中国高程系统
我国四大常用坐标系及高程坐标系

For personal use only in study and research; not forcommercial useFor personal use only in study and research; not forcommercial use我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。
西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.257221013、WGS-84坐标系WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。
我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。
西安80坐标系,属三心坐标系,长轴6378140m3、WGS-84坐标系WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。
坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)定义的协议地极(CTP)方向,X轴指向的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。
这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。
我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。
西安80坐标系,属三心坐标系,长轴6378140m3、WGS-84坐标系WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。
坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。
这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。
我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。
西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.257221013、WGS-84坐标系WGS-84坐标系(WorldGe odetic System)是一种国际上采用的地心坐标系。
坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。
我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m短轴6356863,扁率1/298.3 ;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952- 1979年确定的黄海平均海水面(即1985国家高程基准)。
西安80坐标系,属三心坐标系,长轴6378140m短轴6356755,扁率1/298.257221013、W G-84坐标系WG—84坐标系(WorldGeodeticSystem )是一种国际上采用的地心坐标系。
坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,丫轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。
我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系1.北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系.因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298。
3;2。
西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。
西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298。
257221013.WGS-84坐标系WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。
坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984。
0定义的协议地极(CTP)方向,X轴指向BIH1984。
0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。
我国四大常用坐标系及高程坐标系,DOC

我国四大常用坐标系及高程坐标系,DOC地理信息系统(Geographic Information System,简称 GIS)是指将地理空间数据与属性数据相结合,进行数据存储、管理、分析、查询、显示和制图的一种信息系统。
在GIS 中,坐标系是非常重要的概念之一,因为它是将地理数据按照位置信息进行组织和存储的方式之一。
在中国,根据不同的地理位置和地理数据需求,通常使用四大常用坐标系及高程坐标系,下面进行详细介绍:1. 北京坐标系北京坐标系又称 1954 年国家大地坐标基准系统,是我国现行基准坐标系之一。
该坐标系是以北京为基准点,以北京观象台南大门上的测量点为坐标原点,参考椭球体是克拉索夫斯基椭球。
该坐标系适用于北京及其周边地区。
北京坐标系的坐标单位是米,通常使用三维直角坐标系表示。
3. WGS84 坐标系WGS84 坐标系是国际上通用的坐标系之一,也是 GPS(全球卫星定位系统)所采用的坐标系,其椭球体是 WGS84 椭球体,参考点是美国国家海洋和大气气象局(National Oceanic and Atmospheric Administration,简称 NOAA)的测量点,通常使用经纬度表达。
WGS84 坐标系适用于全球范围内的数据处理和空间分析,但在我国内地有时不是最合适的坐标系。
4. 国家 2000 坐标系高程坐标系高程坐标系通常用于测量一个点相对于地球的高度,其原点通常设置在海平面上。
在我国常用的高程坐标系有两种:一种是起算点设在北京天文台的北京高程系统,另一种是以珠江中心站为起点的香港高程或大地高等精度天文水准面系统。
总结四大常用坐标系和高程坐标系是 GIS 中非常重要的概念和组成部分,不同的坐标系适用于不同的数据需求和地理位置。
了解和熟悉这些坐标系有助于我们更加精准地处理和分析地理信息数据。
我国常见的高程系统及其换算关系(精)

我国常见的高程系统及其换算关系高程基准是推算国家统一高程控制网中所有水准高程的起算依据,它包括一个水准基面和一个永久性水准原点。
国家高程基准是根据验潮资料确定的水准原点高程及其起算面。
目前我国常见的高程系统主要包括“1956年黄海高程”、“1985国家高程基准”、“吴凇高程基准”和“珠江高程基准”等四种。
1.“1956年黄海高程”我国于1956年规定以黄海(青岛的多年平均海平面作为统一基面,叫“1956年黄海高程”系统,为中国第一个国家高程系统,从而结束了过去高程系统繁杂的局面。
该高程系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。
原点设在青岛市观象山。
1956黄海高程水准原点的高程是72.289米。
该高程系与其他高程系的换算关系为:“1956年黄海高程”=“1985年国家高程基准”+0.029(米“1956年黄海高程”=“吴凇高程基准”-1.688(米“1956年黄海高程”=“珠江高程基准”+0.586(米2.“1985国家高程基准”由于“1956年黄海高程”计算基面所依据的青岛验潮站的资料系列(1950年~ 1956年较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,叫“1985国家高程基准”,并用精密水准测量位于青岛的中华人民共和国水准原点。
1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。
1985国家高程系统的水准原点的高程是72.260米。
习惯说法是“新的比旧的低0.029m”,黄海平均海平面是“新的比旧的高”。
该高程系与其他高程系的换算关系为:“1985年国家高程基准”=“1956年黄海高程”-0.029(米“1985年国家高程基准”=“吴凇高程基准”-1.717(米“1985年国家高程基准”=“珠江高程基准”+0.557(米3.“吴凇高程基准”“吴凇高程基准”采用上海吴淞口验潮站1871~1900年实测的最低潮位所确定的海面作为基准面,该系统自1900年建立以来,一直为长江的水位观测、防汛调度以及水利建设所采用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高程系统
高程系统的换算是令人困扰的一个严重问题。
我国历史上形成了多个高程系统,例外部门例外时期往往都有所区别。
可以查到的资料相当匮乏。
先收集整理如下。
一.常用高程系统
(1) 1956黄海高程系统
以青岛验潮站1950—1956年验潮资料算得的平衡海面为零的高程系统。
原点设在青岛市观象山。
该原点以“1956年黄海高程系”计算的高程为72.289米。
(2) 1985国家高程基准
由于计算这个基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定从头计算黄海平衡海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,并用精细水准测量接测位于青岛的中华人民共和国水准原点。
(3)吴淞(口)高程系统
清咸丰十年(1860年),海关巡工司在黄浦江西岸张华浜建立信号站,设置水尺,观测水位。
光绪九年(1883年)巡工司根据咸丰十年至光绪九年在张华浜信号站测得的最低水位作为水尺零点。
后又于光绪二十六年,根据同治十年至光绪二十六年(1871~1900年)在该站观测的水位资料,制定了比实测最低水位略低的高程作为水尺零点,并正式确定为吴淞零点(W.H.Z)。
以吴淞零点计算高程的称为吴淞高程系,上海历来采用这个系统。
民国11年(1922年),扬子江水利委员会技术委员会确定长江流域均采用吴淞高程系。
1951年,华东水利部规定,华东区水准测量暂时以吴淞零点为高程起算基准。
吴淞高程系与1956年黄海高程系的基面差。
江苏省水利厅于1953年以精细水准测量方法施测了佘苏线(佘山—苏州)、佘高线(佘山—金丝娘桥—高桥—张华浜)和佘张线(佘山—张华浜)等3条水准路线,观测高差纳入华东地区高程
控制网,参加国家测绘总局主持的1957年中国东南部地区精细水准网平差。
平差后的水准点高程均为1956年黄海高程系,佘山水准基点既有黄海高程(
44.4350米),又有吴淞高程(
46.0647米),两者之差为
1.6297米,即在上海地区吴淞高程系基面比1956年黄海高程系基面低
1.6297米,远离上海的地区,同一点的两个高程值之差会略有例外。
(4)废黄河零点
江淮水利测量局,以民国元年11月11日下午5时废黄河口的潮水位为零,作为起算高程,称“废黄河口零点”。
后该局又用多年潮位观测的平衡潮水位确定新零点,其大多数高程测量均以新零点起算。
“废黄河口零点”高程系的原点,已湮没无存,原点处新旧零点的高差和换用时间尚无资料查考。
在“废黄河口零点”系统内,存在“江淮水利局惠济闸留点”和“蒋坝船坞西江淮水利局水准标”两个并列引据水准点,大凡用于长江以北地区。
二.其他高程系统
(1)波罗的海高程
波罗的海高程十
0.374米=1956年黄海高程
中国新疆境内尚有部分水文站一直还在使用“波罗的海高程”。
(2)广州高程及珠江高程
广州高程=1985国家高程系统+
4.26(米)
广州高程=1956黄海高程系统+
4.41(米)
广州高程=珠江高程基准+
5.00(米)
(3)大连零点(原大沽零点)
日本入侵中国东北期间,在大连港码头仓库区内设立验潮站,并以多年验潮资料求得的平衡海面为零起算,称为“大连零点”。
该高程系的基点设在辽宁省大连市的大连港原一号码头东转角处,该基点在大连零点高程系中的高程为
3.765米。
原点设在吉林省长春市的人民广场内,已被毁坏。
该系统于1959年以前在中国东北地区曾广博使用。
1959年中国东北地区精细水准网在山海关与中国东南部水准网连接平差后,改用1956年黄海高程系统。
大连基点高程在1956年黄海高程系的高程为
3.790米。
(4)坎门零点
民国期间,军令部陆地测量局根据浙江玉环县坎门验潮站多年验潮资料,以该站高潮位的平衡值为零起算,称“坎门零点”。
在坎门验潮站设有基点252号,其高程为
6.959米。
该高程系曾接测到浙江杭州市、苏南、皖北等地,在军事测绘方面应用较广。
(5)原黄河流域采用的高程系统
黄河流域高程系统较为混乱,目前使用的高程系统有9种之多(大沽、黄海、假定、冻结、1985国家高程基准、引据点III、导渭、坎门中潮值、大连葫芦岛)。
目前已经全部统一为1985国家高程基准
三.各高程系统之间的转换关系
(1) 1956黄海高程系统与1985国家高程基准成果转换
现阶段各常用高程系统数据之间的转换主要为1956黄海高程系统数据与1985国家高程基准数据之间的转换。
理论转换关系为:
1985国家高程基准高程数据=1956年黄海高程数据-
0.029m
但此转换只能用于高等级基岩点(无沉降或几乎不沉降点)的数据转换,而每个城市的高等级基岩点(无沉降或几乎不沉降点)较少,用于城市建设的大多数高程控制点均未布设于基岩上,而城市由于地下水的大量抽取等各方面原因导致城市中各处每年都有不平均沉降。
故除基岩水准点(无沉降或几乎不沉降点)外其他高程控制点数据例外系统间的转换为:
高程系统A数据=高程系统B数据+常数+沉降高程
工程常用高程控制点1956黄海高程系统数据与1985国家高程基准数据转换公式为:
1985国家高程基准高程数据=1956年黄海高程数据-
0.029m-沉降数据由于各地沉降数据的确凿测得需要大量的人力物力,故而各城市相关部门(大凡为测量院)每隔一定年限会对全市境内高等级高程控制点进行一次联测以消除不平均沉降导致的高程控制点数据偏差,并公布最新数据。
(2)吴淞高程与1956黄海高程系统及1985国家高程基准成果转换吴淞高程系统比较纷乱,例外城市地区采用数值不一。
其大凡用于长江以南地区的水利部门,如采用,需要仔细核对。
宁波:1985国家高程基准数据=吴淞高程系统数据-
1.87 (米)
嘉兴:1985国家高程基准数据=吴淞高程系统数据-
1.828(米)
上海:1985国家高程基准数据=吴淞高程系统数据- 1.6007(米)
无锡现阶段使用的有两套数据:
①无锡水利部门:
1956黄海高程系统数据=吴淞高程系统数据-
1.89 (米)
②无锡城市建设部门:
1956黄海高程系统数据=吴淞高程系统数据-
1.827(米)。