热力学第二定律
热力学第二定律

第二章热力学第二定律2.1 自发变化的共同特征自发变化某种变化有自动发生的趋势,一旦发生就无需借助外力,可以自动进行,这种变化称为自发变化。
自发变化的共同特征—不可逆性任何自发变化的逆过程是不能自动进行的。
例如:(1)焦耳热功当量中功自动转变成热;(2)气体向真空膨胀(3)热量从高温物体传入低温物体;(4)浓度不等的溶液混合均匀;(5)锌片与硫酸铜的置换反应等,它们的逆过程都不能自动进行。
当借助外力,体系恢复原状后,会给环境留下不可磨灭的影响。
2.2热力学第二定律(T h e S e c o n d L a w o f T h e r m o d y n a m i c s)克劳修斯(Clausius)的说法:“不可能把热从低温物体传到高温物体,而不引起其它变化。
”开尔文(Kelvin)的说法:“不可能从单一热源取出热使之完全变为功,而不发生其它的变化。
” 后来被奥斯特瓦德(Ostward)表述为:“第二类永动机是不可能造成的”。
第二类永动机:从单一热源吸热使之完全变为功而不留下任何影响。
2.3卡诺循环与卡诺定理2.3.1卡诺循环(C a r n o t c y c l e)1824 年,法国工程师N.L.S.Carnot (1796~1832)设计了一个循环,以理想气体为工作物质,从高温T h热源吸收Q h的热量,一部分通过理想热机用来对外做功W,另一部分Q c的热量放给低温热源T c。
这种循环称为卡诺循环.1mol 理想气体的卡诺循环在pV图上可以分为四步:过程1:等温T h 可逆膨胀由 p 1V 1到p 2V 2(AB)10U ∆= 21h 1lnV W nRT V =- h 1Q W =- 所作功如AB 曲线下的面积所示。
过程2:绝热可逆膨胀由 p 2V 2T h 到p 3V 3T c (BC)20Q = ch 22,m d T V T W U C T =∆=⎰所作功如BC 曲线下的面积所示。
热力学第二定律

热力学第二定律热力学第二定律是热力学领域中的基本定律之一,它描述了自然界中的物质运动和能量转化的方向性。
本文将详细介绍热力学第二定律的概念、原理及其在热力学系统中的应用。
1. 热力学第二定律的概念热力学第二定律是指在孤立系统中,任何自发过程都会导致熵的增加,而不会导致熵的减少。
其中,孤立系统是指与外界没有物质和能量交换的系统,熵是描述系统无序程度或混乱程度的物理量。
2. 热力学第二定律的原理热力学第二定律有多种表述形式,其中最常用的是凯尔文-普朗克表述和克劳修斯表述。
2.1 凯尔文-普朗克表述凯尔文-普朗克表述认为不可能通过单一热源从热能的完全转化形式(即热量)中提取能量,并将其完全转化为功。
该表述包括两个重要概念:热机和热泵。
热机是指将热能转化为功的设备,而热泵则是将低温热源的热量转移到高温热源的设备。
2.2 克劳修斯表述克劳修斯表述认为不可能存在这样的过程:热量从低温物体自发地传递到高温物体。
这一表述可由热力学第一定律和熵的概念推导得出。
3. 热力学第二定律的应用热力学第二定律在能量转化和机械工程领域具有广泛的应用。
以下将介绍几个实际应用。
3.1 热机效率根据热力学第二定律,热机的效率不可能达到100%,即不可能将一定量的热能完全转化为功。
热机的效率定义为输出功与输入热量之比,常用符号为η。
根据卡诺热机的理论,热机的最高效率与工作温度之差有关。
3.2 热力学循环过程热力学循环过程是指系统在经历一系列状态变化后,最终回到初始状态的过程。
根据热力学第二定律,热力学循环过程中所涉及的热机或热泵的效率不可能大于卡诺循环的效率。
3.3 等温膨胀过程等温膨胀过程是热力学第二定律的应用之一。
在等温膨胀过程中,系统与热源保持恒温接触,通过对外做功来改变系统的状态。
根据热力学第二定律,等温膨胀过程无法实现自发进行,必须进行外界功输入才能实现。
4. 热力学第二定律的发展和突破随着科学技术的发展,人们对热力学第二定律的认识不断深化。
热力学第二定律 概念及公式总结

热力学第二定律一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程)一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。
二、 热力学第二定律1. 热力学的两种说法:Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功)功 热 【功完全转化为热,热不完全转化为功】(无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程)特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功三、 卡诺定理(在相同高温热源和低温热源之间工作的热机)ηη≤ηη (不可逆热机的效率小于可逆热机)所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关四、 熵的概念1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+ηηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关热温商具有状态函数的性质 :周而复始 数值还原从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数2. 热温商:热量与温度的商3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η(数值上相等) 4. 熵的性质:(1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和(3)只有可逆过程的热温商之和等于熵变(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量(5)可用克劳修斯不等式来判别过程的可逆性(6)在绝热过程中,若过程是可逆的,则系统的熵不变(7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。
热力学第二定律详解

热力学第二定律(英文:second law of thermodynamics)是热力学的四条基本定律之一,表述热力学过程的不可逆性——孤立系统自发地朝着热力学平衡方向──最大熵状态──演化,同样地,第二类永动机永不可能实现。
这一定律的历史可追溯至尼古拉·卡诺对于热机效率的研究,及其于1824年提出的卡诺定理。
定律有许多种表述,其中最具代表性的是克劳修斯表述(1850年)和开尔文表述(1851年),这些表述都可被证明是等价的。
定律的数学表述主要借助鲁道夫·克劳修斯所引入的熵的概念,具体表述为克劳修斯定理。
虽然这一定律在热力学范畴内是一条经验定律,无法得到解释,但随着统计力学的发展,这一定律得到了解释。
这一定律本身及所引入的熵的概念对于物理学及其他科学领域有深远意义。
定律本身可作为过程不可逆性[2]:p.262及时间流向的判据。
而路德维希·玻尔兹曼对于熵的微观解释——系统微观粒子无序程度的量度,更使这概念被引用到物理学之外诸多领域,如信息论及生态学等克劳修斯表述克劳修斯克劳修斯表述是以热量传递的不可逆性(即热量总是自发地从高温热源流向低温热源)作为出发点。
虽然可以借助制冷机使热量从低温热源流向高温热源,但这过程是借助外界对制冷机做功实现的,即这过程除了有热量的传递,还有功转化为热的其他影响。
1850年克劳修斯将这一规律总结为:不可能把热量从低温物体传递到高温物体而不产生其他影响。
开尔文表述参见:永动机#第二类永动机开尔文勋爵开尔文表述是以第二类永动机不可能实现这一规律作为出发点。
第二类永动机是指可以将从单一热源吸热全部转化为功,但大量事实证明这个过程是不可能实现的。
功能够自发地、无条件地全部转化为热;但热转化为功是有条件的,而且转化效率有所限制。
也就是说功自发转化为热这一过程只能单向进行而不可逆。
1851年开尔文勋爵把这一普遍规律总结为:不可能从单一热源吸收能量,使之完全变为有用功而不产生其他影响。
热力学第二定律的表述

热力学第二定律的表述热力学第二定律,也称为熵增定律,是热力学中的重要概念之一。
该定律表明,任何一个孤立系统在自发过程中,其熵总是不断增加的。
熵是一个描述系统无序程度的物理量,可理解为一个系统的混乱程度。
具体来说,热力学第二定律的表述可以从以下几个方面进行阐述:一、热力学第二定律的基本原理热力学第二定律是热力学的基本定律之一,它表明孤立系统总是向着不可逆的方向进行自发变化。
熵作为描述系统无序程度的物理量,可以解释这一现象。
热力学第二定律将熵增作为孤立系统自发性质的概率形式,即熵的增加是不可逆的。
二、熵的定义及熵增过程的表述熵是一个描述系统无序程度的物理量,熵的增加意味着这一系统的混乱程度变得更大,而系统的混乱程度是不可逆的。
热力学第二定律表明,在孤立的系统中,一切自发过程中的熵增加,即系统无序程度不断增大。
这种无序程度的增加可以表述为:在过程中,能量总是从有序的状态流向有限的状态,因此越来越多的能量被转化为无用的热能。
三、热力学第二定律和环境保护的关系热力学第二定律是我们了解和约束自然界不可逆演化过程的基础。
正是热力学第二定律的存在,才有了反渗透、风能、水力发电,甚至太阳能电池等各种环境保护技术。
人类社会发展中不断寻找新的技术,不仅是为了满足能源需求,更重要的是要在这个过程中尽可能地减少环境污染。
总之,热力学第二定律能够为我们揭示自然界中不可逆的演化规律,对于人类社会发展中的环境保护及科学技术的发展,也起到了重要的指导意义。
我们应该加强对这一领域的研究,推进可持续发展进程,使得人类社会发展与环境保护取得良好的平衡。
热力学第二定律

§10.8热力学第二定律一、热力学第二定律任务自然界中发生的过程总是有方向的。
热力学第二定律正是反映了自然界中热力学过程的方向性问题,是自然界经验的总结。
二、热力学第二定律的两种表述 1、开尔文表述(开氏表述):不可能制成一种循环动作的热机,只从单一热源吸取热量,使它完全变为有用功而不引起其它变化。
说明:1)前提:即工作物质必须循环动作和其它物体不发生任何变化。
2)开尔文说法是从功热转化的角度出发的,它揭示了功热转换是不可逆的,即3)开尔文表述可等价说成“第二类永动机是不可能制造出来的。
” 2、克劳修斯表述(克氏表述):热量不可能自动地从低温物体传到高温物体。
注意:1)条件:“自动地”2)表明热传递的不可逆性 3、两种表述的等效性1)开尔文说法不成立,则克劳修斯说法也不成立;若开氏说法不成立,则热机可从高温热源吸收热量Q 1,全部用来对外作功A= Q 1;这个功A 可用来驱动一台致冷机,从低温热源吸收热量Q 2,同时向高温热源放出热量Q 2+ A= Q 2+ Q 1。
两者总的效果是低温热源的热量传到了高温热源,而没产生其它影响,显然违反了克劳修斯说法。
2)克劳修斯说法不成立,则开尔文说法也不成立;若克劳修斯说法不成立,即热量可自动地从低温热源传到高温热源。
考虑一台工作于高温热源与低温热源的热机。
从高温热源吸收热量Q 1,向低温热源放出热量Q 2,则Q 2能自动地传到高温热源;两者总的效果是热机把从高温热源吸收的热量全部用来对外作功,这显然违反开氏说法。
由此,可以看出热力学第二定律的表述是多种多样的,而且不同的表述是可以相互沟通的。
三、热力学第二定律的本质 1、可逆过程与不可逆过程一个热力学系统经历一个过程P ,从状态A 变到状态B ,若能使系统进行逆向变化,从状态B 又回到状态A ,且外界也同时恢复原状,我们称过程P 为可逆过程;反之,如果用任何方法都不能使系统和外界完全复原,则称为不可逆过程。
热力学第二定律

三. 玻尔兹曼熵
为了理论上的需要,玻尔兹曼定义了描述系统 为了理论上的需要,玻尔兹曼定义了描述系统 宏观态无序性的态函数—玻尔兹曼熵 宏观态无序性的态函数 玻尔兹曼熵
S = k ln Ω
玻尔兹曼熵公式
是对分子无序性的量度。 玻尔兹曼熵 S 是对分子无序性的量度。
孤立系的熵变 熵增原理
孤立系经历不可逆过程 孤立系经历不可逆过程从状态 1 变化到状态 2 经历不可逆过程从状态
∆S = ∫
2
1
2 RdV 2 pdV V2 dQ =∫ = R ln =∫ 1 1 V V1 T T
绝热自由膨胀过程是不可逆过程 可假设一可逆过程 ∆S irrev
V2 = R ln V1
混合物的熵。 例3.14 混合物的熵。质量为 0.4kg、温度为 30ºC的 、 的 水与质量为 0.5kg、温度为 90ºC 的水放入一绝热容 、 器中混合起来达到平衡,求混合物系统的熵变。 器中混合起来达到平衡,求混合物系统的熵变。 解:设混合后的温度为 T,c 为水的比热 , 由能量守恒得
四、卡诺定理
(1)在相同的高温热源和低温热源之间工作的任意工作 物质的可逆机,都具有相同的效率; 物质的可逆机,都具有相同的效率; 可逆机 (2)工作在相同的高温热源和低温热源之间一切不可逆 工作在相同的高温热源和低温热源之间一切不可逆 机的效率都不可能大于可逆机的效率。 机的效率都不可能大于可逆机的效率。
Q1 Q2 = T1 T2
热温比
重新规定 Q 正负号
Q T
等温过程中吸收或放出的热 量与热源温度之比。 量与热源温度之比。
可逆卡诺循环中,热温比总和为零。 ★ 结论 : 可逆卡诺循环中,热温比总和为零。
任意可逆循环可视为由许多小卡诺循环所组成
热力学第二定律卡诺定律

• 热力学第二定律概述 • 卡诺定律的起源与原理 • 卡诺定律在热机效率中的应用 • 卡诺定律与环境保护 • 卡诺定律的现代研究与发展
01
热力学第二定律概述
定义与表述
热力学第二定律定义
热力学第二定律是描述热能和其他形式的能量之间转换的规 律,它指出不可能从单一热源吸收热量并使之完全变为功, 而不引起其他变化。
热力学第二定律在能源工程领域有着广泛的应用,例如在火力 发电、核能发电、风能发电等领域中,都需要遵循热力学第二
定律以提高能源利用效率。
制冷技术
在制冷技术领域,热力学第二定律是制冷机设计和性能评估的 重要依据,它指导人们不断改进制冷技术,提高制冷效率。
化工过程
在化工过程中,热力学第二定律用于指导化学反应过程的优化 和能效提升,通过降低能耗和提高产率来实现经济效益的提升
针对复杂系统的卡诺定律研究,需要发展更精确的理论模型和实验技术。
THANKS
感谢观看
卡诺循环
卡诺循环是理想化的一种热机工作过程,由 两个等温过程和两个绝热过程组成。
卡诺效率
卡诺效率是指卡诺热机在理想工作过程中,从高温 热源吸收的热量与向低温热源放出的热量之比。
卡诺定律
卡诺定律指出,在相同的高温热源和低温热 源之间,所有实际热机的效率都不可能超过 卡诺效率。
实际热机的效率与卡诺定律的关联
。
02
卡诺定律的起源与原理
卡诺的生平简介
卡诺(Sadi Carnot)是19世纪初的法国物理学家和工程师,出生于1796年,逝世 于1832年。他是热力学的先驱之一,对热机效率的研究有着重要贡献。
卡诺在巴黎综合理工学院学习期间,受到拉格朗日和拉普拉斯等数学家的影响, 对数学和物理学产生了浓厚兴趣。他毕业后从事军事工程工作,但始终未放弃对 热学的研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p4V4T2
T1V2-1= T2V3-1, T1V1-1 =T2V4-1 可得:V4/V3 =V1/V2
Q2=nRT2ln(V1/V2)=-nRT2ln(V2/V1)
p2V2T1
p3V3T2 V/[V]
η W Q1 Q2
Q1
Q1
nRT1
ln
V2 V1
热机从高温热源T1吸热 Q1 转化为功 –W 的分数
W Q1 Q2 1 Q2
Q1
Q1
Q1
-W系统对外作的功(在一个循环过程中) Q1从高温热源吸热 Q2传给低温热源热
二、卡诺循环
卡诺为研究热机效率设计了工作物质为 理想气体的四个可逆步骤组成的循环
1. 恒温可逆膨胀
(p1V1T1)——(p2V2T1) p/[P] p1V1T1 2. 绝热可逆膨胀
一、熵的定义与导出 Derive entropy and define entropy
p
对任意可逆循环ABCDA
P
(光滑曲线)作许多绝热可
逆(红色)线分割,再作等
温可逆(棕色)线与相邻的
两绝热可逆线相交,使许
多小卡诺循环组成的面积
与原ABCDA所围面积相等。
(见左图)
p
P
a
b
对每个小卡诺循环:
(卡诺热机)效率最大
卡
三、卡诺定理推论
在T1和T2两热源之间工作的所有可逆热机效率相 等,与工作物质的性质无关。 卡 = 结论:
Q1 Q2 T1 T2 不可逆
Q1
T1 可 逆
Q1 Q2 0
T1
T2
§3-4 熵、亥姆霍兹自由能、吉布斯自由能
一、熵的定义与导出 二、熵变的计算 三、热力学第二定律的表达式 四、亥母霍兹自由能及其判据 五、吉布斯自由能及其判据 六、A和G的物理意义
一、热力学第二定律文字表述 二、卡诺定理 三、卡诺定理推论
一、热力学第二定律文字表述
1. 克劳修斯说法: 不可能将热由低温物体转移到高温物体, 而不留下其它变化。
2. 开尔文说法: 不可能从单一热源吸热使其完全变为功,而不 留下其它变化。或 “第二类永动机不可能制成”
二、卡诺定理
在T1和T2两热源之间工作的所有热机中可逆热机
热力学第二定律
本章基本要求
1.理解自发过程、卡诺循环、卡诺定理。 2.掌握热力学第二定律的文字表述和数学表达式。 3.理解熵、亥姆霍兹函数、吉布斯函数定义;掌握熵增
原理、熵判据、亥姆霍兹函数判据、吉布斯函数判据 4.掌握物质纯pVT变化、相变化中熵、亥姆霍兹函数、
吉布斯函数的计算及热力学第二定律的应用。 5.掌握主要热力学公式的推导和适用条件。 6.掌握热力学基本方程和麦克斯韦关系式;理解推导热
1. 自发过程是自然界自动进行的过程,有一定的 方向性和限度;
2. 要使发生自发过程的系统复原,环境必然留下 永久变化的痕迹;
3. 自发过程是不可逆过程。
§3-3 热力学第二定律 The second law of thermodynamics
解决过程的方向和限度的定律,是从热转化为 功的限制出发,来判断过程可能性的基本定律
The efficiency of Carnot heat engine
一、热机效率
1. 热机(Heat engines)
通过工作介质从高温 热源吸热作功,然后向低 温热源放热本身复原,如 此循环操作,不断将热转 化为功的机器。
2. 热机效率(The efficiency of heat engines)
力学公式的演绎方法。 7.理解克拉佩龙方程、克劳修斯——克拉佩龙方程,掌
握其计算。
作业:
P144~149 3.9、3.10、 3.12、 3.23、3.40、3.42、3.46
§3-1 卡诺循环
一、热机效率 The efficiency of heat engines 二、卡诺循环 Carnot cycle 三、卡诺热机效率
(p2V2T1)——(p3V3T2)
3. 恒温可逆压缩
(p3V3T2)——(p4V4T2)
p4V4T2
4. 绝热可逆压缩
(p4V4T2)——(p1V1T1)
p2V2T1
p3V3T2 V/[V]
三、卡诺热机效率
循环过程:U=0 -W=Q=Q1+Q2 p/[P] p1V1T1
理想气体为工作介质:
Q1=nRT1ln(V2/V1) Q2=nRT2ln(V4/V3)
相变化 化学变化
自发方向
T1T2(T1>T2) p1p2(p1>p2) h1h2 (h1>h2) c1c2 (c1>c2) E1E2 (E1>E2)
? ?
推动力 T p h c E ? ?
限度 T0 p0 h0 c0 E0 ?0 ?0
二、自发过程的共性 The characteristic of spontaneous processes
3、卡诺循环为可逆循环,卡诺热机为可逆热机, 可逆过程-W值最大,因此所有工作于同样温 度的高温热源与低温热源间的热机以可逆热机 效率为最高。
练习:
1. 求工作于150C和25C两热源之间可逆热机的热机 效率。
2. 工作于500K和300K之间的可逆热机,对外作功 -W=100kJ,则应从高温热源吸热Q1和向低温热 源放热-Q2各为多少?
δQ1 δQ2 0
T1
T2
i
δQi1 T1
δQi2 T2
0
图中绝热线ab部分是两个 相邻卡诺循环公用线,效 果正好抵消。
3. 热源和冷却水的温度分别为500K和300K,试问工 作于此二温度热源之间的热机,从高温热源吸热 1kJ,最多能作多少功?最少向冷却水放热若干?
§3-2 自发过程的共同特征
一、 自发过程 二、 自发过程的共同特征
一、自发ቤተ መጻሕፍቲ ባይዱ程
不需要外功,就能自动进行的变化过程
自发过程 热传导
流体流动 重物下落 溶质扩散 电流流动
nRT2
ln
V2 V1
T1 T2
nRT1ln
V2 V1
T1
Q1 Q2 T1 T2
Q1
T1
Q1 Q2 0 T1 T2
由卡诺循环可知:可逆热机热温商之和等于零
卡诺循环结论:
1、卡诺循环后系统复原,系统从高温热源吸热部 分转化为功,其余的热流向低温热源。热机效 率<1
2、卡诺热机效率只与热源的温度T1 、T2有关,两 热源温差越大,热机效率越高