)99【分析】(1)根据有理数的加法的运算方法,求出每个算式的值各是多少即可.(2)先计算乘方,再利用乘法分配律变形,利用除法法则计算即可得到结果;【解答】解:(1)23+(﹣17)+(+7)+(﹣13),=23﹣17+7﹣13,=23+7﹣17﹣13,=30﹣30,=0;(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)99,=﹣24×+24×+24×+16÷(﹣8)﹣1,=﹣16+12+30﹣2﹣1,=﹣19+42,=23.20.化简与求值(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)(2)先化简,再求值:x﹣2(x﹣y)+(﹣x+y)其中x=﹣2,y=【分析】(1)原式去括号、合并同类项即可化简;(2)先将原式去括号、合并同类项化为最简形式,再将x,y的值代入计算可得.【解答】解:(1)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2;(2)原式=x﹣2x+y﹣x+y=﹣3x+y,当x=﹣2,y=时,原式=﹣3×(﹣2)+=6.21.先列式,再计算(1)﹣1减去﹣与的所得差是多少?(2)已知多项式A=2x2﹣x+5,多项式A与多项式B的和为4x2﹣6x﹣3,求多项式B?【分析】(1)根据题意列出算式,再根据有理数的减法法则计算可得;(2)根据题意列出算式B=4x2﹣6x﹣3﹣(2x2﹣x+5),再去括号、合并即可得.【解答】解:(1)根据题意,得:[(﹣1)﹣(﹣)]﹣=﹣1+﹣=﹣;(2)根据题意,得B=4x2﹣6x﹣3﹣(2x2﹣x+5)=4x2﹣6x﹣3﹣2x2+x﹣5=2x2﹣5x﹣8.22.为了有效控制酒后驾车,某市城管的汽车在一条东西方向的公路上巡逻,若规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他所处的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.15升)【分析】(1)求出这些数的和,即可得出答案;(2)求出这些数的绝对值的和,再乘以0.15升即可.【解答】解:(1)∵(+2)+(﹣3)+(+2)+(+1)+(﹣2)+(﹣1)+(﹣2)=﹣3(千米),∴这辆城管的汽车司机向队长描述他的位置为出发点以西3千米;(2)|+2|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|﹣2|+|﹣3|=16(千米),16×0.15=2.4(升),故这次巡逻(含返回)共耗油2.4升.23.人在运动时每分钟心跳的次数通常和人的年龄有关,如果用a表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220﹣a).(1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少?(2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?【分析】(1)根据题意给出的等式,将a=20代入即可求出b的值.(2)根据题意给出的等式,将a=50时代入求出b的值,然后将b与23相比较即可知道是否有危险.【解答】解:(1)当a=20时,b=0.8(220﹣a)=0.8×(220﹣20)=160,所以在运动时一个20岁的人所能承受的每分钟心跳的最高次数是160;(2)他有危险,当a=50时,b=0.8(220﹣a)=0.8×(220﹣50)=136,因为136÷60×10=<23,所以此人有危险.24.某经销商去水产批发市场采购湖蟹,他看中了A,B两商家的某种品质相近的湖蟹,其中A商家零售价为60元/千克,B商家零售价为70元/千克,两商家的批发价信息如下A商家:批发数量不超过100千克,按零售价的95%出售;超过100千克但不超过200千克,按零售价的90%出售;超过200千克的按零售价的85%出售B商家:批发价信息如下表:(1)如果他批发80千克湖蟹,请通过计算说明他在哪家批发分别合算?(2)如果他批发x千克湖蟹(150<x<200),请你分别用含字母x的式子表示他在A、B 两家批发所需的费用.【分析】(1)根据A、B两家的优惠办法分别求出两家购买需要的费用即可;(2)根据题意列出式子分别表示出购买x千克太湖蟹所相应的费用即可.【解答】解:(1)A:80×60×95%=4560(元),B:50×70×90%+(80﹣50)×70×85%=4935(元),∵4560元<4935元,∴他在A商家批发合算;(2)A:60×90%x=54x(元),B:50×70×90%+100×70×85%+(x﹣150)×70×80%=56x+700(元).25.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.【分析】(1)12层时最底层最左边这个圆圈中的数是11层的数字之和再加1;(2)首先计算圆圈的个数,从而分析出23个负数后,又有多少个正数.【解答】解:(1)1+2+3+…+11+1=6×11+1=67;(2)图4中所有圆圈中共有1+2+3+…+12==78个数,其中23个负数,1个0,54个正数,所以图4中所有圆圈中各数的绝对值之和=|﹣23|+|﹣22|+...+|﹣1|+0+1+2+ (54)(1+2+3+…+23)+(1+2+3+…+54)=276+1485=1761.另解:第一层有一个数,第二层有两个数,同理第n层有n个数,故原题中1+2+.+11为11层数的个数即为第11层最后的圆圈中的数字,加上1即为12层的第一个数字.。
2019—2020学年上学期期中考试试卷 七年级数学

2019—2020学年上学期期中考试试卷七年级数学(第五章~第七章)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷30分,第Ⅱ卷70分,共100分,考试时间90分钟.第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分) 1.在平面直角坐标系中,点(0,6)位于 ()A .x 轴正半轴上B .y 轴负半轴上C .x 轴负半轴上D .y 轴正半轴上2.9的平方根是±3,用数学符号表示为 ()A .√9B .±√9C .√9=±3D .±√9=±33.已知点P 位于y 轴右侧,距离y 轴3个单位长度,位于x 轴上方,距离x 轴4个单位长度,则点P 的坐标为()A .(-3,4)B .(3,4)C .(-4,3)D .(4,3)4.下列结论正确的是 ()A .64的立方根是±4B .-18没有立方根C .立方根等于本身的数一定是0D .√-273=-√2735.下列命题中,是真命题的是()A .同位角相等B .邻补角一定互补C .相等的角是对顶角D .过一点有且只有一条直线与已知直线垂直6.在平面直角坐标系中,将三角形各点的横坐标都加上4,纵坐标保持不变,所得图形与原图形相比()A .向右平移了4个单位长度B .向左平移了4个单位长度C .向上平移了4个单位长度D .向下平移了4个单位长度图JD3-17.用两块相同的三角尺按如图JD3-1所示的方式作平行线AB和CD,能解释其中的道理的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,内错角相等8.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补9.如图JD3-2,表示√7的点在数轴上应在哪两个字母之间()图JD3-2A.C与DB.A与BC.A与CD.B与C10.如图JD3-3,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),…,根据这个规律探索可得,第102个点的坐标为()图JD3-3A.(14,9)B.(14,10)C.(14,11)D.(14,12)请将选择题答案填入下表:题号 1 2 3 4 5 6 7 8 9 10 总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.若剧院里5排2号可以用(5,2)表示,则7排4号可以用表示.12.命题“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”的题设是,结论是.13.在平面直角坐标系中点P-1,m4+1一定在第象限.14.已知3x-4是25的算术平方根,则x的值是.15.如图JD3-4所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,则∠DOG=°.图JD3-4图JD3-516.表示m的点在数轴上的位置如图JD3-5所示,化简√(m-1)2+√(m-2)2=.三、解答题(共52分)17.(6分)完成下面的推理过程.图JD3-6如图JD3-6,已知∠1=∠2.求证:∠3+∠4=180°.证明:∵∠1=∠2,∴a∥b(),∴∠3+∠5=180°().又∵∠4=∠5(),∴∠3+∠4=180°.18.(6分)如图JD3-7,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°.(1)求∠DCA的度数;(2)求∠DCE的度数.图JD3-719.(6分)若a,b互为相反数,c,d互为倒数,|m|=√2,求a2-b2+cd÷(1+m2)的值.20.(6分)已知(1-3a)2+√b-3=0,求(ab)b的平方根与立方根.图JD3-821.(6分)已知:如图JD3-8,AD⊥BC,垂足为D,EF⊥BC,垂足为F,∠BEF=∠ADG.求证:DG∥AB.证明:∵AD⊥BC,EF⊥BC(已知),∴∠EFB=∠ADB=90°(),∴EF∥( ),∴∠BEF=( ).∵∠BEF=∠ADG(已知),∴∠ADG=( ),∴DG∥AB( ).22.(6分)如图JD3-9,已知A村庄的坐标为(2,3),一辆汽车从原点O出发,在x轴上行驶.(1)汽车行驶到什么位置时离A村最近?在图中找出该点并写出此点的坐标;(2)这样的点有几个?为什么?图JD3-923.(8分)阅读下面的文字,并解答问题.大家知道√2是无理数,而无理数是无限不循环小数,因此√2的小数部分我们不可能全部写出来,于是小亮用√2-1来表示√2的小数部分,你同意小亮的表示方法吗?事实上,小亮的表示方法是有道理的,因为√2的整数部分是1,用原数减去其整数部分,差就是小数部分.请解答:已知10+√3的整数部分为x,小数部分为y,求x-y的相反数.24.(8分)如图JD3-10,在平面直角坐标系中,A,B,C三点的坐标分别为(0,1),(3,0),(2,2).(1)求三角形ABC的面积;(2)如果在第二象限内有一点P(a,2),试用含a的式子表示四边形ABOP的面积;(3)在(2)的条件下是否存在点P,使得四边形ABOP的面积与三角形ABC的面积相等?若存在,请求出点P的坐标;若不存在,请说明理由.图JD3-10阶段综合测试三(期中二)1.D2.D3.B4.D5.[全品导学号:58834031]B6.A7.A8.D9.A 10.[全品导学号:58834032]B 11.(7,4)12.两条直线都与第三条直线平行 这两条直线互相平行 13.二 14.3 15.55 16.[全品导学号:58834033]117.同位角相等,两直线平行 两直线平行,同旁内角互补 对顶角相等 18.解:(1)∵∠DAB+∠D=180°, ∴DC ∥AB ,∴∠DCA=∠CAB. ∵AC 平分∠DAB ,∠CAD=25°, ∴∠CAB=∠CAD=25°, ∴∠DCA=25°.(2)∵DC ∥AB ,∠B=95°,∴∠DCE=∠B=95°. 19.解:∵a ,b 互为相反数, ∴a=-b ,∴a 2=b 2,∴a 2-b 2=0. ∵c ,d 互为倒数,∴cd=1.∵|m|=√2, ∴ m 2=2,∴a 2-b 2+cd÷(1+m 2)=0+1÷(1+2)=13. 20.解:∵(1-3a )2≥0,√b -3≥0,∴由题意知1-3a=0,b-3=0,∴a=13,b=3,∴(ab )b =(13×3)3=1,∴(ab )b 的平方根是±1,立方根是1.21.垂直的定义 AD 同位角相等,两直线平行 ∠BAD 两直线平行,同位角相等 ∠BAD 等量代换 内错角相等,两直线平行22.解:(1)如图,汽车行驶到点B 的位置时,离A 村最近,此时点B 的坐标为(2,0).(2)一个.理由:在同一平面内,过一点有且只有一条直线与已知直线垂直. 23.[全品导学号:58834034]解:因为√3的整数部分是1, 所以x=10+1=11,y=10+√3-11=√3-1. 所以x-y=11-(√3-1)=11-√3+1=12-√3. 所以x-y 的相反数为√3-12.24.[全品导学号:58834035]解:(1)S 三角形ABC =12×(2+3)×2-12×2×1-12×1×3=52. (2)如图,因为点P (a ,2)在第二象限,所以a<0,所以S 四边形ABOP =S 三角形AOP +S 三角形AOB =12×1×(-a )+12×1×3=32-a 2.(3)假设存在,由题意知32-a 2=52,解得a=-2,所以存在符合条件的点P ,点P 的坐标为(-2,2).。
江苏省睢宁县2019-2020学年第一学期七年级数学月考试题(无答案)

七年级2019-2020学年度第一学期数学月考试题(满分:120分 时间:120分钟)一、选择题(每小题2分,共20分) 1.单项式ab 5-的系数是( )A. 5B. -5C. 2D. -22.正在建设中的北京大兴国际机场规划建设面积约1 400 000平方米的航站楼,数据1 400 000用科学记数法可表示为( )A. 81014.0⨯B. 7104.1⨯C. 6104.1⨯D. 61014⨯ 3.下列方程中,是一元一次方程的是( )A. 342=-x xB. 2-=yC. 12=+y xD. xx 11=- 4.下列等式:①5)5(0-=--;②12)9()3(-=-+-;③23)49(32-=-⨯;④4)9()36(-=-÷-;⑤9)3(3-=-,结果正确的有( )A. 1个B. 2个C. 3个D. 4个5.已知有理数b a ,在数轴上的位置如图所示,则化简a b a -+的结果是( )A .b a +2B .b -C .b a --2D .b6.已知关于x 的方程05=--a ax 的解是1=x ,则32+-a 的值是( )A. -3B. 3C. -6D. 67.一家玩具店将某种玩具按成本提高200%标价,又以6折优惠卖出,结果每件玩具仍可获利80元,则这种玩具每件的成本价是 ( ) A .80元 B .100元 C .120元 D .160元8.观察下列等式: ,2621448,327688,40968,5128,648,88654321======,那么2013219888++++ 的末位数字是 ( ) A .0 B .4 C .6 D .89.某书上有一道解方程的题:x x=+⨯∆+131,∆处的数在印刷时被油墨盖住了,查后面的答案知这个方程的解是2-=x ,那么∆处的数字是 ( )A .7B .5C .2D .-210.如图所示的图形都是由同样大小的小圆圈按一定规律所组成的,其中图①中共有4个小圆圈,图②中共有10个小圆圈,图③中共有19个小圆圈,…,按此规律排列,则图⑦中小圆圈的个数为( )A .64B . 77C .80D .85 二、填空题(每小题3分,共30分) 11.比较大小:-7 -5.12.若212b a n +与2235b a n -是同类项,则n 的值为 .13.如果012)3(2=+--m x m 是一元一次方程,那么=m . 14.当=x 时,代数式12+x 与85-x 的值相等.15.在梯形面积公式h b a S )(21+=中,已知120,8,12===S h a ,则=b .16.已知关于x 的方程)(22x m mx -=+的解满足0121=--x ,则=m .17.如图,阴影部分的面积为 . 18.如图是用长度相等的小棒按一定规律摆成的一组图案,图①中有6根小棒,图②中有11根小棒,…,则图n 中有 根小棒.19.根据如图所示的计算程序,若输出的值10=y ,则输入的值=x .20.如图,在数轴上点A 表示数为-2,点B 表示数为6.若在原点O 处放一挡板,一小球甲从点A 处以1个单位长度/秒的速度向左运动;同时另一小球乙从点B 处以2个单位长度/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动。
江苏省徐州市2019-2020学年七年级上学期期中考试数学试卷含解析

2019-2020学年七年级上学期期中考试数学试卷一.选择题(每小题4分,共32分,每小题只有一个选项是符合题目要求的.)1.下列各数中无理数是( )A.0.666…B.C.D.02.下列算式中,运算结果为负数的是( )A.﹣(﹣3)B.|﹣3|C.(﹣3)2D.(﹣3)33.下列运算,正确的是( )A.3a﹣a=2B.2a+b=2abC.﹣x2y+2x2y=x2y D.3a2+2a2=5a44.下列说法中不正确的是( )A.0既不是正数,也不是负数B.0不是整数C.0的相反数是零D.0的绝对值是05.如图所示,将有理数a,b在数轴上表示,下列各式中正确的是( )A.﹣a>b B.|b|>|a|C.ab>0D.a<2a6.某商店在甲批发市场以每包m元的价格进了40包茶叶,又在乙批发市场以每包n元(m>n)的价格进了同样的60包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店( )A.盈利了B.亏损了C.不赢不亏D.盈亏不能确定7.当a取一切有理数时,下列代数式的值一定是正数的是( )A.a2B.|a|C.a2+2D.(a﹣3)28.观察下列图形,照此规律,第5个图形中白色三角形的个数是( )A.81B.121C.161D.201二.填空题(本大题有8小题,每小题3分,共24分)9.某水库的水位下降1米,记作﹣1米,那么+1.2米表示 .10.光年是天文学中的距离单位,1光年大约是9 500 000 000 000km,这个数字用科学记数法可表示为 .11.多项式3a2+2b3的次数是 .12.若m2﹣2m=1,则2019+2m2﹣4m的值是 .13.数轴上,若A,B表示互为相反数的两个点,A在B的左边,并且这两点的距离为6,则A点所表示的数是 .14.袋装牛奶的标准质量为100克,现抽取5袋进行检测,超过标准的质量记为正数,不足的记为负数,结果如下表所示:(单位:克)袋号①②③④⑤质量﹣5+3+9﹣1﹣6其中,质量最标准的是 号(填写序号).15.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a元,请你对“0.8a”再赋予一个含义: .16.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为 .三.解答题(本大题有9小题,共84分,解答时应写出文字说明或演算步骤.)17.计算:(1)|﹣4|+23+3×(﹣5);(2)×(﹣7)﹣(﹣13)×(﹣).18.计算:(1)(﹣+)×(﹣36);(2)﹣12018﹣×[4﹣(﹣3)2].19.在数轴上表示下列各数,并把它们按照从小到大的顺序排列﹣22,﹣(﹣1),0,﹣|﹣2|,﹣3.20.合并同类项:(1)3x2﹣1﹣2x﹣5+3x﹣x2(2)(2a2﹣1+2a)﹣3(a﹣1+a2)21.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.22.某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶记录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次+15﹣8+6+12﹣4+5﹣10(1)B地在A地哪个方向,与A地相距多少千米?(2)巡逻车在巡逻过程中,离开A地最远是多少千米?(3)若每km耗油0.3升,问共耗油多少升?23.对于有理数a,b,定义一种新运算”⊙”,规定a⊙b=|a+b|+|a﹣b|.(1)计算:2⊙(﹣3)的值;(2)当a,b在数轴上的位置如图所示时,化简:a⊙b.24.某市出租车收费标准如下表所示,根据此收费标准,解决下列问题:行驶路程收费标准不超出3km的部分起步价7元+燃油附加费1元超出3km不超出6km的部分 1.6元/km超出6km的部分 2.4元/km(1)若行驶路程为5km,则打车费用为 元;(2)若行驶路程为xkm(x>6),则打车费用为 元(用含x的代数式表示);(3)当打车费用为32元时,行驶路程为多少千米?25.在一条直线上有依次排列的n(n>1)台机床在工作,我们需要设置零件供应站P,使这n台机床到供应站P的距离总和最小.要解决这个问题,先要分析比较简单的情形:如果直线上只有2台机床A1、A2时,很明显供应站P设在A1和A2之间的任何地方都行,距离之和等于A1到A2的距离.如果直线上有3台机床A1、A2、A3,供应站P应设在中间一台机床A2处最合适,距离之和恰好为A1到A3的距离;如果在直线上4台机床,供应站P应设在第2台与第3台之间的任何地方;如果直线上有5台机床,供应站P应设在第3台的地方.(1)阅读递推:如果在直线上有7台机床,供应站P应设在 处.A.第3台B.第3台和第4台之间C.第4台D.第4台和第5台之间(2)问题解决:在同一条直线上,如果有n台机床,供应站P应设在什么位置?(3)问题转化:在数轴上找一点P,其表示的有理数为x.当x 时,代数式|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣99|取到最小值,此时最小值为 .参考答案与试题解析一.选择题(共8小题)1.下列各数中无理数是( )A.0.666…B.C.D.0【分析】根据无理数的定义(无理数是指无限不循环小数)逐个判断即可.【解答】解:A、不是无理数,故本选项不符合题意;B、不是无理数,故本选项不符合题意;C、是无理数,故本选项符合题意;D、不是无理数,故本选项不符合题意;故选:C.2.下列算式中,运算结果为负数的是( )A.﹣(﹣3)B.|﹣3|C.(﹣3)2D.(﹣3)3【分析】先计算各选择支,再判断结果为负数的选项.【解答】解:由于﹣(﹣3)=3,故选项A不为负数;由于|﹣3|=3,故选项B不为负数;由于(﹣3)2=9,故选项C不为负数;由于(﹣3)3=﹣27,故选项D为负数;故选:D.3.下列运算,正确的是( )A.3a﹣a=2B.2a+b=2abC.﹣x2y+2x2y=x2y D.3a2+2a2=5a4【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a,不符合题意;B、原式不能合并,不符合题意;C、原式=x2y,符合题意;D、原式=5a2,不符合题意,故选:C.4.下列说法中不正确的是( )A.0既不是正数,也不是负数B.0不是整数C.0的相反数是零D.0的绝对值是0【分析】根据有理数的分类、相反数、绝对值的性质即可一一判断.【解答】解:A、0既不是正数,也不是负数,正确,本选项不符合题意;B、0是整数,故本选项符合题意;C、0的相反数是零,正确,故本选项不符合题意;D、0的绝对值是0,正确,故本选项不符合题意,故选:B.5.如图所示,将有理数a,b在数轴上表示,下列各式中正确的是( )A.﹣a>b B.|b|>|a|C.ab>0D.a<2a【分析】由数轴可得a<0<b,且|a|>b,根据绝对值的含义易得答案.【解答】解:由数轴可得:a<0<b,且|a|>b∵﹣a=|a|∴﹣a>b故选:A.6.某商店在甲批发市场以每包m元的价格进了40包茶叶,又在乙批发市场以每包n元(m>n)的价格进了同样的60包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店( )A.盈利了B.亏损了C.不赢不亏D.盈亏不能确定【分析】根据题意列出商店在甲批发市场茶叶的利润,以及商店在乙批发市场茶叶的利润,将两利润相加表示出总利润,根据m大于n判断出其结果大于0,可得出这家商店盈利了.【解答】解:根据题意列得:在甲批发市场茶叶的利润为40(﹣m)=20(m+n)﹣40m=20n﹣20m;在乙批发市场茶叶的利润为60(﹣n)=30(m+n)﹣60n=30m﹣30n,∴该商店的总利润为20n﹣20m+30m﹣30n=10m﹣10n=10(m﹣n),∵m>n,∴m﹣n>0,即10(m﹣n)>0,则这家商店盈利了.故选:A.7.当a取一切有理数时,下列代数式的值一定是正数的是( )A.a2B.|a|C.a2+2D.(a﹣3)2【分析】利用非负数的性质判断即可.【解答】解:A、a2≥0,不符合题意;B、|a|≥0,不符合题意;C、a2+2≥2>0,符合题意;D、(a﹣3)2≥0,不符合题意,故选:C.8.观察下列图形,照此规律,第5个图形中白色三角形的个数是( )A.81B.121C.161D.201【分析】由第一个图形中白色三角形的个数是1、第二个图形中白色三角形的个数是1+1×3=4、第三个图形中白色三角形的个数是1+4×3=13,从而得出第四个图形中白色三角形的个数是1+13×3=40、第五个图形中白色三角形的个数是1+40×3=121.【解答】解:∵第一个图形中白色三角形的个数是1,第二个图形中白色三角形的个数是1+1×3=4,第三个图形中白色三角形的个数是1+4×3=13,∴第四个图形中白色三角形的个数是1+13×3=40,第五个图形中白色三角形的个数是1+40×3=121,故选:B.二.填空题(共8小题)9.某水库的水位下降1米,记作﹣1米,那么+1.2米表示 该水库的水位上升1.2米 .【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若某水库的水位下降1米,记作﹣1米,那么+1.2米表示该水库的水位上升1.2米.故答案为:该水库的水位上升1.2米.10.光年是天文学中的距离单位,1光年大约是9 500 000 000 000km,这个数字用科学记数法可表示为 9.5×1012km .【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9 500 000 000 000=9.5×1012,故答案为:9.5×1012km.11.多项式3a2+2b3的次数是 3 .【分析】根据多项式次数的定义:次数最高次项的次数进行填空即可.【解答】解:多项式3a2+2b3的次数是3,故答案为3.12.若m2﹣2m=1,则2019+2m2﹣4m的值是 2021 .【分析】原式变形后,把已知等式代入计算即可求出值.【解答】解:∵m2﹣2m=1,∴原式=2019+2(m2﹣2m)=2019+2=2021.故答案为:2021.13.数轴上,若A,B表示互为相反数的两个点,A在B的左边,并且这两点的距离为6,则A点所表示的数是 ﹣3 .【分析】由相反数的含义及两点之间距离的表示方法,设表示点A的数为x,则表示点B的数为﹣x,由题意得|x﹣(﹣x)|=6,结合A在B的左边,可得答案.【解答】解:∵A,B表示互为相反数的两个点∴设表示点A的数为x,则表示点B的数为﹣x∵这两点的距离为6∴|x﹣(﹣x)|=6∴2|x|=6∴|x|=3∵A在B的左边∴x<﹣x∴x<0∴x=﹣3,即点A表示的数为﹣3.故答案为:﹣3.14.袋装牛奶的标准质量为100克,现抽取5袋进行检测,超过标准的质量记为正数,不足的记为负数,结果如下表所示:(单位:克)袋号①②③④⑤质量﹣5+3+9﹣1﹣6其中,质量最标准的是 ④ 号(填写序号).【分析】根据表中数据求出每袋的质量,选出和100克比较接近的即可;也可以根据﹣5,+3,+9,﹣1,﹣6直接得出答案.【解答】解:∵①的质量是100﹣5=95(克),②的质量是100+3=103(克),③的质量是100+9=109(克),④的质量是100﹣1=99(克),⑤的质量是100﹣6=94(克),∴最接近100克的是④,故答案为:④.15.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a元,请你对“0.8a”再赋予一个含义: 练习本每本0.8元,小明买了a本,共付款0.8a元(答案不唯一) .【分析】根据生活实际作答即可.【解答】解:答案不唯一,例如:练习本每本0.8元,小明买了a本,共付款0.8a 元.16.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为 0或±1 .【分析】该题实际上是求a2≤1且a是整数时,a的值.【解答】解:依题意得:a2≤1且a是整数,解得a=0或a=±1.故答案是:0或±1.三.解答题(共9小题)17.计算:(1)|﹣4|+23+3×(﹣5);(2)×(﹣7)﹣(﹣13)×(﹣).【分析】(1)原式先计算绝对值,以及乘方运算,再计算乘法运算,最后算加减运算即可求出值;(2)原式先计算乘法运算,再计算加减运算即可求出值.【解答】解:(1)原式=4+8﹣15=12﹣15=﹣3;(2)原式=﹣﹣=﹣15.18.计算:(1)(﹣+)×(﹣36);(2)﹣12018﹣×[4﹣(﹣3)2].【分析】(1)原式利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣18+24﹣16=﹣10;(2)原式=﹣1﹣×(﹣5)=﹣1+1=0.19.在数轴上表示下列各数,并把它们按照从小到大的顺序排列﹣22,﹣(﹣1),0,﹣|﹣2|,﹣3.【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:,﹣22<﹣3<﹣|﹣2|<0<﹣(﹣1).20.合并同类项:(1)3x2﹣1﹣2x﹣5+3x﹣x2(2)(2a2﹣1+2a)﹣3(a﹣1+a2)【分析】根据合并同类项的法则即可求出答案.【解答】解:(1)原式=3x2﹣x2﹣2x+3x﹣1﹣5=2x2+x﹣6(2)原式=2a2﹣1+2a﹣3a+3﹣3a2=﹣a2﹣a+221.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.【分析】首先根据整式的加减运算法则将原式化简,再代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=(﹣1﹣1+2)a2b+(3﹣4)ab2=﹣ab2,当a=1,b=﹣2时,原式=﹣1×(﹣2)2=﹣4.22.某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶记录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次+15﹣8+6+12﹣4+5﹣10(1)B地在A地哪个方向,与A地相距多少千米?(2)巡逻车在巡逻过程中,离开A地最远是多少千米?(3)若每km耗油0.3升,问共耗油多少升?【分析】(1)把7次记录相加,根据和的情况判断点B与点A的关系即可;(2)求出每次记录时与点A的距离,数值最大的为最远的距离;(3)求出所有记录的绝对值的和,再乘以0.3计算即可得解.【解答】解:(1)0+15﹣8+6+12﹣4+5﹣10=16.所以B在A地的东面,与A相距16千米;(2)0+15=15,15﹣8=7,7+6=13,13+12=25,25﹣4=21,21+5=26,26﹣10=16,∵26最大,∴离开A地最远是26千米;(3)|+15|+|﹣8|+|+6|+|+12|+|﹣4|+|+5|+|﹣10|=60,60×0.3=18(升).答:共耗油18升.23.对于有理数a,b,定义一种新运算”⊙”,规定a⊙b=|a+b|+|a﹣b|.(1)计算:2⊙(﹣3)的值;(2)当a,b在数轴上的位置如图所示时,化简:a⊙b.【分析】(1)利用题中的新定义计算即可得到结果;(2)根据数轴得出b<0<a,且|a|<|b|,再计算即可.【解答】解:(1)根据题中的新定义得:2⊙(﹣3)=|2+(﹣3)|+|2﹣(﹣3)|=1+5=6;(2)从a,b在数轴上的位置可得a+b<0,a﹣b>0,∴a⊙b=|a+b|+|a﹣b|=﹣(a+b)+(a﹣b)=﹣2b.24.某市出租车收费标准如下表所示,根据此收费标准,解决下列问题:行驶路程收费标准不超出3km的部分起步价7元+燃油附加费1元超出3km不超出6km的部分 1.6元/km超出6km的部分 2.4元/km(1)若行驶路程为5km,则打车费用为 11.2 元;(2)若行驶路程为xkm(x>6),则打车费用为 (2.4x﹣1.6) 元(用含x的代数式表示);(3)当打车费用为32元时,行驶路程为多少千米?【分析】(1)利用支付的车费=起步价+燃油附加费+超过3千米的费用,代入数据计算即可;(2)利用支付的车费=起步价+燃油附加费+超出3km不超出6km的部分的费用+超出6km的部分的费用,列出代数式即可;(3)利用(2)中代数式建立方程求得答案即可.【解答】解:(1)支付车费:7+1+(5﹣3)×1.6=11.2(元),故答案为:11.2;(2)7+1+1.6×3+2.4(x﹣6)=8+4.8+2.4x﹣14.4=2.4x﹣1.6(元),故答案为:(2.4x﹣1.6);(3)设当打车费用为32元时,行驶路程为x千米,由题意得:2.4x﹣1.6=32,解得:x=14,∴当打车费用为32元时,行驶路程为14千米.25.在一条直线上有依次排列的n(n>1)台机床在工作,我们需要设置零件供应站P,使这n台机床到供应站P的距离总和最小.要解决这个问题,先要分析比较简单的情形:如果直线上只有2台机床A1、A2时,很明显供应站P设在A1和A2之间的任何地方都行,距离之和等于A1到A2的距离.如果直线上有3台机床A1、A2、A3,供应站P应设在中间一台机床A2处最合适,距离之和恰好为A1到A3的距离;如果在直线上4台机床,供应站P应设在第2台与第3台之间的任何地方;如果直线上有5台机床,供应站P应设在第3台的地方.(1)阅读递推:如果在直线上有7台机床,供应站P应设在 C 处.A.第3台B.第3台和第4台之间C.第4台D.第4台和第5台之间(2)问题解决:在同一条直线上,如果有n台机床,供应站P应设在什么位置?(3)问题转化:在数轴上找一点P,其表示的有理数为x.当x 50 时,代数式|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣99|取到最小值,此时最小值为 2450 .【分析】(1)根据阅读材料即可求解;(2)根据(1)中所得结论,可以分两种情况寻找到规律即可求解;(3)根据连续整数的和的计算公式即可求解.【解答】解:(1)根据题意,得直线上有3台机床A1、A2、A3,供应站P应设在中间一台机床A2处,直线上有5台机床A1、A2、A3、A4、A5,供应站P应设在中间一台机床A3处,直线上有7台机床A1、A2、A3…A7供应站P应设在中间一台机床A4处故选C.(2)当n为偶数时,P应设在第台和台之间的任何位置;当n为奇数时,P应设在第台的位置.(3)(1+99)÷2=50,所以当x=50时,代数式|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣99|取到最小值(1+49)×49=2450.故答案为50、2450.。
2019-2020学年七年级数学上学期期中试题(含解析) 苏科版

2019-2020学年七年级数学上学期期中试题(含解析) 苏科版一、选择题(本大题共8小题.每小题3分,共24分。
在每小题给出的四个选项中,有且只有一项是正确的,请将正确选项的字母填写在下面的答题栏内)1.下列去括号正确的是( )A.a+(﹣3b+2c﹣d)=a﹣3b+2c﹣d B.﹣(﹣x2+y2)=﹣x2﹣y2C.a2﹣(2a﹣b+c)=a2﹣2a﹣b+c D.a﹣2(b﹣c)=a+2b﹣c2.下列运算不正确的是( )A.﹣5+3=﹣2 B.(﹣2)×5=﹣10 C.﹣32=9 D.﹣2﹣2=﹣43.2015年9月中国高超音速飞机首飞成功,美国称中国高超音速飞机速度达音速的10倍即达10马赫约12240千米/小时,这个数12240用科学记数法表示为( )A.1.224×105B.12240 C.0.1224×105D.1.224×1044.在,3.14,0,|﹣13|,0.313 113 1113…,(﹣)7六个数分数有( )个.A.1 B.2 C.3 D.45.下列各选项中能表示:x与y和的平方增加25%后的结果的是( )A.(1+25%)(x2+y2)B.25%(x2+y2)C.25%(x+y)2D.(x+y)26.如图,一副沛县的汽车牌照,苏代表江苏,C代表徐州,J代表沛县,当“C•J”后面的4个数位上都是数字时,最多可以供上牌的汽车数是( )A.1000辆B.10000辆C.9999辆D.9000辆7.已知x与y互为相反数,那么|x﹣3+y|的值是( )A.﹣3 B.0 C.3 D.无法确定8.按如图所示的程序计算,若开始输入a=2,b=﹣,c=﹣1,则最后输出的结果是( )A.0 B.1 C.﹣1 D.﹣2二、填空题(本大题共10小题,每小题3分,共30分,请将答案填写在下面的答题栏内)9.﹣的倒数是__________.10.单项式﹣5πx2y2的次数是__________.11.绝对值是|4|的数为__________.12.如图,在数轴上点A、B所表示的数分别为m,n,则m+n符号为__________.13.比较大小:﹣(﹣)2__________﹣(填“<”、“=”、“>”).14.某小商店每天亏损20元,一周的利润是__________元.15.如果当x=1时,代数式ax3+bx+7的值是4,那么当x=﹣1时,代数式ax3+bx+7的值是__________.16.甲、乙两支同样的温度计如图所示放置,如果向左移动甲温度计,使其度数5正对着乙温度计的度数﹣18,那么此时甲温度计的度数﹣7正对着乙温度计的度数是__________.17.已知一个长方形的长为2a,从中剪下一个最大的正方形,那么剩余图形的周长是__________.18.观察下列各式:1×2=(1×2×3﹣0×1×2)2×3=(2×3×4﹣1×2×3)3×4=(3×4×5﹣2×3×4)计算3×(1×2+2×3+3×4+…+99×100)=__________(填形如a×b×c的结果)__________.三、计算与化简题(共5小题,满分36分)19.(﹣3)+(﹣4)﹣(+11)﹣(﹣19)20.÷()21.3x2﹣[7x﹣(4x﹣3)﹣2x2]22.﹣3.5+|﹣|×(﹣1)+[﹣32+(﹣2)2].23.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第n个图形中实心圆的个数表示为K.(1)K n=__________(用n表示):K100=__________(2)我们在用“☆”定义一种新运算:对于任意有理数a和正整数n.规定a☆n=,例如:(﹣3)☆2===﹣3.①计算:(﹣26.6)☆10的值;②比较:3☆n与(﹣3)☆n的大小.四、探究与思考(本大题1小题,共12分)24.某品牌饮水机生产一种饮水机和饮水机槽,饮水机每台定价350元,饮水机桶每只定价50元,长方开展促销活动期间,可以同时向客户提供两种优惠方案:(1)买一台饮水机送一只饮水机桶;(2)饮水机和饮水机桶都按定价的90%付款,现某客户到该饮水机厂购买饮水机30台,饮水机桶x只(x超过30).(1)若该客户按方案(1)购买,求客户需付款(用含x的式子表示);(2)若该客户按方案(2)购买,求客户需付款(用含x的式子表示);(3)当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算出所需的钱数.2015-2016学年江苏省徐州市沛县七年级(上)期中数学试卷一、选择题(本大题共8小题.每小题3分,共24分。
江苏省2019-2020学年上学期初中七年级期中考试数学试卷

江苏省2019-2020学年上学期初中七年级期中考试数学试卷(考试时间:100分钟 满分:100分)一.选择题(本大题共有8小题,每小题3分,共24分) 1.3-的相反数是A .3B .31-C .3-D .312.下列代数式运算正确的是 ( )A .2 a +3 b =5abB .a 3+a 2=a 5C .5y 2-3y 2=2 D .x 2y -2x 2y =-x 2y 3.下列数中:-8,2.7,,0.66666…,0,2,9.181181118……是无理数的有 ( )A .0个B .1个C .2个D .3个4、下列结论正确的是( )A .0是正数也是有理数B .两数之积为正,这两数同为正C .几个数相乘,积的符号由负因数的个数决定;D .互为相反数的两个数的绝对值相等. 5、下列是一元一次方程的是( ) A .x -y =4-2x B .x1+1=x -2 C .2x -5=3x -2 D .x (x -1)=2 6.如果两个数的和是10,其中一个数用字母x 表示,那么表示这两个数的积的代数式是( )A .10xB .x (10+x )C .x (10-x )D .x (x -10)7.下列代数式: (1)12mn -,(2)m ,(3)12,(4)b a ,(5)21m + (6)5x y-,(7)2x y x y +-, (8)2223x x ++中,整式有 ( ) A .3个 B .4个 C .6个 D .7个8、某种细菌在培养过程中,每半个小时分裂一次(由1个分裂成2个,两个分裂成4个…),若这种细菌由1个分裂成64个,那么这个过程需要经过( )小时。
A . 2 B .3C . 4D .5二.填空题(本大题共10小题,每空2分,共24分) 9比较有理数的大小:-65_____-43(填“>”、“=”、“<”号). 10.据报载,2014年我国发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为11、若ny x 32与y x m5-是同类项,则.________=mn12.数a 在数轴上的位置如图所示,式子|a ﹣1|﹣|a |的化简结果是__________.13.若a =8,b =5,且a + b >0,那么a -b = .14.下表是国外城市与北京的时差 (带正号的数表示同一时刻比北京时间早的时数)如果现在东京时间是16: 00,那么纽约时间是 .(以上均为24小时制) 15. 已知x =3是方程610ax a -=+的解,则a = .16.单项式3227a b π-的系数是________,次数是_______.若关于a ,b 的多项式(a 2+ 2ab-b 2)-(a 2+ mab +2b 2)中不含ab 项,则m = .17、如图是一数值转换机,若输出的结果为-32,则输入的x 的值为 。
2019-2020年七年级数学上学期期中试题 苏科版

2019-2020年七年级数学上学期期中试题 苏科版一.选择题(本大题共8小题,每题3分,共24分,请把正确答案的编号填在括号内.) 1.在―2、0、1、―3四个数中,最小的数是………………………………………( ) A .―2 B .0 C .1 D .―32.下列结论正确的是…………………………………………………………………( )A .a 一定是正数B .倒数等于它本身的数只有1C .面积为2的正方形的边长a 是无理数D .0是最小的整数3. 计算(-12)3的结果是……………………………………………………………( )A .16B .―16C .18D .―18 4.下列代数式中,不是单项式的是…………………………………………………( ) A .1x B .-12 C .t D .3a 2b 5. 已知代数式x +2y 的值是3,则代数式2x +4y +1的值是…………………………( ) A .1 B .4 C .7 D .不能确定6. 一辆汽车匀速行驶,若在a 秒内行驶m6米,则它在2分钟内可行驶………………( )A .m 3米B .20m a 米C .10m a 米D .120m a米 7.如图,数轴上每相邻两点之间相距1个单位长度,点A 对应的数为a ,B 对应的数为b ,且b -2a =7,那么数轴上原点的位置在…………………………………………( ) A.点A B .点B C.点C D.点D 8.如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为……………………………………………………………………………( )A. 2a -3b B . 4a -8b C. 2a -4b D. 4a -10b 二.填空题(本大题共10小题,每空2分,共26分,请把结果直接填在题中的横线上.) 9.-2的倒数是 ,相反数是 .10.平方得9的数为 , 的立方等于-27. 11.比-3大而比2小的所有整数的和是 .12.江苏省的面积约为102600km 2,这个数据用科学记数法可表示为 km 2. 13. 已知4x 2m ym +n与-3x 6y 2是同类项,则m -n = .14.若m 、n 互为倒数,则mn 2-(n -1)的值为 .(第7题)(第8题)15.已知||a =5, ||b =3,且||a +b =a +b ,那么a -b = .16.已知x 2+xy =a ,y 2-xy =b ,则x 2-3xy +4y 2用含a 、b 的代数式可表示为 .17.有规律地排列着这样一些单项式:-xy ,x 2y ,-x 3y ,x 4y ,-x 5y ,……,则第n 个单项式(n ≥1正整数)可表示为 .18.点A 、B 分别是数-4,-1在数轴上对应的点,使线段AB 沿数轴向右移动到A ’B ’,且线段A ’B ’的中点对应的是1,则点A ’对应的数是 ,点A 移动的距离是 . 三.解答题(本大题共7小题,共50分. 解答需写出必要的文字说明或演算步骤.) 19.(6分)将下列各数填入相应的括号内:0,-2.5,+8,-(+227),-(-2), 0. ..05,π-3.14,100%负数集合:{ …} 非负整数集合:{ …}无理数集合:{ }20.(12分)计算:① -15―[―1-(4-20)]; ② (12-3+56-712)÷(-136);③ 4×(-725)+(-2)2×5-4÷(-512) ④ (-35)7×(-6)×(123)8―(―23)÷4×(-14)21.(4分)先在数轴上画出表示下列各数的点,然后将这些数用“<”号连接起来.-22,-||-2.5,(-1)2014,π22.(10分)化简:① 2(2a 2+9b )+(-5a 2-4b ) ② 4x 2-[6x -(3x -7)-2x 2]③ 先化简,再求值:3m 2n -[ 2mn 2-2 (mn -32m 2n )+mn )]+3mn 2,其中m =3,n =-13.23.(6分)已知||a -1+||ab -2=0,求代数式1ab+1(a +1)(b +1)+1(a +2)(b +2)+…+1(a +2014)(b +2014)的值.24.(6分)某大型超市国庆期间举行促销活动. 假定一次购物不超过100元的不给优惠;超过100元而不超过300元时,按该次购物金额9折优惠;超过300元的其中300元仍按9折优惠,超过300元部分按8折优惠. 小美两次购物分别用了94.5元和282.8元,现小丽决定一次购买小美分两次购买的同样的物品,应付款多少元?25.(6分)如图,正方形ABCD 和CEFG 的边长分别为m 、n ,且B 、C 、E 三点在一直线上试说明△AEG 的面积只与n 的大小有关.ABCD EFGmn初一数学期中考试参考答案与评分标准一、选择(每题3分) D C D A C B C B二、填空(每题2分)9. -12, 2 10. ±3,-3 11. -2 12. 1.026×10513. 414. 1 15. 2或8 16. a +4b 17. (-x )ny 18. -12,72三、解答19. {-2.5,-(+227),…}{0,+8,-(-2), 100%,…}{π-3.14,…}………………………………………………(每个2分,有错即扣1分)20. ①-30 ②81③0 ④912 ………(每小题3分,酌情分步给分)21. 略 ……………………………………………………(画数轴2分,标点1分,连接1分)22. ①-a 2+14b ②6x 2-3x -7 ③原式=mn +mn 2,值为-23…………………………………………………………………………(化简每个3分,求值1分,酌情分步给分)23. a =1,b =2……………………(3分),代入裂项计算得20152016……………………(6分)24. 若购物恰好300元,则付款270元.小美第一次购物94.5元,有两种可能:物品原价是94.5元,或94.50.9=105元.(2分)小美第二次购物282.8元,原价应超过300元,是282.8-2700.8+300=316元.(4分)故小丽一次性购物原价410.5或421元,应付款358.4或366.8元. …………(6分)25. 列代数式计算△AEG 的面积,或说明△AEG 的面积即为△CEG 的面积=12n 2(5分)所以△AEG 的面积只与n 的大小有关. ………………………………………… (6分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019—2020学年度第一学期期中调研测试
七年级数学试题
(本卷满分:120分 考试时间:90分钟)
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是正确的,请将正确选项的字母代号填写............. 在.
下表中相应的题号下
) 1.-3的倒数是(▲)
A .3
B .-3
C .13
D .1
3-
2.在数-6、-1、3、4中,任取三个不同数相加,其中和最大的是(▲)
A .-6
B .-4
C .-1
D .6
3.质检员抽查某种零件的长度,大于规定长度的部分为正,小于规定长度的部分为负, 抽查结果如下:第一个为-0.13mm ,第二个为0.12mm ,第三个为0.15mm ,第四个为 -0.11mm .与标准长度相差最小的零件是(▲)
A. 第一个
B. 第二个
C. 第三个
D. 第四个 4.2018年10月24日正式通车的港珠澳大桥是世界上最长的跨海大桥,它全长55 000米. 55 000用科学记数法表示为( ▲ )
A .45.510⨯
B .35510⨯
C .255010⨯
D .50.5510⨯ 5.下列各项中是同类项的是(▲)
A .5ab 与5abc
B .x 与 2x
C .12
m 2
n 与3n 2m D .a 3与23 6.下列去括号正确的是(▲)
A .2()2x y x y -+=-+
B .2()2x y x y -+=--
C .2()22x y x y -+=--
D .2()22x y x y -+=-+ 7. 随着x 的值增大,代数式350x -+的值(▲)
A .增大
B .减小
C .不变
D .大于50 8.如果28a ab -=,22ab b +=,那么22a b +的值是 ( ▲ )
A .10
B .6
C .-
6 D .-10 9.下列计算中,正确的是( ▲ )。