【配套K12】九年级数学上学期期中试题(含解析) 湘教版
湘教版九年级上册数学期中考试试卷含答案解析

湘教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列命题中,是真命题的为()A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似D.等边三角形都相似2.一元二次方程221x x-=的常数项为()A.-1B.1C.0D.±13.一次函数y=kx+b与反比例函数y=kx在同一直角坐标系中的大致图象如图所示,则下列判断正确的是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 4.在平面直角坐标系中,反比例函数y=(k<0)图像的两支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限5.一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则b2-4ac满足的条件是()A.=0B.>0C.<0D.≥0 6.x2-5x-6=0的两根为()A.6和-1B.-6和1C.-2和-3D.2和37.如图,平面直角坐标系中,OB在x轴上,∠ABO=90º,点A的坐标为(1,2).将△AOB绕点A逆时针旋转90º,点O的对应点C恰好落在双曲线y=kx(x>0)上,则k=()A.2B.3C.4D.6 8.解方程2(5x-1)2=3(5x-1)的最适当的方法是()A .直接开平方法.B .配方法C .公式法D .分解因式法9.已知一元二次方程x 2+x ─1=0,下列判断正确的是()A .该方程有两个相等的实数根B .该方程有两个不相等的实数根C .该方程无实数根D .该方程根的情况不确定10.若1x ,2x 是方程24x =的两根,则12x x +的值是()A .0B .2C .4D .8二、填空题11.已知△ABC 与△DEF 相似且对应的角平分线的比为2:3,则△ABC 与△DEF 的周长比为_____________.12.若点(-2,1)在反比例函数x k y =的图象上,则该函数的图象位于第_______象限.13.如图,在△ABC 中,DE ∥BC ,AD=2,AE=3,BD=4,则AC=______.14.根据反比例函数2y x=-的图象(请先在草稿纸上画图象)回答问题,当函数值为正时,x 取值范围是_______15.如上图,反比例函数k y x=的图象位于第一、三象限,其中第一象限内的图象经过点A (1,2),请在第三象限内的图象上找一个你喜欢的点P ,你选择的P 点坐标为____.16.某种商品原价是121元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x,可列方程为____.17.如图,在ABC 中,D 、E 分别是AC 、AB 边上的点,AED C ∠=∠,6AB =,4AD =,5AC =,则AE =________.18.已知a ,b ,c ,d 是成比例的线段,其中3cm a =,2cm b =,6cm c =,则d =_______cm .19.在△ABC 中,15AB cm =,20BC cm =,30AC cm =,另一个与它相似的△A B C '''的最短边长为45cm ,则△A B C '''的周长为________.三、解答题20.解方程:(x -5)(x -6)=x -521.若关于x 的一元二次方程x2+4x+2k=0有两个实数根,求k 的取值范围及k 的非负整数值.22.如图,BE 是△ABC 中∠ABC 的平分线.DE ∥BC ,若AE =3,AD =4,AC =5,求DE 的长.23.已知图中的曲线函数5m y x-=(m 为常数)图象的一支.(1)求常数m 的取值范围;(2)若该函数的图象与正比例函数2y x =图象在第一象限的交点为A (2,n ),求点A 的坐标及反比例函数的解析式.24.已知:正比例函数y=k 1x 的图象与反比例函数xk y 2(x>0)的图象交于点M (a,1),MN ⊥x 轴于点N (如图),若△OMN 的面积等于2,求这两个函数的解析式.25.一块正方形的铁皮,在它的四角各截去边长为4㎝的小正方形,折成一个无盖的长方体盒子,它的容积是400㎝3,求原铁皮的边长.26.某城市居民最低生活保障在2012年是每月240元,经过连续两年的增加,到2014年将提高到每月345.6元,则该城市两年来最低生活保障的平均增长率是多少?27.如图,在直角梯形ABCD 中,AB ∥DC ,∠D=90o ,AC ⊥BC ,AB=10cm,BC=6cm ,(1)求证:△ACD ∽△BAC ;(2)求DC 的长;28.已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A (﹣2,0),与反比例函数在第一象限内的图象的交于点B (2,n ),连接BO ,若S △AOB =4.(1)求该反比例函数的解析式和直线AB 的解析式;(2)若直线AB 与y 轴的交点为C ,求△OCB 的面积.参考答案1.D .【解析】试题分析:A 、锐角三角形的三个内角都小于90°,但不一定都对应相等,故A 选项错误;B 、直角三角形的直角对应相等,但两组锐角不一定对应相等,故B 选项错误;C 、等腰三角形的顶角和底角不一定对应相等,故C 选项错误;D 、所有的等边三角形三个内角都对应相等(都是60°),所以它们都相似,故D 选项正确;故选:D .考点:相似三角形的判定.2.A【解析】试题分析:因为一元二次方程221x x -=可化为2210x x --=,所以常数项为-1,故选A .考点:一元二次方程的常数项3.B .【解析】试题分析:∵一次函数y=kx+b的图象经过一、三、四象限,∴k>0,b<0又∵比例函数y=kx图象经过一、三象限,∴k>0,b<0故选B.考点:反比例函数与一次函数的交点问题.4.B【解析】试题分析:∵反比例函数y=(k<0),∴图象的两支分别在第二、四象限.故选B.考点:反比例函数的性质.5.B【详解】试题分析:∵一元二次方程有两个不相等的实数根,∴△=b2-4ac>0.故选B.考点:根的判别式.6.A【分析】把方程左边的式子进行分解因式,利用因式分解法求解.【详解】x2-5x-6=0(x-6)(x+1)=0解得x=6或-1.故选A7.B.【解析】试题分析:∵点A 的坐标为(1,2).Rt △AOB 绕点A 逆时针旋转90°,∴OB+AD=3,AB-CD=1,故C (3,1),将C (3,1)代入y=k x中,得k=3×1=3.故选B.考点:反比例函数综合题.8.D【详解】解:方程可化为[2(5x-1)-3](5x-1)=0,即(10x-5)(5x-1)=0,根据分析可知分解因式法最为合适.故选D .9.B【解析】根据题意得:△=2141(1)-⨯⨯-=5>0,故有两个不相等的实数根.10.A【分析】先把化成一元二次方程的一般形式,然后根据根与系数的关系求解即可.【详解】∵24x =,∴240x -=,∴12x x +=-0=01.故选A.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a +=-,12c x x a⋅=.11.2:3.【解析】试题分析:由于相似三角形的对应角平分线和周长的比都等于相似比,由此可求出两三角形的周长比.试题解析:∵△ABC与△DEF相似且对应角平分线的比为2:3,∴它们的相似比为2:3;故△ABC与△DEF的周长比为2:3.考点:相似三角形的性质.12.二、四【解析】试题分析:先根据函数的解析式确定k=xy=-2,再根据函数图象与系数的特点进行解答.试题解析:∵点(-2,1)在反比例函数y=kx的图象上,∴k=(-2)×1=-2<0,∴该函数的图象位于第二、四象限.考点:反比例函数图象上点的坐标特征.13.9.【解析】试题分析:根据平行线分线段成比例定理得出AD AEBD EC=,得出CE的长度即可得出AC的长.试题解析:∵DE∥BC,∴AD AE BD EC=,∵AD=2,AE=3,BD=4,∴234EC =,∴CE=6,∴AC=AE+EC=3+6=9.考点:平行线分线段成比例.14.x<0.【解析】试题分析:此题只需找到x轴上方的图象所对应的自变量的取值即可.试题解析:由函数图象易得在x轴上方的函数图象所对应的值为:x<0.考点:反比例函数的图象.15.(-1,-2)(答案不唯一).【详解】试题分析:根据“第一象限内的图象经过点A (1,2)”先求出函数解析式,给x 一个值负数,求出y 值即可得到坐标.试题解析:∵图象经过点A (1,2),∴21k =解得k=2,∴函数解析式为y=2x ,当x=-1时,y=21-=-2,∴P 点坐标为(-1,-2)(答案不唯一).考点:反比例函数图象上点的坐标特征.16.121(1-x )2=100.【详解】试题分析:等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=100.试题解析:第一次降价后的价格为121×(1-x ),那么第二次降价后的价格为121×(1-x )×(1-x ),∴可列方程为121(1-x )2=100.考点:由实际问题抽象出一元二次方程.17.103【分析】根据有两角相等的三角形相似先证明△AED ∽△ACB ,再利用相似三角形的对应边的比相等,即可求出AE 的长.【详解】在△AED和△ACB中,∵∠A=∠A,∠AED=∠C,∴△AED∽△ACB,∴AE AD AC AB=,∵AB=6,AD=4,AC=5,∴4 56 AE=,∴AE=10 3.故答案为10 3.【点睛】本题考查了相似三角形的判定与性质,利用有两角相等的三角形相似证明△AED∽△ACB 是解决本题的关键.18.4【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.【详解】已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=3,b=2,c=6,解得:d=4,则d=4cm.故答案为4【点睛】本题主要考查比例线段的定义.要注意考虑问题要全面.19.195cm.【解析】因为△ABC∽△,所以.又因为在△ABC中,边最短,所以,所以,所以△的周长为20.x1=5,x2=7.【解析】试题分析:先移项得到(x-5)(x-6)-(x-5)=0,然后利用因式分解法解方程.试题解析:(x-5)(x-6)-(x-5)=0,(x-5)(x-6-1)=0,x-5=0或x-6-1=0,所以x1=5,x2=7.考点:解一元二次方程-因式分解法.21.k≤2.0,1,2.【详解】试题分析:根据关于x的一元二次方程x2+4x+2k=0有两个实数根,则根的判别式△=b2-4ac≥0,建立关于k的不等式,求出k的取值范围后,再确定k的非负整数值.试题解析:∵关于x的一元二次方程x2+4x+2k=0有两个实数根,∴△=42﹣4×1×2k=16﹣8k≥0,解得k≤2.∴k的非负整数值为0,1,2.考点:一元二次方程的根的判别式.22.8 3.【详解】试题分析:先根据平行线的性质及角平分线的性质求出△BDE是等腰三角形,即BD=DE,再根据△ADE∽△ABC即可求出BD的长,进而求出DE的长.试题解析:∵BE是△ABC中∠ABC的平分线,DE∥BC,∴∠1=∠2,∠2=∠3,∴∠1=∠3,∴BD=DE ,∵DE ∥BC ,AE=3,AD=4,AC=5,∴△ADE ∽△ABC ,AD AE AB AC=,即AD AE AD BD AC=+,4345BD =+,解得BD=83.∴DE=BD=83.考点:1.相似三角形的判定与性质;2.角平分线的定义;3.平行线的性质.23.(1)m >5;(2)y=8x.【解析】试题分析:(1)曲线函数5m y x-=(m 为常数)图象的一支.在第一象限,则比例系数m-5一定大于0,即可求得m 的范围;(2)把A 的坐标代入正比例函数解析式,即可求得A 的坐标,再代入反比例函数解析式即可求得反比例函数解析式.试题解析:(1)根据题意得:m-5>0,解得:m >5;(2)根据题意得:n=4,把(2,4)代入函数5m y x -=,得到:4=52m -;解得:m-5=8.则反比例函数的解析式是y=8x.考点:反比例函数与一次函数的交点问题.视频24.正比例函数的解析式是x y 41=,反比例函数的解析式是xy 4=【解析】解:∵MN ⊥x 轴,点M (a ,1)∴S △OMN=a 21=2∴a=4∴M(4,1)∵正比例函数y=k 1x 的图象与反比例函数xk y 2=(x>0)的图象交于点M (4,1)∴11解得k k 25.18cm .【详解】试题分析:先设原正方形铁皮的边长为x ,然后根据题意列出方程4(x-8)2=400,再解方程即可求解.试题解析:设原正方形铁皮的边长为xcm则由题意可得4(x-8)2=400解得x 1=18,x 2=-2(不合题意,舍去).答:原正方形铁皮的边长为18cm .考点:一元二次方程的应用.26.20%.【详解】试题分析:设该城市两年来最低生活保障的平均年增长率是x ,根据最低生活保障在2009年是240元,经过连续两年的增加,到2011年提高到345.6元,可列出方程求解.试题解析:设该城市两年来最低生活保障的平均年增长率是x ,240(1+x )2=345.6,1+x=±1.2,x=20%或x=-220%(舍去).答:该城市两年来最低生活保障的平均增长率是20%.考点:一元二次方程的应用.27.(1)证明见解析;(2)6.4cm .【解析】试题分析:(1)由CD ∥AB ,得∠DCA=∠CAB ,加上一组直角,即可证得所求的三角形相似.(2)在Rt △ABC 中,由勾股定理可求得AC 的长,根据(1)题所得相似三角形的比例线段,即可求出DC 的长.试题解析:(1)∵CD ∥AB ,∴∠BAC=∠DCA又∵AC ⊥BC ,∠ACB=90°,∴∠D=∠ACB=90°,∴△ACD ∽△BAC .(2)Rt △ABC 中,,∵△ACD ∽△BAC ,∴DC AC AC AB=,即8810DC =,解得:DC=6.4cm .考点:1.勾股定理;2.相似三角形的判定与性质.28.(1)8y x =;y=x+2;(2)2.【分析】(1)先由A (﹣2,0),得OA=2,点B (2,n ),S △AOB =4,得12OA•n=4,n=4,则点B 的坐标是(2,4),把点B (2,4)代入反比例函数的解析式为()m y m 0x =≠,可得反比例函数的解析式为:8y x=;再把A (﹣2,0)、B (2,4)代入直线AB 的解析式为y=kx+b 可得直线AB 的解析式为y=x+2.(2)把x=0代入直线AB 的解析式y=x+2得y=2,即OC=2,可得S △OCB =12OC×2=12×2×2=2.【详解】解:(1)由A (﹣2,0),得OA=2;∵点B (2,n )在第一象限内,S △AOB =4,∴12OA•n=4.∴n=4.∴点B 的坐标是(2,4).设该反比例函数的解析式为()m y m 0x=≠,将点B的坐标代入,得m 42 =,∴m=8.∴反比例函数的解析式为:8 yx =.设直线AB的解析式为y=kx+b(k≠0),将点A,B的坐标分别代入,得2k b0{2k b4-+=+=,解得,k1{b2==.∴直线AB的解析式为y=x+2.(2)在y=x+2中,令x=0,得y=2,∴点C的坐标是(0,2).∴OC=2.∴S△OCB =12OC×2=12×2×2=2.。
湘教版九年级上册数学期中考试试卷及答案解析

湘教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.一元二次方程20y y -=的根是()A .y =1B .y =0C .y 1=0,y 2=1-D .y 1=0,y 2=12.若反比例函数ky x=的图象经过点(2,1)--,则该反比例函数的图象在()A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限3.一元二次方程x 2﹣2x+1=0的根的情况为()A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根4.已知△ABC ∽△A ′B ′C ′且12AB A B =′′,则S △A ′B ′C ′∶S △ABC 为()A .1∶2B .2∶1C .1∶4D .4∶15.某养殖户的养殖成本逐年增长,第一年的养殖成本为12万元,第3年的养殖成本为16万元.设养殖成本平均每年增长的百分率为x ,则下面所列方程中正确的是()A .12(1﹣x )2=16B .16(1﹣x )2=12C .16(1+x )2=12D .12(1+x )2=166.已知xy mn =,则把它改写成比例式后,错误的是()A .x m n y=B .y n m x=C .x y m n=D .x nm y=7.函数y =kx +1与函数y =kx在同一坐标系中的大致图象是()A .B .C .D .8.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是()A .B.C.D.二、填空题9.将方程22143x x x -+=-化为一般形式为________________.10.若点P 1(1-,m ),P 2(2-,n )在反比例函数2y x=的图象上,则m ____n (填“>”“<”或“=”号).11.在比例尺为1∶4000000的地图上,两城市间的图上距离为2cm ,则这两城市间的实际距离为____________km.12.若34y x =,则x y x+=______13.设x 1、x 2是方程2220x x +-=的两个实数根,则2112x x x x +的值为_______.14.如图所示,在△ABC 中,DE ∥BC ,AD =3,DB =6,AE =2,则EC 的长为________15.如果函数210(2)ky k x -=-是反比例函数,且当0x >时y 随x 的增大而增大,此函数的解析式是___________________.16.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(kg/m 3)是体积V (m 3)的反比例函数,它的图象如图所示.当V =5m 3时,气体的密度是__________kg/m 3.三、解答题17.用适当的方法解下列方程.(1)2220x x --=(2)2(2)3(2)0x x ---=18.y 是x 的反比例函数,且当2x =时,13y =-,请你确定该反比例函数的解析式,并求当6y =时,自变量x 的值.19.如图,已知△ABC ∽△ADE ,AB=30cm ,AD=18cm ,BC=20cm ,∠BAC=75°,∠ABC=40°.(1)求∠ADE 和∠AED 的度数;(2)求DE 的长.20.已知关于x 的一元二次方程x 2+2x +a =0,(1)若该方程的一个根为1,求a 的值及该方程的另一根;(2)若方程有两个不相等的实数根,求a 的取值范围.21.已知点E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于点F ,求证△ABF ∽△EAD .22.如图,一次函数的图象与反比例函数的图象交于A 、B 两点.(1)利用图中的条件,求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出使一次函数的值小于反比例函数的值的x的取值范围.23.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用27m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为96m2?24.在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴和y轴上,点A的坐标为(2,0),点C的坐标为(0,3),双曲线y=kx(x>0)的图象分别与BC、AB交于点D、E,连接DE,若E是AB的中点.(1)求点D的坐标;(2)点F是OC边上一点,若△FBC和△DEB相似,求点F的坐标.参考答案1.D 【解析】试题解析:()10,y y -=0,10,y y =-=120, 1.y y ==故选D.2.B 【解析】试题解析:把点()2,1--代入反比例函数.k y x=得: 2.k =故反比例函数的图象在第一、三象限.故选B.3.A 【分析】根据根的判别式即可求出答案.【详解】由题意可知△=b 2﹣4ac=(﹣2)2﹣4×1×1=0,所以方程x 2﹣2x+1=0有两个相等的实数根.故答案选A .4.D 【解析】试题解析:2:4:1.A B C ABC A B S S AB '''⎛⎫== ⎪⎝⎭''故选D.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.5.D 【详解】由题意可得:第二年的养殖成本为12(1)x +,第三年的养殖成本为:2121+)(1)12(1)x x x +=+(,∴212(1)16x +=.故选D.6.C 【解析】试题解析:选项C.两边同乘最简公分母mn 得,.xn my =与原式不相等.故选C.7.A 【解析】试题分析:根据一次函数和反比例函数的特点,k≠0,所以分k >0和k <0两种情况讨论.①当k >0时,y=kx+1与y 轴的交点在正半轴,过一、二、三象限,y=kx的图象在第一、三象限;②当k <0时,y=kx+1与y 轴的交点在正半轴,过一、二、四象限,y=kx的图象在第二、四象限.故选A .考点:反比例函数的图象;一次函数的图象.8.B 【分析】根据相似三角形的判定方法一一判断即可.【详解】解:因为111A B C ∆中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等,故选B .【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.9.230x x +-=【解析】试题解析:方程整理得:230.x x +-=故答案为230.x x +-=点睛:一元二次方程的一般形式:()200.ax bx c a ++=≠10.<【解析】试题解析:()()121,,2,P m P n -- 在反比例函数2y x=的图象上,222,1,12m n ∴==-==---21,-<- .m n ∴<故答案为:.<11.80【解析】试题解析:12240000008000000cm=80km.4000000÷=⨯=故答案为:80.12.74【分析】可设x=4k ,根据已知条件得到y=3k ,再代入计算即可得到正确结论.【详解】解:∵34y x =,∴y=3k ,x=4k ;代入x y x +=4k 3k 7=4k 4+故答案为74【点睛】本题考查了比例的性质的应用,主要考查学生的计算能力,题目比较好,难度不大.13.4-【解析】试题解析:由韦达定理可得:12122, 2.b cx x x x a a+=-=-⋅==-()()222121221121212122422 4.2x x x x x x x x x x x x x x +--⨯-++====--故答案为 4.-点睛:一元二次方程根与系数的关系:1212,.b c x x x x a a+=-⋅=14.4【解析】试题解析:,DE BC ,AD AEDB EC =32.6EC∴= 4.EC ∴=故答案为:4.15.3y x=-【详解】解:有题意可得:210 1.k -=-3.k ∴=±当0x >时,y 随x 的增大而增大,0.k ∴< 3.k ∴=-函数的解析式是:3.y x=-故答案为:3y x=-【点睛】本题考查反比例函数的解析式有三种形式:()1,,0.ky y kx xy k k x-===≠16.2【详解】试题解析:由图象可以看出:3V 5m =时,气体的密度是:32kg/m .17.(1)x1,x 2=1(2)x 1=2,x 2=5【解析】试题分析:方程()1用配方法,方程()2用因式分解法.试题解析:()2122,x x -=2213,x x -+=()213,x -=1x -=1211x x ∴==()()()22230,x x ---=20x -=或50,x -=122, 5.x x ∴==点睛:一元二次方程的解法有:直接开方法,公式法,配方法,因式分解法.18.23y x =-,19x =-【解析】试题分析:由题意y 是x 的反比例函数,可设()0,ky k x=≠然后利用待定系数法进行求解.把6y =代入函数解析式求得相应的x 的值即可.试题解析:设反比例函数的解析式为k y x=,∵当2x =时,13y =-,2.3k ∴=-∴该反比例函数的解析式为2.3y x=-当6y =时,则有263x-=,解得:1.9x =-19.(1)∠ADE=∠ABC=40°,∠AED=∠C=65°;(2)DE=12cm .()1根据三角形的内角和定理求出C ∠,再根据相似三角形对应角相等解答;()2根据相似三角形对应边成比例列式求解即可.【详解】()17540BAC ABC ∠=︒∠=︒ ,,180180754065C BAC ABC ∴∠=︒-∠-∠=︒-︒-︒=︒,ABC ADE ∽,4065.ADE ABC AED C ∴∠=∠=︒∠=∠=︒,()2ABC ADE ∽,.AB BCAD DE∴=即3020.18DE=解得:12cm DE .=20.(1)a =−3,x 1=−3,;(2)a <1.【解析】试题分析:()1将1x =代入方程220x x a ++=得到a 的值,再根据根与系数的关系求出另一根;()2根的判别式0.∆>求出a 的取值范围即可.试题解析:()1将1x =代入方程220.x x a ++=得,1210a +⨯+=,解得: 3.a =-方程为2230.x x +-=设另一根为1,x 则113,x ⋅=-1 3.x =-()244a ∆=-,∵方程有两个不等的实根,0,∴∆>即440a >-,1.a ∴<21.证明见解析【详解】试题分析:先利用等角的余角相等得到.DAE BAF ∠=∠根据有两组角对应相等,即可证明两三角形相似.试题解析:∵四边形ABCD 为矩形,90,BAD D ∴∠=∠= 90DAE BAE ∴∠+∠= ,BF AE ⊥ 于点F ,90ABF BAE ∴∠+∠= ,DAE BAF ∴∠=∠,.ABF EAD ∴ ∽点睛:两组角对应相等,两三角形相似.22.(1)2y x=,1y x =-;(2)32;(3)x <1-或0<x <2【解析】试题分析:()1将点()21A ,代入,m y x=可得反比例函数解析式,将点()1,B n -代入可得n 的值,即可得点B 的坐标,由,A B 坐标可得直线的解析式;()2求得直线与x 轴的交点坐标,利用割补法可得三角形的面积;()3由直线位于双曲线上方时对应的x 的范围即可得答案.试题解析:()1设反比例函数的解析式为.m y x=把()21A ,代入,m y x=得:2m =,∴反比例函数的解析式为2.y x=设一次函数的解析式为y kx b =+,把()1,B n -代入2.y x=得: 2.n =-即()1,2.B --将点()21A ,,()1,2B --代入,y kx b =+得:21{2,k b k b +=-+=-解得:1{ 1.k b ==-∴一次函数的解析式为: 1.y x =-()2在一次函数1y x =-中,令0y =得:10x -=,解得: 1.x =1131112.222AOB S =⨯⨯+⨯⨯= ()3当1x <-或02x <<时,一次函数的值小于反比例函数的值.23.长为12m 、宽为8m .【解析】试题分析:设矩形猪舍垂直于住房墙一边长为m x ,可以得出平行于墙的一边的长为()2721m,x -+根据矩形的面积公式建立方程求解即可.试题解析:设矩形猪舍垂直于住房墙一边长为m x ,可以得出平行于墙的一边的长为()2721m x -+,由题意得()272196.x x -+=解得:126,8.x x ==当6x =时,27211612x -+=>(舍去),当8x =时,272112.x -+=答:所围矩形猪舍的长为12m,宽为8m .24.(1)(1,3);(2)5(0,3或(0,0).【解析】试题分析:()1先求出点E 的坐标,求出双曲线的解析式,点D 与点B 的纵坐标相同,即可得出点D 的坐标;()2分两种情况:若FBC DEB ∽,则CB CF BE BD=,求出CF ,得出F 的坐标.若FBC EDB ∽,则,BC CF DB BE=求出CF ,得出F 的坐标.试题解析:()1∵四边形OABC 为矩形,AB x ∴⊥轴.∵E 为AB 的中点,点A 的坐标为(20),,点C 的坐标为(03).,∴点E 的坐标为32,.2⎛⎫ ⎪⎝⎭∵点E 在反比例函数ky x =的图象上,3k ∴=,∴反比例函数的解析式为3y x =.∵四边形OABC 为矩形,∴点D 与点B 的纵坐标相同,将3y =代入3y x =可得1x =,∴点D 的坐标为 (13).,()2由()1可得2, 1.BC CD ==1.BD BC CD ∴=-=∵E 为AB 的中点,3,2BE =若FBC DEB ∽,则CBCFBE BD =,即2.312CF =43CF ∴=,453.33OF CO CF ∴=-=-=∴点F 的坐标为50,.3⎛⎫ ⎪⎝⎭若FBC EDB ∽,则,BC CFDB BE =即2.312CF=3CF ,∴=此时点F 和点O 重合.综上所述,点F 的坐标为50,3⎛⎫ ⎪⎝⎭或(00),.。
湘教版九年级数学上册期中试卷及答案【全面】

湘教版九年级数学上册期中试卷及答案【全面】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与 )AB C D 2.已知=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,则2m n -的算术平方根为( )A .±2BC .2D .43.如果a b -=22()2a b a b a a b+-⋅-的值为( )A B .C .D .4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+=100 C .()31001003x x --= D .10031003x x --= 5.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .86.已知1x =是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( )A .-1或2B .-1C .2D .07.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570 C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=5708.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<19.如图,扇形OAB中,∠AOB=100°,OA=12,C是OB的中点,CD⊥OB交AB 于点D,以OC为半径的CE交OA于点E,则图中阴影部分的面积是()A.12π+183B.12π+363C.6π+183D.6π+363 10.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC 边上的点F处.若AB=3,BC=5,则tan∠DAE的值为()A .12B .920C .25D .13二、填空题(本大题共6小题,每小题3分,共18分)1.计算(6-18)×13+26的结果是_____________. 2.分解因式:x 2-9=______.3.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.4.如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为__________.5.如图,AB 为△ADC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACD=_____°.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:33122x x x -+=--2.先化简,再求值:233()111a a a a a -+÷--+,其中2+1.3.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.4.如图,AB是⊙O的直径,C是BD的中点,CE⊥AB于 E,BD交CE于点F.(1)求证:CF﹦BF;(2)若CD﹦6, AC﹦8,则⊙O的半径和CE的长.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.我区“绿色科技公司”研发了一种新产品,该产品的成本为每件3000元.在试销期间,营销部门建议:①购买不超过10件时,每件销售价为3600元;②购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为3200元.根据以上信息解决下列问题:(1)直接写出:购买这种产品件时,销售单价恰好为3200元;(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y 元,求y与x之间的函数表达式;(3)在试销期间销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使销售数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、B5、C6、B7、A8、C9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)12、(x +3)(x -3)3、7或-14、5、406、245三、解答题(本大题共6小题,共72分)1、x=12、3、(1)y=x 2-4x+3.(2)当m=52时,四边形AOPE 面积最大,最大值为758.(3)P 点的坐标为 :P 112-),P 2(352,2),P 3,2),P 412-). 4、(1)略(2)5 ,2455、()117、20;()22次、2次;()372;()4120人.6、(1)90;(2)2200(90)5650(1090)≥⎧=⎨-+<<⎩x x y x x x ;(3)3325元.。
湘教版九年级上册数学期中考试试卷含答案解析

湘教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列函数:①y =2x ,②y =15x,③y =x ﹣1,④y =11x +.其中,是反比例函数的有()A .0个B .1个C .2个D .3个2.如图,点C 是线段AB 的黄金分割点,则下列各式正确的是()A .AC ABBC AC =B .BC ACAB BC =C .AC ABAB BC=D .BC ACAB AB=3.若250y x -=,则x y :等于()A .2:5B .4:25C .5:2D .25:44.若反比例函数y=1k x-的图象位于第二、四象限,则k 的取值可以是()A .0B .1C .2D .以上都不是5.已知sin =αα是锐角,则α∠的度数是()A .30°B .45°C .60°D .90°6.关于反比例函数y =2x的图象,下列说法正确的是()A .图象经过点(1,1)B .当x <0时,y 随x 的增大而减小C .图象的两个分支关于x 轴成轴对称D .图象的两个分支分布在第二、四象限7.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是A .∠ABP=∠CB .∠APB=∠ABC C .AP ABAB AC=D .AB ACBP CB=8.如图,在直角坐标系中,有两点A (6,3)、B (6,0).以原点O 为位似中心,相似比为13,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)9.如图,双曲线y=kx与直线y=﹣12x交于A、B两点,且A(﹣2,m),则点B的坐标是A.(2,﹣1)B.(1,﹣2)C.(12,﹣1)D.(﹣1,12)10.关于x的函数y=k(x+1)和y=kx(k≠0)在同一坐标系中的图象大致是()A.B.C.D.11.反比例函数y=6x与y=3x在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.32B.2C.3D.112.若函数y=(m﹣1)x|m|﹣2是反比例函数,则m的值是()A.m=﹣1B.m=1C.m=﹣1或m=1D.m=﹣2或m=2二、填空题13.若反比例函数y=kx的图象经过点(-1,2),则k的值是________.14.(1)在△ABC中,∠C=90°,sin A=12,则cos B=_____;(2)已知α为锐角,且cos(90°﹣α)=12,则a=_____;(3(α+10°)=1,则锐角a=_____.15.在△ABC中,若2sin cos02A B⎛⎫=⎪⎪⎝⎭,∠A、∠B都是锐角,则∠C的度数为_______.16.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为___米.17.如果点A(﹣2,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=kx(k>0)的图象上,那么y1,y2,y3的大小关系是________(请用“<”表示出来)18.在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为1:2,把△EFO缩小,则点E的对应点E′的坐标是______.三、解答题19.计算(1)0112()2-++(2)cos45sin301cos60tan452︒︒︒︒-+.20.如图,O是CD的中点.以O为位似中心,用直尺和圆规作四边形ABCD的一个位似图形,使四边形ABCD的边长放大到原来的2倍.(保留作图痕迹,不必写出作法)21.以点O为位似中心,作出四边形ABCD的位似图形,使得所作图形与原图形的位似比为2:1.22.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c(1)已知a=6,b=3(2)已知∠B=45°,a+b=6,解这个直角三角形(3)已知sin A=12,c=6,解这个直角三角形.23.如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且点B(3,1),B′(6,2).(1)请你根据位似的特征并结合点B的坐标变化回答下列问题:①若点A(52,3),则A′的坐标为______;②△ABC与△A′B′C′的相似比为______;(2)若△ABC的面积为m,求△A′B′C′的面积.(用含m的代数式表示)24.如图,四边形ABCD中,∠B=∠D=90°,∠A=120°,AB=12,CD=AD 的长.25.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与周长.26.如图,已知反比例函数y1=kx的图象与一次函数y2=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求反比例函数和一次函数的表达式;(2)求△OAB的面积;(3)直接写出y 2>y 1时自变量x 的取值范围.27.如图,在电线杆上的C 处引拉线CE ,CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 是安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪AB 的高为1.5米,求拉线CE ,结果精确到0.1米)28.如图,一次函数5y kx =+(k 为常数,且0k ≠)的图像与反比例函数8y x=-的图像交于()2,A b -,B 两点.(1)求一次函数的表达式;(2)若将直线AB 向下平移(0)m m >个单位长度后与反比例函数的图像有且只有一个公共点,求m 的值.参考答案1.C 【解析】此题应根据反比例函数的定义,解析式符合()0ky k x=≠的形式为反比例函数.【详解】解:①是正比例函数,故A 选项错误;②是反比例函数,故B 选项正确;③是反比例函数,故C 选项正确;④y 是x+1的反比例函数,故D 选项错误.故选:C .【点睛】本题考查了反比例函数的定义,重点是将一般()0ky k x=≠转化为y=kx -1(k≠0)的形式.2.B 【分析】根据黄金分割性质即可解题.【详解】∵点C 是线段AB 的黄金分割点,由图可知,AC 为较短边,∴BC ACAB BC=故选B 【点睛】本题考查了黄金分割的性质,属于简答题,熟悉黄金分割的性质是解题关键.3.A 【详解】∵250y x -=,∴25y x =,∴:2:5=x y .故选A .4.A 【详解】∵反比例函数y=1k x-的图象位于第二、四象限,∴k﹣1<0,即k<1.故选A.5.C【分析】根据60°角的正弦值等于2解答.【详解】解:∵sinα=α是锐角,∴α=60°,故选C.【点睛】本题考查了特殊角的三角函数值,是需要熟记的知识点.6.B【分析】根据反比例函数图象上点的坐标特点:横纵坐标之积=k可得A错误;根据反比例函数y=k x(k≠0)的图象是双曲线,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小可得B正确、D错误;根据反比例函数图象关于原点成中心对称可得C 错误.【详解】解:A、1×1=1≠2,因此反比例函数y=2x的图象不过(1,1),故此选项错误;B、∵k=2>0,∴在图象每一支上,y随x的增大而减小,∴当x<0时,y随x的增大而减小,故此选项正确;C、图象的两个分支关于原点对称,故此选项错误;D、图象的两个分支分布在第一、三象限,故此选项错误;故选:B.【点睛】此题主要考查了反比例函数的性质,关键是掌握(1)反比例函数y=kx(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.7.D【详解】试题分析:A.当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B.当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C.当AP ABAB AC=时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D.无法得到△ABP∽△ACB,故此选项正确.故选D.考点:相似三角形的判定.8.A【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是13,根据已知数据可以求出点C的坐标.【详解】由题意得,△ODC∽△OBA,相似比是1 3,∴OD DC OB AB=,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选A.【点睛】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.9.A【分析】利用待定系数法求出点A的坐标,再连立方程组求出点B的坐标即可判断.【详解】解:当x=﹣2时,y=1(2)2-⨯-=1,即A (﹣2,1),将A 点坐标代入k y x=,得k=﹣2×1=﹣2,反比例函数的解析式为2y x-=,联立双曲线、直线,得212y xy x -⎧=⎪⎪⎨⎪=-⎪⎩,解得:1121x y =-⎧⎨=⎩,2221x y =⎧⎨=-⎩,B (2,﹣1).故选A .【点睛】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握基本知识,属于中考常考题型.10.D 【详解】试题分析:当k >0时,函数y=kx的图像在一三象限,函数y=k (x+1)=kx+k 的图像经过一二三象限,所以选项A 、C 错误;当k <0时,函数y=kx的图像在二四象限,函数y=k (x+1)=kx+k 的图像经过二三四象限,所以选项B 错误,选项D 正确,故选D.考点:1.一次函数图像;2.反比例函数的图像.11.A 【分析】分别过A 、B 作x 轴的垂线,垂足分别为D 、E ,过B 作BC ⊥y 轴,点C 为垂足,由反比例函数系数k 的几何意义可知,S 四边形OEAC =6,S △AOE =3,S △BOC =32,再利用面积相减的关系求出答案.【详解】分别过A 、B 作x 轴的垂线,垂足分别为D 、E ,过B 作BC ⊥y 轴,点C 为垂足,∵由反比例函数系数k 的几何意义可知,S 四边形OEAC =6,S △AOE =3,S △BOC =32,∴S △AOB =S 四边形OEAC ﹣S △AOE ﹣S △BOC =6﹣3﹣32=32.故选:A .【点睛】此题考查反比例函数的系数k 的几何意义,根据函数图象作出对应的三角形或矩形,利用系数k 求出对应图象的面积是解题的关键.12.A【分析】令x 的指数为-1,系数不为0列式求值即可.【详解】解:由题意得:2110m m ⎧-=-⎨-≠⎩,解得m=-1,故选:A .【点睛】本题考查反比例函数的定义;反比例函数解析式的一般形式y =k x(k≠0),也可转化为y=kx -1(k≠0)的形式;注意不要忽略k≠0.13.-2【分析】由反比例函数k y x=可得=k xy ,将坐标(-1,2)代入即可得出答案.【详解】∵反比例函数y =k x 的图象经过点(-1,2)∴=12=2=-⨯-k xy 故答案为:2-.【点睛】本题考查求反比例函数系数,熟练掌握反比例函数上的点横纵坐标之积即为k是关键.14.1230°20°【分析】(1)根据特殊角的三角函数值求出∠A的度数,根据三角形的内角和定理求出即可;(2)根据特殊角的三角函数值求出90°-α的度数,即可求出答案;(3)求出tan(α+10°)=3,根据特殊角的三角函数值求出α+10°=30°,即可得出答案.【详解】解:(1)∵sinA=12,∴∠A=30°,∵∠C=90°,∴∠B=60°,∴cosB=12.故答案为:12;(2)∵cos(90°-α)=12,∴90°-α=60°,∴α=30°.故答案为:30°;(3(α+10°)=1,∴tan(α+10°)∴α+10°=30°,∴α=20°.故答案为:20°.【点睛】本题考查了三角形内角和定理,特殊角的三角函数值的应用,能熟记特殊角的三角函数值是解此题的关键.15.105°【分析】已知2sin cos 02A B ⎛⎫+-= ⎪ ⎪⎝⎭,根据非负数的性质可得sin 0A =cos 0B =,即可得sin 2A =,cos 2B =.根据特殊角的三角函数值求得∠A 、∠B 的度数,再利用三角形的内角和定理求∠C 得度数即可.【详解】∵2sin cos 0A B ⎫+-=⎪⎪⎝⎭,∴sin 02A -=,cos 02B -=即sin 2A =,cos 2B =.又∵∠A 、∠B 均为锐角,∴∠A =45°,∠B =30°,在△ABC 中,∠A+∠B+∠C =180°,∴∠C =105°.【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出sin 2A =,cos 2B =,解决问题时还要熟知特殊角的三角函数值.16.5【详解】根据题意,易得△MBA ∽△MCO ,根据相似三角形的性质可知AB AM OC OA AM =+,即1.6AM 820AM=+,解得AM=5.∴小明的影长为5米.17.y 2<y 1<y 3【分析】利用反比例函数的增减性可比较y 1、y 2,再利用函数值的正负可得出y 3为正数,可求得答案.【详解】∵y=k x (k >0),∴函数图象在每个象限内y 随x 的增大而减小,∵A (-2,y 1),B (-1,y 2),∴y2<y1<0,∵C(2,y3),∴y3>0,∴y2<y1<y3,故答案为y2<y1<y3.【点睛】本题主要考查反比例函数的性质,掌握反比例函数的增减性是解题的关键,即在y=kx中,当k>0时,在每个象限内y随x的增大而减小,当k<0时,在每个象限内y随x的增大而增大.18.(-2,1)或(2,-1).【分析】根据已知得出位似图形对应坐标与位似图形比的关系进而得出答案.【详解】解:∵顶点E的坐标是(-4,2),以原点O为位似中心相似比为1:2将△EFO缩小得到它的位似图形△E′F′O,∴点E′的坐标是:(12×(-4),12×2),[-12×(-4),-12×2],即(-2,1)或(2,-1).故答案为(-2,1)或(2,-1).【点睛】本题考查位似图形的性质,根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k得出是解题的关键.19.(1)4-2;(2)1 22【分析】(1)先进行幂的计算,然后按照实数的混合运算顺序计算即可.(2)将特殊角的三角函数值代入,然后按照实数的混合运算顺序计算即可.【详解】解:(1)原式=4-2;(2)原式=122 1122+=122-【点睛】本题考查实数的运算能力.关键是熟记特殊角的三角函数值,并注意细心运算.20.见解析【分析】根据题意位似中心已知为O,则延长OD,OA,0B,OC,根据相似比,确定所作的位似图形的关键点D',A',B',C',再顺次连接所作各点,即可得到放大一倍的图形四边形A'B'C'D'.【详解】解:如图所示.【点睛】本题主要考查了位似图的画法,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.21.见解析【分析】根据画位似图形的一般步骤,画出图形即可.【详解】解:如图,连接DO延长DO到D′,使得OD′=2OD,连接AO,延长AO到A′,使得OA′=2OA,连接BO,延长BO到B′,使得OB′=2OB,连接CO,延长CO到C′,使得OC′=2OC,则四边形A′B′C′D′就是所1求作的四边形.【点睛】本题考查作图-位似图形,解题的关键是记住画位似图形的一般步骤,利用相似三角形的性质解决问题2倍关系,属于中考常考题型.22.(1)43c =(2)3a b ==,32c =(3)3a =,33b =【分析】(1)直角三角形中知两边,求第三边,运用勾股定理即可(2)45B ∠=︒,即a b =,6a b +=,即可知3a b ==.再运用勾股定理即可(3)1sin 2a A c ==,其中6c =,即可求解.【详解】解:依题意(1)在Rt ABC 中,90C ∠=︒,6a = ,23b =∴根据勾股定理222+=a b c 得,22226(23)43c a b +=+=43c ∴=;(2)45B ∠=︒ ,Rt ABC ∴ 为等腰直角三角形,6a b += ,3a b ∴==,∴根据勾股定理得,22223332c a b ++=∴32c =∴此三角形的三边分别为:a =,b =6c =;(3) 在ABC 中,90C ∠=︒,1sin 2a A c ∴==,6c = ,132a c ∴==,根据勾股定理得.b =,∴此三角形的三边分别为:3a =,b =6c =.【点睛】此题主要考查直角三角形勾股定理的运用,要掌握三角形“知二求三”的技巧,熟练运用勾股定理.23.(1)①(5,6),②1:2;(2)4m 【分析】(1)①观察点B 点和B′点的坐标得到位似比为2,然后根据此规律确定A′的坐标(5,6);②利用对应点坐标的变化即可得出相似比;(2)利用位似图形面积比等于相似比的平方进而得出答案.【详解】解:(1)①∵△ABC 和△A′B′C′是以坐标原点O 为位似中心的位似图形,∵点B (3,1),B′(6,2),∴位似比为2,∴若点A (52,3),则A′的坐标(5,6);②△ABC 与△A′B′C′的相似比为1:2;故答案为(5,6),1:2;(2)∵△ABC 与△A'B'C'的相似比为1:2∴ABC 1A'B'C'4S S = ,而△ABC 的面积为m ,∴△A′B′C′的面积=4m .【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .24.6【分析】延长DA 交CB 的延长线于E ,根据已知条件得到∠ABE=90°,根据邻补角的定义得到∠EAB=60°,得到∠E=30°,根据直角三角形的性质即可得到结论.【详解】解:延长DA 交CB 的延长线于E ,∵∠ABC=90°,∴∠ABE=90°,∵∠DAB=120°,∴∠EAB=60°,∴∠E=30°,∴AE=2AB=24,∵∠D=90°,∴∠C=60°,∴CD=30,∴AD=DE-AE=6.【点睛】本题考查了含30°角的直角三角形,正确的作出辅助线是解题的关键.25.(1)见解析;(2)边长为1207cm ,周长为4807cm 【分析】(1)根据四边形EFGH 是正方形,得到//EH BC ,进而得出AEH B ∠=∠,AHE C ∠=∠,即可判定AEH ABC ∽△△;(2)设正方形EFGH 的边长为x ,则DM x =,30AM x =-,根据AEH ABC ∽△△,得出D EH BC AM A =,即304030x x -=,进而解得1207x =,即可得出正方形的边长与周长.【详解】解:(1) 四边形EFGH 是正方形,//EH BC ∴,AEH B ∠∠∴=,AHE C ∠=∠,AEH ABC ∴ ∽;(2)如图,设AD 与EH 交于点M ,90EFD FEM FDM ∠=∠=∠=︒ ,∴四边形EFDM 是矩形,EF DM ∴=,设正方形EFGH 的边长为x ,则DM x =,30AM x =-,AEH ABC ∽,∴D EH BC AM A =,即304030x x -=,解得1207x =,∴正方形EFGH 的边长为1207cm ,周长为4807cm .【点睛】本题主要考查了相似三角形的判定与性质,正方形、矩形的性质的综合应用,解决问题的关键是运用相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比等于相似比列方程求解.26.(1)反比例函数解析式为y 1=4x,一次函数得到解析式为y 2=x +3;(2)7.5;(3)当﹣4<x <0或x >1时,y 2>y 1【分析】(1)由题意把点A坐标代入反比例函数求出m的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出n的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;(2)根据题意先求出直线与x轴的交点坐标,从而x轴把△AOB分成两个三角形,结合点A、B的纵坐标分别求出两个三角形的面积,进而相加即可;(3)根据函数的图象结合函数图象的性质进行分析求得即可.【详解】解:(1)点A(1,4)在反比例函数y1=kx的图象上,∴k=1×4=4,∴反比例函数的表达式为y1=4 x,∵点B(﹣4,n)也在反比例函数y1=4x的图象上,∴n=44-=﹣1,即B(﹣4,﹣1),把点A(1,4),点B(﹣4,﹣1)代入一次函数y2=kx+b中,可得441k bk b+=⎧⎨-+=-⎩,解得13kb=⎧⎨=⎩,∴一次函数的表达式为y2=x+3;故反比例函数解析式为y1=4x,一次函数得到解析式为y2=x+3;(2)设直线与x轴的交点为C,在y2=x+3中,当y=0时,得x=﹣3,∴直线y2=x+3与x轴的交点为C(﹣3,0),∵线段OC将△AOB分成△AOC和△BOC,∴S△AOB =S△AOC+S△BOC=12×3×4+12×3×1=7.5;(3)从图象看,当﹣4<x<0或x>1时,y2>y1.【点睛】本题考查反比例函数与一次函数图象的交点问题,待定系数法求函数解析式,注意掌握此类题目的求解一般都是先把已知点的坐标代入反比例函数表达式求出反比例函数解析式,然后再求一次函数解析式.27.5.7米【分析】由题意可先过点A 作AH CD ⊥于H .在Rt ACH ∆中,可求出CH ,进而CD CH HD CH AB =+=+,再在Rt CED ∆中,求出CE 的长.【详解】解:过点A 作AH CD ⊥,垂足为H ,由题意可知四边形ABDH 为矩形,30CAH ∠=︒,1.5AB DH ∴==,6BD AH ==,在Rt ACH ∆中,tan CH CAH AH∠=,tan CH AH CAH ∴=∠ ,·tan 6tan 306CH AH CAH ∴=∠=︒==(米),1.5DH =Q ,1.5CD ∴=,在Rt CDE ∆中,60CED ∠=︒Q ,sin CD CED CE ∠=,4 5.7sin 60CD CE ∴==+︒(米),答:拉线CE 的长约为5.7米.【点睛】本题考查了解直角三角形的应用—仰角俯角问题.要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.28.(1)152y x =+;(2)1或9.【详解】试题分析:(1)把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,求得k 、b 的值,即可得一次函数的解析式;(2)直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=12x+5-m,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令△=0,即可求得m 的值.试题解析:(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得2582b kb=-+⎧⎪⎨-=⎪-⎩,解得412 bk=⎧⎪⎨=⎪⎩,所以一次函数的表达式为y=12x+5.(2)将直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=12x+5-m.由8152yxy x m⎧=-⎪⎪⎨⎪=+-⎪⎩得,12x2+(5-m)x+8=0.Δ=(5-m)2-4×12×8=0,解得m=1或9.点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.。
湘教版九年级数学上册期中测试卷(及参考答案)

湘教版九年级数学上册期中测试卷(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2的倒数是( )A .2B .12C .12-D .-22.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <3.若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x =-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<4.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 5.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .66.要反映台州市某一周每天的最高气温的变化趋势,宜采用( )A .条形统计图B .扇形统计图C .折线统计图D .频数分布统计图7.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .8.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为 ( )A.180 B.182 C.184 D.1869.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.610.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算:22﹣|1﹣8|+(﹣12)﹣3=_____.2.因式分解:34a a-=____________.3.已知二次函数y=x2,当x>0时,y随x的增大而_____(填“增大”或“减小”).4.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是__________.5.如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为__________(结果保留根号和π).6.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为__________m.三、解答题(本大题共6小题,共72分)1.解分式方程:122 11xx x+= -+2.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.3.如图,在平面直角坐标系xOy中,一次函数152y x=+和2y x=-的图象相交于点A,反比例函数kyx=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数152y x=+的图象与反比例函数kyx=的图象的另一个交点为B,连接OB,求ABO∆的面积.4.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.5.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图①中m的值为;(2)求统计的这组数据的平均数、众数和中位数;(3)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、D5、B6、C7、D8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-72、(2)(2)a a a +-3、增大.4、425、﹣3π6、3三、解答题(本大题共6小题,共72分)1、3x =2、(1)k ≤58;(2)k=﹣1.3、(1)反比例函数的表达式为8y x-=;(2)ABO ∆的面积为15.4、(1)略(2)菱形5、(1)28. (2)平均数是1.52. 众数为1.8. 中位数为1.5. (3)200只.6、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.。
湘教版九年级上册数学期中考试试卷及答案解析

湘教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列各点中,在反比例函数3y x=图象上的是()A .(3,1)B .(-3,1)C .(3,13)D .(13,3)2.已知函数ky x=的图象过点12(,-),则该函数的图象必在()A .第二、三象限B .第二、四象限C .第一、三象限D .第三、四象限3.一元二次方程221x x -=的常数项为()A .-1B .1C .0D .±14.某种商品原价200元,连续两次降价a%后,售价为148元.下列所列方程正确的是A .200(1+a%)2=148B .200(1-a%)2=148C .200(1-2a%)=148D .200(1-a 2%)=1485.下列结论中正确的是()A .两个正方形一定相似B .两个菱形一定相似C .两个等腰梯形一定相似D .两个直角梯形一定相似6.如图,在△ABC 中,DE ∥BC 交AB 于D ,交AC 于E ,错误的结论是()A .AD AEDB EC=B .AB ACAD AE=C .AC ECAB DB=D .AD DEDB BC=7.在Rt △ABC 中,∠C =90°,若BC =1,AB=tanA 的值为()A .55B .255C .12D .28.在Rt △ABC 中,如果各边的长度同时扩大2倍,那么锐角A 的正弦值和余弦值()A .都扩大2倍B .都缩小2倍C .都不变D .不能确定9.的值是()A .B .C .D .10.反比例函数6=y x图象上有三个点112233(,),(,),(,)x y x y x y ,其中1230x x x <<<,则123,,y y y 的大小关系是()A .123y y y <<B .312y y y <<C .213y y y <<D .321y y y <<二、填空题11.在△ABC 中,∠A ,∠B 为锐角,sinA=12,tanB=.则△ABC 的形状为______.12.如果是锐角,且,那么=_______________.13.若α是锐角,4sin cos 3αα+=,则sin cos αα⋅=______.14.若23a b =,那么a a b +的值是___________15.若x ∶y ∶z =3∶4∶7,且2x -y +z =18,则x +2y -z =______.16.反比例函数ky x=的图象经过点(23)-,,则函数的解析式为____________.17.以-3和7为根且二次项系数为1的一元二次方程是______________.18.如图,已知正比例函数与反比例函数交于A (-1,2),B (1,-2)两点,当正比例函数的值大于反比例函数值时,x 的取值范围为____________________.三、解答题19.若关于x 的方程220x x k ++=的一个根是1,则另一个根是?20.计算:(1)3x2+5(2x+1)=0.(2)2sin452cos60tan60︒+︒︒21.已知:如图,在菱形ABCD中,E为BC边上一点,∠AED=∠B.(1)求证:△ABE∽△DEA;(2)若AB=4,求AE•DE的值.22.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,tan A=3,AD=20.求BC的长.23.若关于x的方程2430x x a+-+=有实数根.(1)求a的取值范围;(2)若a为符合条件的最小整数,求此时方程的根24.直线y=x+b与x轴交于点C(4,0),与y轴交于点B,并与双曲线myx=(x<0)交于点A(-1,n).(1)求直线与双曲线的解析式;(2)连接OA,求∠OAB的正弦值;(提示:过O点作OM垂直AC)(3)若点D在x轴的正半轴上,是否存在以点D,C,B构成的三角形与△OAB相似?若存在,求出点D的坐标;若不存在,请说明理由.25.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO 对称,连接DB′,AD.(1)求证:△DOB∽△ACB;(2)若AD平分∠CAB,求线段BD的长;(3)当△AB′D为等腰三角形时,求线段BD的长.26.如图,一次函数y kx b=+与反比例函数6(0)y xx=>的图象交于(),6A m,()3,B n两点.(1)求一次函数的解析式;(2)根据图象直接写出60kx bx+-<的x的取值范围;(3)求AOB的面积.参考答案1.A 【解析】根据反比例函数的性质可得:反比例函数图像上的点满足xy=3.【详解】解:A 、∵3×1=3,∴此点在反比例函数的图象上,故A 正确;B 、∵(-3)×1=-3≠3,∴此点不在反比例函数的图象上,故B 错误;C 、∵13=133垂,∴此点不在反比例函数的图象上,故C 错误;D 、∵13=133,∴此点不在反比例函数的图象上,故D 错误;故选A.2.B 【解析】试题分析:对于反比例函数y=,当k>0时,函数图像在一、三象限;当k<0时,函数图像在二、四象限.根据题意可得:k=-2.考点:反比例函数的性质3.A 【解析】试题分析:因为一元二次方程221x x -=可化为2210x x --=,所以常数项为-1,故选A .考点:一元二次方程的常数项4.B 【分析】根据题意可得出两次降价后的售价为200(1-a%)2,列方程即可.【详解】解:根据题意可得出两次降价后的售价为200(1-a%)2,∴200(1-a%)2=148故选:B .【点睛】本题主要考查增长率问题,找准题目中的等量关系是解此题的关键.5.A 【解析】试题分析:A 、两个正方形角都是直角一定相等,四条边都相等一定成比例,所以一定相似,故正确;B 、两个菱形的边成比例,但角不一定相等,所以不一定相似,故错误;C 、两个等腰梯形的边不一定成比例,角不一定相等,所以不一定相似,故错误;D 、两个直角梯形的两个角都是直角,但另两个角不一定相等,所以不一定相似,故错误.故选A考点:相似图形6.D 【分析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DE ∥BC ,可得△ADE ∽△ABC ,并可得:AD AEDB EC =,AB AC AD AE =,AC EC AB DB=,故A ,B ,C 正确;D 错误;故选D .【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质.7.C 【解析】试题分析:因为在Rt △ABC 中,∠C =90°,BC =1,AB=,所以AC=2==,所以tanA=12BC AC =,故选:C .考点:锐角三角函数.8.C 【解析】∵Rt △ABC 中,若各边的长度同时都扩大2倍,∴扩大后形成的三角形与原三角形相似,∴锐角A 的正弦与余弦的比值不变,故选C .【点睛】本题产要考查相似及锐角三角函数,解答此题的关键是熟知三角函数值是一个比值,与角的边长无关.9.A 【解析】试题分析:因为113=-,所以选:A .考点:1.特殊角的三角函数值2.二次根式.10.C 【解析】试题分析:∵反比例函数6=y x中,k=6>0,∴此反比例函数图象的两个分支在一、三象限;在每一象限,y 随x 的增大而减小,,∵1x <2x <0,∴点(1x ,1y ),(2x ,2y )在第三象限,y 随x 的增大而减小,0>1y >2y ,又∵3x >0,∴点(3x ,3y )在第一象限,3y >0;∴213y y y <<,故选:C .考点:反比例函数图像的性质.11.等腰三角形【解析】试题分析:因为∠A ,∠B 为锐角,且sinA=12,tanB=,所以∠A=30°,∠B=30°,所以∠A=∠B ,所以△ABC 是等腰三角形.考点:特殊角的三角函数值.12.45︒【解析】试题分析:因为是锐角,且,所以=45°.考点:特殊角的三角函数值.13.【解析】试题分析:因为4sin cos 3αα+=,且22sin cos 1αα+=,所以22216(sin cos )sin cos 2sin cos 12sin cos 9αααααααα+=++⋅=+⋅=,所以sin cos αα⋅=.考点:三角函数的性质.14.25【分析】根据23a b =,得出b=32a ,再代入a a b +进行计算即可.【详解】解:∵23a b =∴b=32a,∴aa b +=3a 2aa +=25,故答案为:25.【点睛】本题考查了比例的基本性质,熟练掌握代入化简是解题的关键.15.8【解析】试题分析:设x=3k ,因为x ∶y ∶z =3∶4∶7,所以y=4k ,z=7k ,又2x -y +z =18,所以6k-4k+7k=18,所以k=2,所以x +2y -z =3k+8k-7k=4k=8.考点:1.比例2.方程.16.6y x=-【解析】试题分析:因为反比例函数k y x =的图象经过点(23)-,,所以把点(23)-,代入ky x=得:k=-6,所以函数的解析式为6y x=-.考点:反比例函数17.24210x x --=【详解】试题分析:∵-3+7=4,-3×7=-21,∴以-3和7为根且二次项系数为1的一元二次方程为24210x x --=.考点:根与系数的关系.18.x <-1或0<x <1【解析】试题分析:由图可知,x <-1或0<x <1时,正比例函数的值大于反比例函数值.故答案为x <-1或0<x <1.考点:函数图象与不等式的关系.19.-3【解析】试题分析:设方程220x x k ++=的另一个根是x ,由根与系数的关系可得:x+1=-2,所以x=-3,所以另一个根是-3.考点:根与系数的关系20.(1)12x ==(2)【详解】试题分析:(1)先把方程化为一般形式,然后用配方法或公式法解方程即可;(2)先把各个特殊角的三角函数值代入,然后加减计算即可.试题解析:(1)3x 2+5(2x +1)=0,3x 2+10x +5=0,因为10043540=-⨯⨯= ,所以101052363x --±-±===⨯,所以12x 5533--==;(2)2sin 452cos 60tan 60︒+︒︒=122133422⨯--+.考点:1.解一元二次方程2.特殊角的三角函数值21.(1)见解析;(2)16【解析】试题分析:(1)根据菱形的对边平行,可得出∠1=∠2,结合∠AED=∠B 即可证明两三角形都得相似.(2)根据(1)的结论可得出AE ABDA DE=,进而代入可得出AE•DE的值.试题解析:(1)如图,∵四边形ABCD是菱形,∴AD∥BC.∴∠1=∠2.又∵∠B=∠AED,∴△ABE∽△DEA.(2)∵△ABE∽△DEA,∴AE ABDA DE=.∴AE•DE=AB•DA.∵四边形ABCD是菱形,AB=4,∴AB=DA=4.∴AE•DE=AB2=16.考点:1.菱形的性质;2.相似三角形的判定和性质.22.【解析】试题分析:首先利用三角函数值求出∠A=30°,进而得到∠A=∠ABD=∠CBD=30°,然后求出线段DC、AC的长,然后利用tan A=BCAC即可求出BC的长.试题解析:∵tan A,∴∠A=30°,∴∠ABC=60°.又BD平分∠ABC,∴∠A=∠ABD=∠CBD=30°,∴AD=BD=20.∴DC=10,即AC=AD+DC=30,又tan A=BC AC,∴BC=AC·tan A=.考点:解直角三角形23.(1)a≥1-(2)a=1-,122x x==-.【解析】试题分析:(1)、根据方程有实数根则△≥0求出a的取值范围;(2)、首先求出a的值,然后得出一元二次方程,从而求出方程的解.试题解析:(1)、△=4+4a;∵方程由实数根,∴4+4a≥0,∴a≥-1;(2)、当a为符合条件的最小整数时,a=-1,原方程为:2440x x++=,其解为:122x x==-考点:(1)、一元二次方程根的判别式;(2)、解一元二次方程.24.(1)直线的解析式是:y=x-4;双曲线的解析式是:y=5x ;(2)13;(3)存在,理由见解析.【解析】试题分析:(1)把点C 的坐标代入y=x+b ,求出b 的值,得出直线的解析式;把点A (-1,n )代入y=x-4得到n 的值,求出A 点的坐标,再把将A 点代入m y x =(x <0)中,求出m 的值,从而得出双曲线的解析式;(2)先过点O 作OM ⊥AC 于点M ,根据B 点经过y 轴,求出B 点的坐标,根据勾股定理求出AO 的值,根据OC=OB=4,得出△OCB 是等腰三角形,求出∠OBC=∠OCB 的度数,再在△OMB 中,根据正弦定理求出OM 的值,从而得出∠OAB 的正弦值.(3)先过点A 作AN ⊥y 轴,垂足为点N ,根据AN=1,BN=1,求出AB 的值,根据OB=OC=4,求出BC 的值,再根据∠OBC=∠OCB=45°,得出∠OBA=∠BCD ,从而得出△OBA ∽△BCD 或△OBA ∽△DCB ,最后根据OB BA CB CD =,再代入求出CD 的长,即可得出答案.试题解析:(1)∵直线y=x+b 与x 轴交于点C (4,0),∴把点C (4,0)代入y=x+b 得:b=-4,∴直线的解析式是:y=x-4;∵直线也过A 点,∴把A 点代入y=x-4得到:n="-5"∴A (-1,-5),把将A 点代入m y x=(x <0)得:m=5,∴双曲线的解析式是:5y x=;(2)过点O 作OM ⊥AC 于点M ,∵B 点经过y 轴,∴x=0,∴0-4=y ,∴y=-4,∴B (0,-4),=∵OC=OB=4,∴△OCB 是等腰三角形,∴∠OBC=∠OCB=45°,∴在△OMB 中sin45°=4OM OM OB =,∴∴在△AOM 中,sin ∠OAB=OM OA =(3)存在;过点A 作AN ⊥y 轴,垂足为点N ,则AN=1,BN=1,则,∵OB=OC=4,∴BC=∠OBC=∠OCB=45°,∴∠OBA=∠BCD=135°,∴△OBA ∽△BCD 或△OBA ∽△DCB ,∴OB BA CB CD=,2CD =或4CD =,∴CD=2或CD=16,∴点D 的坐标是(6,0)或(20,0).考点:反比例函数综合题.25.(1)证明见试题解析;(2)5;(3)5013.【详解】试题分析:(1)公共角和直角两个角相等,所以相似.(2)由(1)可得三角形相似比,设BD =x ,CD ,BD ,BO 用x 表示出来,所以可得BD 长.(3)同(2)原理,BD =B′D =x ,AB′,B′O ,BO 用x 表示,利用等腰三角形求BD 长.试题解析:(1)证明:∵DO ⊥AB ,∴∠DOB =90°,∴∠ACB =∠DOB =90°,又∵∠B =∠B .∴△DOB ∽△ACB .(2)∵AD 平分∠CAB ,DC ⊥AC,DO ⊥AB,∴DO =DC ,在Rt △ABC 中,AC =6,BC =,8,∴AB =10,∵△DOB ∽△ACB,∴DO ∶BO ∶BD =AC ∶BC ∶AB =3∶4∶5,设BD =x ,则DO =DC =35x ,BO =45x ,∵CD +BD =8,∴35x +x =8,解得x =,5,即:BD =5.(3)∵点B 与点B′关于直线DO 对称,∴∠B =∠OB′D ,BO =B′O =45x ,BD =B′D =x ,∵∠B 为锐角,∴∠OB′D 也为锐角,∴∠AB′D 为钝角,∴当△AB′D 是等腰三角形时,AB′=DB′,∵AB′+B′O +BO =10,∴x +45x +45x =10,解得x =5013,即BD =5013,∴当△AB′D 为等腰三角形时,BD =5013.点睛:角平分线问题的辅助线添加及其解题模型.①垂两边:如图(1),已知BP 平分ABC ∠,过点P 作PA AB ⊥,PC BC ⊥,则PA PC =.②截两边:如图(2),已知BP 平分MBN ∠,点A BM 上,在BN 上截取BC BA =,则ABP ∆≌CBP ∆.③角平分线+平行线→等腰三角形:如图(3),已知BP 平分ABC ∠,//PA AC ,则AB AP =;如图(4),已知BP 平分ABC ∠,//EF PB ,则BE BF =.(1)(2)(3)(4)④三线合一(利用角平分线+垂线→等腰三角形):如图(5),已知AD 平分BAC ∠,且AD BC ⊥,则AB AC =,BD CD =.(5)26.(1)28y x =-+;(2)当01x <<或3x >时,60kx b x +-<;(3)8【分析】(1)把A ,B 两点的坐标分别代入6y x=中,求得m ,n 的值,即可确定A ,B 两点的坐标,再利用待定系数法求得一次函数的解析式;(2)将不等式60kx b x+-<转化为6kx b x +<,找出图象中一次函数图象低于反比例函数图象部分对应的x 的取值范围;(3)设一次函数图象分别与x 轴和y 轴交于点D 、C ,C 、D 的坐标都可以求得,则S S S S AOB COD COA BOD =-- ,求解即可.【详解】解:(1)分别把()(),6,3,A m B n 代入6(0)y x x=>得66,36m n ==,解得1,2m n ==,所以A 点坐标为()1,6,B 点坐标为()3,2,分别把()()1,6,3,2A B 代入y kx b =+得632k b k b +=⎧⎨+=⎩,解得28k b =-⎧⎨=⎩,所以一次函数解析式为28y x =-+;(2)60kx b x+-<,即6kx b x +<,即要找一次函数图象低于反比例函数图象的部分对应的x 的取值范围,所以当01x <<或3x >时,60kx b x +-<;(3)一次函数图象分别与x 轴和y 轴交于点D 、C ,如图,当0x =时,288y x =-+=,则C 点坐标为()0,8,当0y =时,280x -+=,解得4x =,则D 点坐标为()4,0,所以S S S S AOB COD COA BOD=-- 111488142222=⨯⨯-⨯⨯-⨯⨯8=.【点睛】本题主要考查一次函数和反比例函数交点的问题,熟练掌握待定系数法求函数解析式、反比例函数图象上点的坐标特征、割补法求三角形的面积是解题的关键.。
湘教版九年级上册数学期中考试试卷及答案详解
湘教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.反比例函数7y x=的图象分布在()A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限2.若()2223a a x --=是关于x 的一元二次方程,则a 的值是()A .0B .2C .-2D .±23.若0ab <,则正比例函数y ax =与反比例函数by x=在同一坐标系中的大致图象可能是A .B .C .D .4.如右图:直线3y x =-+与y 轴交于点A ,与反比例函数ky x=的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =3BO ,则反比例函数的表达式为()A .4y x=B .4y x=-C .2y =D .1y x=-5.若关于x 的一元二次方程22(1)5320m x x m m -++-+=有一个根为0,则m 的值()A .0B .1或2C .1D .26.一元二次方程x 2+kx ﹣3=0的一个根是x =1,则k 的值为()A .2B .﹣2C .3D .﹣37.如图,在宽度为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,要使草坪的面积为540m 2,求道路的宽.如果设小路宽为xm ,根据题意,所列方程正确的是()A.(20+x)(32﹣x)=540B.(20﹣x)(32﹣x)=100C.(20﹣x)(32﹣x)=540D.(20+x)(32﹣x)=5408.若相似△ABC与△DEF的相似比为1:3,则△ABC与△DEF的面积比为()A.1:3B.1:9C.3:1D.139.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是()A.B.C.D.10.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m二、填空题11.如图,已知点A在反比例函数图象上,AM⊥x轴于点M,且△AOM的面积为1,则反比例函数的解析式为_______.12.若点A (-2,-2)在反比例函数ky x=的图象上,则当函数值y ≥-2时,自变量x 的取值范围是_________________13.一元二次方程x 2+5x +6=0的根是_______________14.若关于x 的一元二次方程x 2+2x +a =0有两个不同的实数根,则a 应满足的条件_________________15.如图,两个反比例函数4y x =和2y x=在第一象限内的图象分别是C 1和C 2,设点P 在C 1上,PA ⊥x 轴于点A ,交C 2于点B ,则△POB 的面积为_____.16.如图,点E 在线段AB 上,CA ⊥AB 于点A ,DB ⊥AB 于点B ,AC=1,AB=5,EB=2,点P 是射线BD 上的一个动点,则当BP=_____时,△CEA 与△EPB 相似.三、解答题17.解下列方程:(1)2x 2-x =0(2)x 2-4x =4(3)6x +9=2x 2(4)4y 2-4y -2=018.已知等腰三角形的一边长为3,它的其它两边长恰好是关于x 的一元二次方程x 2-8x+m=0的两个实数根,求m 的值.19.新华商场为迎接家电下乡活动销售某种冰箱,每台进价为2500元,市场调研表明;当销售价定为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?20.如图,在△ABC 中,AB =8cm ,BC =16cm ,点P 从点A 开始沿边AB 向点B 以2cm/s 的速度移动,点Q 从点B 开始沿边BC 向点C 以4cm/s 的速度移动,如果点P 、Q 分别从点A 、B 同时出发,经几秒钟△PBQ 与△ABC 相似?试说明理由.21.如图,BD 、AC 相交于点P ,连接BC 、AD ,且∠1=∠2,求证:△ADP ∽△BCP .22.如图,D 为△ABC 内一点,E 为△ABC 外一点,且满足AB BC ACAD DE AE==,求证:△ABD ∽△ACE .23.(1)如图,过反比例函数(0)ky x x=>图象上任意一点P (x ,y ),分别向x 轴与y 轴作垂线,垂线段分别为PA 、PB ,证明:OAPB S k =矩形,12OAP S k ∆=,12OPB S k ∆=.(2)如图,反比例函数(0)k y x x=>的图象经过矩形OABC 对角线的交点M ,分别与AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,求k 的值.24.反比例函数ky x=在第一象限上有两点A ,B .(1)如图1,AM ⊥y 轴于M ,BN ⊥x 轴于N ,求证:△AMO 的面积与△BNO 面积相等;(2)如图2,若点A(2,m),B(n,2)且△AOB 的面积为16,求k 值.参考答案1.B 【分析】直接根据反比例函数的性质即可得出结论.【详解】解:∵反比例函数7y x=中,70k =>,∴此函数图象的两个分支分别位于第一、三象限.故选B .【点睛】本题考查的是反比例函数的性质,熟知反比例函数的图象与系数的关系是解题的关键.2.C 【详解】由题意得:222,20a a -=-≠,解得:a=-2.故选C.3.B 【分析】根据ab <0及正比例函数与反比例函数图象的特点,可以从a >0,b <0和a <0,b >0两方面分类讨论得出答案.【详解】解:∵ab <0,∴分两种情况:(1)当a >0,b <0时,正比例函数y ax =的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a <0,b >0时,正比例函数y ax =的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B 符合.故选:B .【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.4.B 【分析】先求出点A 的坐标,然后表示出AO 、BO 的长度,根据AO =3BO ,求出点C 的横坐标,代入直线解析式求出纵坐标,用待定系数法求出反比例函数解析式.【详解】解:∵直线y=−x+3与y轴交于点A,∴A(0,3),即OA=3,∵AO=3BO,∴OB=1,∴点C的横坐标为−1,∵点C在直线y=−x+3上,∴点C(−1,4),∴反比例函数的解析式为:4 yx =-.故选:B.【点睛】本题考查的是反比例函数与一次函数的交点问题,根据题意确定点C的横坐标并求出纵坐标是解题的关键.5.D【分析】把x=0代入已知方程得到关于m的一元二次方程,通过解方程求得m的值;注意二次项系数不为零,即m-1≠0.【详解】解:根据题意,将x=0代入方程,得:m2-3m+2=0,解得:m=1或m=2,又m-1≠0,即m≠1,∴m=2,故选:D.【点睛】本题考查了一元二次方程的解定义和一元二次方程的定义.注意:本题中所求得的m的值必须满足:m-1≠0这一条件.6.A【详解】将1x =代入方程230x kx +-=有130k +-=,解得2k =,故选A 7.C 【分析】设小路宽为x 米,利用平移把不规则的图形变为规则图形,如此一来,所有草坪面积之和就变为了(32﹣x )(20﹣x )米2,进而即可列出方程,求出答案.【详解】解:利用平移,原图可转化为右图,设小路宽为x 米,根据题意得:(20﹣x )(32﹣x )=540.故选:C .【点睛】本题考查由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案.另外还要注意解的合理性,从而确定取舍.8.B 【分析】由相似△ABC 与△DEF 的相似比为1:3,根据相似三角形面积的比等于相似比的平方,即可求得△ABC 与△DEF 的面积比.【详解】相似△ABC 与△DEF 的相似比为1:3∴△ABC 与△DEF 的面积比为1:9故答案为B 9.B 【详解】根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故本选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故本选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故本选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故本选项错误.故选B.10.B【详解】∵AB⊥BC,CD⊥BC,∴AB∥DC.∴△EAB∽△EDC.∴CE CD BE AB=.又∵BE=20m,EC=10m,CD=20m,∴102020AB=,解得:AB=40(m).故选B.11.2 yx =-.【解析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=12|k|,又反比例函数的图象在二、四象限,∴k<0.则由1=12|k|得k=-2.所以这个反比例函数的解析式是2 yx =-.12.x≤-2或x>0【分析】先将点A的坐标代入反比例函数的解析式即可求出k的值,然后画出函数图象,利用反比例函数的性质及数形结合的思想即可求出x的取值范围..【详解】解:∵点A(−2,−2)在反比例函数kyx=的图象上,∴k=(−2)×(−2)=4,∴反比例函数的解析式为4y x=,其图象如图所示:由函数图象可知,在第一象限,函数值y 都是正数,所以x >0时,y≥−2;在第三象限,函数值y 随x 的增大而减小,所以x≤−2时,y≥−2,综上所述,函数值y≥−2时,自变量x 的取值范围是x≤−2或x >0.故答案为:x≤−2或x >0.【点睛】本题考查了待定系数法求反比例函数的解析式,反比例函数的性质,以及由反比例函数值求自变量,本题关键在于要分两个象限求解x 的取值范围.13.122,3x x =-=-.【分析】把一元二次方程x 2+5x +6=0分解因式得到()()230x x ++=,进而推出20,30x x +=+=,求出方程的解即可.【详解】解:x 2+5x +6=0,分解因式得:()()230x x ++=,即:20,30x x +=+=,解方程得:122,3x x =-=-,故答案为:122,3x x =-=-.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.14.a <1【分析】若一元二次方程x 2+2x +a =0有两个不同的实数根,则根的判别式240b ac =-> ,建立关于a 的不等式,求出a 的取值范围.【详解】解:∵方程有两个不同的实数根,a =1,b =2,c =a ,∴2242410b ac a =-=-⨯⨯> ,解得:1a <,故答案为:1a <.【点睛】本题考查了一元二次方程()200++=≠ax bx c a 的根的判别式24b ac =-△:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.1.【解析】∵PA ⊥x 轴于点A ,交C 2于点B ,∴S △POA =12×4=2,S △BOA =12×2=1,∴S △POB =S △POA ﹣S △BOA =2﹣1=1.16.23或6.【分析】先根据已知条件得出AE=3,再分△CAE ∽△PBE 和△CAE ∽△EBP 两种情况,利用相似三角形的对应边成比例分别求解可得.【详解】解:∵CA ⊥AB ,DB ⊥AB ,∴∠A=∠B=90°,又∵AB=5,EB=2,∴AE=AB ﹣EB=3,①当△CAE ∽△PBE 时,CA AE PB BE =,即132PB =,解得:PB=23;②当△CAE ∽△EBP 时,CA AE BE BP =,即13=2BP,解得:BP=6;综上,当BP=23或6时,△CEA 与△EPB 相似.故答案为:23或6.【点睛】本题主要考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判定与性质及分类讨论思想的运用.17.(1)x1=0,x 2=12;(2)x 1,x 2;(3)12x x ==12y y ==【分析】(1)把方程左边提公因式分解因式可得()210x x -=,进而可得两个一元一次方程x =0或2x -1=0,再解即可;(2)方程两边同时加上4,可得(x -2)2=8,再开方即可;(3)首先移项6x +9=2x 2,然后将二次项系数化为1,配方可得(x -32)2=274,再开方即可求;(4)先计算出b 2-4ac ,再利用求根公式即可解得.【详解】(1)解:2x 2-x =0,x (2x -1)=0,x =0或2x -1=0,则x 1=0,x 2=12.(2)解:方程两边同时+4,得x 2-4x +4=4+4,(x -2)2=8,根据平方根的意义,得x -2=±2∴x 1,x 2(3)移项,得2x 2-6x -9=0.将二次项系数化为1,得x 2-3x -92=0.配方,得x 2-3x +(32)2-(32)2-92=0,(x -32)2=274.根据平方根的意义,得x -32=±2,∴x 1=32+,x 2=32-.(4)4y 2-4y -2=0.∵a =4,b =-4,c =-2,∴b 2-4ac =(-4)2-4×4×(-2)=48,∴y =424±⨯=12,∴y 1y 2【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.18.m=15或16.【分析】由于等腰三角形的一边长3为底或腰不能确定,故应分两种情况进行讨论:①当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出m 的值,进而求出方程的另一根,再根据三角形的三边关系判断出的值是否符合题意即可;②当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出m 的值,再求出方程的两个根进行判断即可.【详解】因为三角形是等腰三角形,所以3可能是腰,或者两腰都是方程的根.分两种情况:①3是腰时,3是方程的一个根,代入得出m=15,此时另一根为5,三角形存在;②两腰都是方程的根时,即方程有两个相等根,即左边是完全平方公式,则m=16,此时两根都为4,三角形也存在,所以m=15或16.【点睛】本题考查的是等腰三角形的性质,一元二次方程根的判别式及三角形的三边关系,在解答时要注意分类讨论,不要漏解.19.2750元.【详解】试题分析:设每台冰箱降价x 元,根据题目中的等量关系“每台冰箱的利润×销售的数量=总利润”可列方程(2900-x-2500)(8+4×)=5000,解得x 即可.试题解析:解:设每台冰箱降价x元,根据题意,得(2900-x-2500)(8+4×)=5000解这个方程,得x1=x2=150定价=2900-150=2750(元)因此,每台冰箱的定价应为2750元.考点:一元二次方程的应用.20.经2或0.8秒钟△PBQ与△ABC相似.【解析】【分析】首先设经x秒钟△PBQ与△ABC相似,由题意可得AP=2xcm,BQ=4xcm,BP=AB﹣AP=(8﹣2x)cm,又由∠B是公共角,分别从BP BQBA BC=与BP BQBC BA=分析,即可求得答案.【详解】解:设经x秒钟△PBQ与△ABC相似,则AP=2xcm,BQ=4xcm,∵AB=8cm,BC=16cm,∴BP=AB﹣AP=(8﹣2x)cm,∵∠B是公共角,∵①当BP BQBA BC=,即824816x x-=时,△PBQ∽△ABC,解得:x=2;②当BP BQBC BA=,即824168x x-=时,△QBP∽△ABC,解得:x=0.8,∴经2或0.8秒钟△PBQ与△ABC相似.【点睛】此题考查了相似三角形的判定.此题难度适中,属于动点型题目,注意掌握数形结合思想、分类讨论思想与方程思想的应用.21.见解析【分析】根据两角对应相等,两三角形相似的判定定理得解.【详解】证明:∵∠1=∠2,∠DPA =∠CPB ,∴△ADP ∽△BCP .【点睛】本题考查相似三角形的判定,熟练掌握三角形相似的各种判定方法是解题关键.22.见解析.【分析】根据已知条件证明△ADE ∽△ABC ,得到∠DAB=∠EAC ,即可得到结果;【详解】∵AB BC AC AD DE AE==,∴△ADE ∽△ABC ,∴∠DAE=∠BAC ,∴∠DAB=∠EAC ,∵AB AD AC AE =,∴△ABD ∽△ACE .【点睛】本题主要考查了相似三角形的判定与性质,准确判断是解题的关键.23.(1)证明见解析;(2)3.【分析】(1)由矩形面积和三角形面积公式计算即可提证;(2)本题可从反比例函数图象上的点E 、M 、D 入手,分别找出△OCE 、△OAD 、矩形OABC 的面积与|k|的关系,列出等式求出k 值.【详解】(1)∵P (x ,y )(x >0,y >0)∴PB=x ,PA=y∵四边形PBOA 是矩形∴OB=PA=x ,OA=PB=y∴OAPB S PA PB x y k矩形=⨯=⨯=111222OAP S OA PA x y k ∆=⨯=⨯=111222OPB S OB PB x y k ∆=⨯=⨯=.(2)由题意得:E 、M 、D 位于反比例函数图象上,则,S △OCE =2k,S △OAD =2k,过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S ONMG =|k|,又∵M 为矩形ABCO 对角线的交点,∴S 矩形ABCO =4S ONMG =4|k|,由于函数图象在第一象限,k >0,则9=422k k k ++解得:k=3.24.(1)见解析;(2)12.【分析】(1)根据反比例函数的k 值的含义即可证明,(2)过点A 作AC ⊥x 轴,则AM=2,AC=m ,BN=2,CN=n-2,根据S △AOB =S 四边形ACOM +S 梯形ACBN -S △AOM -S △BON ,列出其面积的表示式子又m=n,即可化简得21182m =,得m=6,故求出k 值【详解】(1)设某点A(x 1,y 1),B(x 2,y 2)∵A ,B 都在反比例函数k y x=上,∴x 1y 1=x 2y 2,∴S △AMO=12x 1y 1=S △BNO=12x 2y 2即△AMO 的面积与△BNO 面积相等;(2)过点A 作AC ⊥x 轴,则AM=2,AC=m ,BN=2,CN=n-2,S △AOB =S 四边形ACOM +S 梯形ACBN -S △AOM -S △BON ,即16=2m+12(2+m)(n-2)-12×2×2m∵m=n ∴可化简为21182m ,∴m=6,(-6舍去)∴k=2m=12.【点睛】此题主要考查反比例函数的图像与性质解题的关键是根据题意作出辅助线进行求解.。
湘教版九年级上册数学期中考试试题及答案
湘教版九年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.已知0432≠==c b a ,则c b a +的值为( )A.54B.45C.2D.212.下列结论中正确的是( )A .两个正方形一定相似B .两个菱形一定相似C .两个等腰梯形一定相似D .两个直角梯形一定相似3.下列条件不能判定△ABC 与△A′B′C′相似的是( )A.∠C=∠C′=90° ∠B=∠A′=50°B.∠A=∠A′=90° ''''B A C B AB BC =C.∠A=∠A′ ''''C B BC BA AB = D.''''''B A AC C A BC C B AB == 4.如果两个相似三角形对应边的比是3:4,那么它们的对应高的比是( )A.9:16B.3:2C.3:4D.3:75.已知,如图,DE ∥BC ,EF ∥AB ,则下列结论:①FC BF EC AE = ②BC AB BF AD = ③EF ABDE BC = ④CE CF EA BF = 其中正确的比例式的个数是( )A.4个B.3个C.2个D.1个6.在△ABC 与△DEF 中,有下列条件:①AB:DE=BC:EF ②BC:EF=AC:DF ③∠B=∠E ④∠C=∠F.如果从中任取两个条件组成一组,那么能判断△ABC 与△DEF 相似的共有( )A.2组B.3组C.4组D.5组7.三角形三边之比3:5:7,与它相似的三角形最长边是21cm ,另两边之和是( )。
A.15cmB.18cmC.21cmD.24cm8.在平面直角坐标系中,已知A (6,3),B (6,0)两点,以坐标原点O 为位似中心,位似比为,把线段AB 缩小到线段A ′B ′,则A ′B ′的长度等于( )A .1B .2C .3D .69.在比例尺为1:m 的某市地图上,规划出长a 厘米,宽b 厘米的矩形工业园区,该园区的实际面积是( )米2 A.104m ab B.1042m ab C.abm104 D.abm 241010.如图,P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过P 点作直线截△ABC ,使截得的三角形与△ABC 相似,满足这样条件的直线共有( )。
湘教版九年级上册数学期中考试试卷附答案解析
湘教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.线段a 、b 、c 、d 是成比例线段,a=4、b=2、c=2,则d 的长为( )A .1B .2C .3D .42.下列说法正确的是( )A .方程ax 2+bx +c =0是关于x 的一元二次方程B .方程3x 2=4的常数项是4C .若一元二次方程的常数项为0,则0必是它的一个根D .用配方法解一元二次方程y 2﹣2y ﹣2019=0,可化为(y ﹣1)2=20183.已知m 是方程220x x --=的一个根,则代数式()23m m -+=A .2-B .1C .0D .5 4.a 、b 是实数,点A (2,a )、B (3,b )在反比例函数y=﹣2x的图象上,则( ) A .a <b <0 B .b <a <0 C .a <0<b D .b <0<a 5.如图,AD ∥BE ∥CF ,直线m ,n 与这三条平行线分别交于点A 、B 、C 和点D 、E 、F ,已知AB =5,BC =10,DE =4,则DF 的长为( )A .12.5B .12C .8D .46.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( )A .50(1+x )²=182B .50+50(1+x )+50(1+x )²=182C .50(1+2x)=182D .50+50(1+x)+550(1+x )²=182 7.已知A 、B 两地的实际距离AB=5km ,画在图上的距离=2cm ,则该地图的比例尺为( ) A .2:5 B .1:2500 C .1:250000 D .250000:1 8.两地的距离是500米,地图上的距离为10厘米,则这张地图的比例尺为( )A.1:50 B.1:500 C.1:5000 D.1:500009.若点(﹣2,y1)、(﹣1,y2)和(1,y3)分别在反比例函数y=﹣21kx+的图象上,则下列判断中正确的是()A.y1<y2<y3B.y3<y1<y2C.y2<y3<y1D.y3<y2<y110.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2 C.x(x﹣1)=1035 D.2x(x+1)=1035二、填空题11.方程x2=9x的解是______.12.关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是_______.13.如图,点P是反比例函数图象上的一点,过点P向x轴作垂线,垂足为M,连结PO,若阴影部分面积为6,则这个反比例函数的关系式是________.14.若反比例函数()251my m x-=+的图象在第二、四象限,则m=________.15.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),AB=点A在y轴上,反比例函数经过点B,求反比例函数解析式______.16.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)三、解答题17.用适当的方法解方程:(1)22350x x +-= (2)()()22312x x +=-18.阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a .根据该材料解题: 已知x 1、x 2是方程2x 2+6x +3=0的两实数根.(1)求:2212x x + (2)2112x x x x +19.蓄电池的电压为定值,使用此电源时,电流I (A )是电阻R (Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当R =10Ω时,求电流I (A ).20.如图,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE BC ∥,EF AB ∥,且AD :DB =3:5,求CF CB.21.若234x y z ==,且x +2y +z =36,分别求x 、y 、z 的值.22.如图,直线y 1=3x ﹣5与反比例函数y 2=1k x-的图象相交A (2,m ),B (n ,﹣6)两点,连接OA ,OB .(1)求k 和n 的值;(2)求△AOB 的面积;(3)直接写出y 1> y 2时自变量x 的取值范围.23.某市百货商店服装部在销售中发现“米奇”童装平均每天可售出20件,每件获利40元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价1元,则平均每天可多售出2件,要想平均每天在销售这种童装上获利1200元,那么每件童装应降价多少元?24.已知关于x 的方程x 2﹣(2k+1)x+4(k ﹣12)=0(1)求证:无论k 取何值,这个方程总有实数根;(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.25.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y=kx的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y=kx的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.参考答案1.A【解析】试题分析:根据成比例线段的概念,得a:b=c:d,再根据比例的基本性质,可求得d的值.解:∵a、b、c、d是成比例线段,∴a:b=c:d,即4:2=2:d,∴d=1;故选A.考点:比例线段.2.C【分析】根据一元二次方程的概念,方程的解的概念以及配方法解一元二次方程的一般步骤对选项进行判断即可.【详解】解:A、当a=0时,此方程不是一元二次方程,故此选项错误;B、化为一般形式为3x2-4=0,所以常数项是-4,故此选项错误;C、一元二次方程常数项为0时,方程为ax2+bx=0(a≠0),当x=0时,左边=右边,所以0必是此方程的一个根,故此选项正确;D、y2﹣2y﹣2019=0,配方得(y﹣1)2=2020,故此选项错误.故选C.【点睛】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.D【详解】∵m是方程220x x--=的一个根,∴220m m--=,即22m m-=,∴23235m m-+=+=.故选D.4.A【详解】解:∵2yx=-,∴反比例函数2yx=-的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数2yx=-的图象上,∴a<b<0,故选A .5.B【分析】根据平行线分线段成比例定理得到比例式,代入已知数据计算即可.【详解】解:∵AD ∥BE ∥CF , ∴AB DE BC EF =, 即5410EF=, 解得EF =8,∴DF =DE +EF=4+8=12.故选:B .【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、列出比例式是解题的关键. 6.B【分析】先根据平均每月的增长率求出该厂五.六月份生产的零件数量,再根据“第二季度共生产零件182万个”列出方程即可.【详解】由题意得:该厂五、六月份生产的零件数量分别为50(1)x +万个、250(1)x +万个 则25050(1)50(1)182x x ++++=故选:B .【点睛】本题考查了一元二次方程的实际应用,理解题意,正确求出该厂五、六月份生产的零件数量是解题关键.7.C【解析】∵5千米=500000厘米,∴比例尺=2:500000=1:250000;故选C.8.C【解析】【分析】根据“比例尺=图上距离:实际距离”求解即可.【详解】500米=50000厘米;10:50000=1:5000,故选C .【点睛】本题考查了比例的知识,解题的关键是了解比例尺的求法,难度不大.9.B【分析】先根据反比例函数中,k 2+1>0,可知-( k 2+1)<0,判断出函数图像所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】解:∵反比例函数的,-( k 2+1)<0,∴函数图像的两个分支分别位于第二、四象限,且在每一象限内y 随x 的增大而增大. ∵-2<-1<0,∴点()12,y -、()21,y -位于第二象限,且在第二象限内y 随x 的增大而增大,∴y 2>y 1>0,又∵1>0,∴点()31,y 位于第四象限,∴y 3<0,∴y 3<y 1<y 2.故选择B.【点睛】本题考查的是反比例函数图像上的点的坐标特点,熟知反比例函数图像上各点坐标一定适合此函数的解析式是解题的关键.10.C【解析】∵全班有x 名同学,∴每名同学要送出(x ﹣1)张;又∵是互送照片,∴总共送的张数应该是x (x ﹣1)=1035.故选:C .11.10x =,29x =【分析】方程x 2=9x 移项,得x 2-9x =0,再运用因式分解法求出方程的解即可.【详解】解:移项,得x 2-9x =0,x (x -9)=0,所以x =0或x -9=0,所以x 1=0,x 2=9.故答案为x 1=0,x 2=9.【点睛】本题考查了一元二次方程的解法—因式分解法,将方程转化为一般形式是解决此题的关键.12.k <2且k≠1【详解】试题解析:∵关于x 的一元二次方程(k-1)x 2-2x+1=0有两个不相等的实数根, ∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k <2且k≠1.考点:1.根的判别式;2.一元二次方程的定义.13.12y x=-【解析】【分析】根据反比例函数y=kx(k≠0)系数k的几何意义得到12|k|=6,然后去绝对值去掉满足条件的k的值,从而得到反比例函数解析式.【详解】∵过点P向x轴作垂线,垂足为M,∴S△OPM=12|k|,∴12|k|=6,而k<0,∴k=﹣12,∴反比例函数解析式为y=﹣12x.故答案为y=﹣12x.【点睛】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.14.2-【解析】【分析】根据反比例函数的定义先求出m的值,再根据反比例函数的性质即可求解.【详解】由题意可知:m2﹣5=﹣1,m+1≠0,∴m=±2.∵该函数的图象在第二、四象限内,∴m+1<0,∴m=﹣2.故答案为﹣2.【点睛】本题考查了反比例函数的性质和定义的知识点,首先将反比例函数解析式的一般式k yx =(k≠0),转化为y=kx﹣1(k≠0)的形式,根据反比例函数的定义条件可以求出m的值.特别注意不要忽略k≠0这个条件.并且反比例函数图象所在的象限,是由反比例系数k的符号确定.15.y【分析】过点B 作BD ⊥x 轴于点D ,在Rt △ABC 中利用勾股定理求出AC 的长,在Rt △OAC 中利用勾股定理求出OA 的长,然后证明△OAC ≌DCB ,可得BD ,CD 的长,即可得点B 的坐标,最后利用待定系数法即可求出反比例函数的解析式.【详解】解:过点B 作BD ⊥x 轴于点D ,在Rt △ABC 中,AC =BC ,AB=由勾股定理可得AC =BC =2,∵点C 的坐标为(1,0),∴OC =1,在Rt △OAC 中,OA∵∠OCA +∠DCB =90°,∠OCA +∠OAC =90°,∴∠OAC =∠DCB ,在△OAC 和△DCB 中,90OAC DCBAOC CDB AC CB∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△OAC ≌△DCB ,∴CD =OABD =OC =1,∴OD =CD +OC,即点B,1).设反比例函数的解析式为y =kx ,则,解得k ,所以反比例函数的解析式为y故答案为:y 【点睛】本题综合考查了勾股定理,全等三角形和待定系数法求反比例函数的解析式,根据勾股定理和全等三角形得出点B 的坐标是解决此题的关键.16.∠B=∠1或AE AD AC AB = 【分析】此题答案不唯一,注意此题的已知条件是:∠A =∠A ,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B =∠1或AD AE AB AC =. ∵∠B =∠1,∠A =∠A ,∴△ADE ∽△ABC ; ∵AD AE AB AC =,∠A =∠A , ∴△ADE ∽△ABC ;故答案为∠B =∠1或AD AE AB AC= 【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题.17.(1)11x =;252x =-;(2)1x =23-,2x =4. 【分析】(1)用公式法求解;(2)用因式分解法求解.【详解】解:(1)a =2,b =3,c =-5,△=32-4×2×(-5)=49>0,所以x1=1,x152-;(2)()()22312x x+=-()()223120x x+--=[(x+3)+(1-2x)] [(x+3)-(1-2x)]=0(-x+4)(3x+2)=0所以3x+2=0或-x+4=0,解得x1=23-,x2=4.【点睛】本题考查了一元二次方程的解法,根据方程的特点选择适当的方法是解决此题的关键.18.(1)22126x x+=;(2)2112x xx x+=4【分析】根据根与系数的关系求得两根之和与两根之差,然后把所求式子转化成用两根之和与两根之差表示,最后代入求值即可.【详解】(1)解:因为x1、x2是方程2x2+6x+3=0的两实数根,所以x1+x2=-62=-3,x1·x2=32,所以2212x x+=( x1+x2)2-2 x1·x2=( -3)2-2×32=6;(2)2112x xx x+=221212x xx x⋅+=632=4.【点睛】本题考查了一元二次方程根与系数的关系,难度中等,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.19.(1)36I R =;(2)3.6A . 【分析】(1)利用待定系数法即可得出答案;(2)把R=10代入函数解析式即可求出电流I 的值.【详解】解:(1)由电流I (A )是电阻R (Ω)的反比例函数,设k I R =(k ≠0), 把(4,9)代入得:k =4×9=36, ∴36I R=. (2) 当R =10Ω时,3610I ==3.6A . 【点睛】本题主要考查了用待定系数法求反比例函数的解析式,设出函数解析式,然后代入点的坐标是解决此题的关键.20.58CF CB = 【分析】根据平行线分线段成比例定理,由DE ∥BC 得到AE :EC =AD :DB =3:5,则利用比例性质得到CE :CA =5:8,然后利用EF ∥AB 可得到CF :CB =5:8.【详解】解:∵DE ∥BC ,∴AE :EC =AD :DB =3:5,∴CE :CA =5:8,∵EF ∥AB ,∴CF :CB =CE :CA =5:8. 即58CF CB =. 【点睛】本题考查了平行线分线段成比例:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.21.x =6,y =9,z =12【分析】 设234xy z ===k ,可得x =2k ,y =3k ,z =4k ,然后代入x +2y +z =36中求出k 的值,即可得出答案. 【详解】 解:设234xy z ===k , ∴x =2k ,y =3k ,z =4k ,代入x +2y +z =36得:2k +6k +4k =36,解得:k =3,所以x =6,y =9,z =12.【点睛】设连等式等于一个常数,然后得到x ,y ,z 与这个常数的关系式是解答本题的关键.22.(1)k =3,n =;(2)13-;(3)103x -<< 或 x >2. 【分析】(1)把A ,B 的坐标代入直线的解析式求出m ,n 的值,再把B 点坐标代入反比例函数解析式求出k 的值;(2)先求出直线与x 轴、y 轴的交点坐标,再求出即可.(3)由图象可知取一次函数图象在反比例函数图象上方的x 的取值范围即可.【详解】解:(1)∵点B (n ,﹣6)在直线y =3x ﹣5上.∴-6=3n -5,解得:n =13-. ∴B (13-,-6); ∵反比例函数k 1y x -=的图象也经过点B (13-,-6), ∴k -1=-6×(13-)=2,解得:k =3; (2)设直线y =3x ﹣5分别与x 轴,y 轴相交于点C ,点D ,当y =0时,即3x ﹣5=0,x =53,∴OC =53, 当x =0时,y =3×0-5=-5, ∴OD =5,∵点A (2,m )在直线y =3x ﹣5上,∴m =3×2-5=1,即A (2,1). 155135(155)23336AOB AOC COD BOD S S S S ∴=++=⨯⨯+⨯+⨯=. (3)由图象可知y 1> y 2时自变量x 的取值范围为:103x -<< 或 x >2.【点睛】本题考查了用待定系数法求反比例函数的解析式,反比例函数与一次函数的交点问题、函数图象上点的坐标特征等知识点,能求出反比例函数的解析式是解此题的关键.23.应该降价20元.【解析】【分析】设每件童装应降价x 元,那么就多卖出2x 件,根据每天可售出20件,每件获利40元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,要想平均每天在销售这种童装上获利1200元,可列方程求解.【详解】设每件童装应降价x 元,由题意得:()()402021200x x -+=,解得:10x =或20x =.因为减少库存,所以应该降价20元.【点睛】本题考查一元二次方程的应用,关键找到降价和卖的件数的关系,根据利润列方程求解.24.(1)证明见解析;(2)10.【详解】试题分析:(1)先把方程化为一般式:x2﹣(2k+1)x+4k﹣2=0,要证明无论k取任何实数,方程总有两实数根,即要证明△≥0;(2)先利用因式分解法求出两根:x1=2,x2=2k﹣1.先分类讨论:若a=4为底边;若a=4为腰,分别确定b,c的值,求出三角形的周长.试题解析:(1)证明:方程化为一般形式为:x2﹣(2k+1)x+4k﹣2=0,∵△=(2k+1)2﹣4(4k﹣2)=(2k﹣3)2,而(2k﹣3)2≥0,∴△≥0,所以无论k取任何实数,方程总有两个实数根;(2)解:x2﹣(2k+1)x+4k﹣2=0,整理得(x﹣2)[x﹣(2k﹣1)]=0,∴x1=2,x2=2k﹣1,当a=4为等腰△ABC的底边,则有b=c,因为b、c恰是这个方程的两根,则2=2k﹣1,解得k=32,则三角形的三边长分别为:2,2,4,∵2+2=4,这不满足三角形三边的关系,舍去;当a=4为等腰△ABC的腰,因为b、c恰是这个方程的两根,所以只能2k﹣1=4,则三角形三边长分别为:2,4,4,此时三角形的周长为2+4+4=10.所以△ABC的周长为10.25.(1)证明见解析;(2)反比例函数的解析式为20yx;(3)M点的坐标为8(0,)3.【详解】试题分析:(1)由A(0,4),B(-3,0),C(2,0),利用勾股定理可求得AB=5=BC,又由D为B点关于AC的对称点,可得AB=AD,BC=DC,即可证得AB=AD=CD=CB,继而证得四边形ABCD为菱形;(2)由四边形ABCD 为菱形,可求得点D 的坐标,然后利用待定系数法,即可求得此反比例函数的解析式;(3)由四边形ABMN 是平行四边形,根据平移的性质,可求得点N 的横坐标,代入反比例函数解析式,即可求得点N 的坐标,继而求得M 点的坐标.试题解析:(1)∵A (O ,4),B (-3,0),C (2,0),∴OA =4,OB =3 ,OC =2,∴5AB ==,BC =5,∴AB =BC .∵D 为B 点关于AC 的对称点,∴AB=AD ,CB=CD ,∴AB=AD=CD=CB .∴四边形ABCD 为菱形.(2)∵四边形ABCD 为菱形,∴D 点的坐标为(5,4),反比例函数ky x =的图象经过D 点, ∴45k=,∴k =20,∴反比例函数的解析式为20y x =.(3)∵四边形ABMN 是平行四边形,∴AN ∥BM ,AN=BM ,∴AN 是BM 经过平移得到的.∴首先BM 向右平移了3个单位长度,∴N 点的横坐标为3,代入20y x =,得203y =,∴M 点的纵坐标为208-433=,∴M 点的坐标为80,3⎛⎫⎪⎝⎭.。
湘教版九年级数学上册期中考试卷及答案【全面】
湘教版九年级数学上册期中考试卷及答案【全面】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>3.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-6.不等式组26,x x x m -+<-⎧⎨>⎩的解集是4x >,那么m 的取值范围( ) A .4m ≤ B .4m ≥ C .4m < D .4m =7.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE 等于( )A .15°B .30°C .45°D .60°8.如图,在平面直角坐标系中,矩形ABCD 的顶点A 点,D 点分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数(0,0)k y k x x=>>的图象经过矩形对角线的交点E ,若点A(2,0),D(0,4),则k 的值为( )A .16B .20C .32D .409.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.已知0ab <,一次函数y ax b =-与反比例函数a y x =在同一直角坐标系中的图象可能( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算:169=__________.2.分解因式:x2-2x+1=__________.3.若二次根式x2-有意义,则x的取值范围是__________.4.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF =AC,则∠ABC=__________度.5.如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O 的半径为2,则CD的长为__________.6.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.三、解答题(本大题共6小题,共72分)1.解分式方程:122 11xx x+= -+2.已知关于x的一元二次方程220x x k+-=有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两个不相等实数根是a,b,求111aa b-++的值.3.如图,在ABC中,ACB90∠=,AC BC=,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连结DE交BC于点F,连接BE.1()求证:ACD≌BCE;2()当AD BF=时,求BEF∠的度数.4.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.5.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.6.某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为;(2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、B4、D5、D6、A7、A8、B9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、432、(x-1)2.3、x 2≥4、4556、25三、解答题(本大题共6小题,共72分)1、3x =2、(1)k>-1;(2)13、()1略;()2BEF 67.5∠=.4、(1)(m ,2m ﹣5);(2)S △ABC =﹣82a a +;(3)m 的值为72或.5、(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.12;(2)概率P=1 66、(1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省衡阳市衡东县杨林中学2015届九年级数学上学期期中试题一、选择题(每题3分,共30分)1.要使有意义,则字母x应满足的条件是( )A.x=2 B.x<2 C.x≤2 D.x≥22.下列二次根式中与是同类二次根式的是( )A. B.C.D.3.方程x2=x的解是( )A.0 B.1 C.无解 D.0和14.某型号的手机连续两次降价,每个售价由原来的1185元降到了580元,设平均每次降价的百分率为x,列出方程正确的是( )A.580(1+x)2=1185 B.1185(1+x)2=580 C.580(1﹣x)2=1185 D.1185(1﹣x)2=5805.已知+|b﹣1|=0,那么(a+b)2007的值为( )A.﹣1 B.1 C.32007D.﹣320076.两个相似三角形的相似比为1:2,则它们周长的比为( )A.1:4 B.1:2 C.D.47.如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若AD=4,AB=6,则DE:BC的值为( )A.B.C.D.8.如果关于x的一元二次方程x2+3x﹣7=0的两根分别为x和x2,那么x+x2=( ) A.﹣3 B.3 C.﹣7 D.79.如图,已知△ABC,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是( )A.∠ACP=∠B B.∠APC=∠ACB C.D.10.下列各组线段(单位:cm)中,成比例线段的是( )A.1、2、3、4 B.1、2、2、4 C.3、5、9、13 D.1、2、2、3二、填空题(每小题3分,共18分)11.在函数中,自变量x的取值范围是__________.12.若x1,x2是方程x2﹣5x+6=0的两根,则x12+x22的值是__________.13.在两个连续整数a和b之间,且,那么a、b的值分别是__________,__________.14.如图,当∠AED=__________时,△ADE与△ABC相似.15.已知△ABC的三边分别是4,5,6,则与它相似△A′B′C′的最长边为12,则△A′B′C′的周长是__________.16.某售价为100元的食品连续两次降价10%后,售价为__________.三、解答题(共72分)17.(16分)用适当的方法解方程:①x2﹣4x﹣2=0(用配方法解);②5x2﹣4x﹣12=0;③(3x﹣1)2=(x﹣1)2④x2+5(2x+1)=0(用公式法解)18.计算(1)(2)(+)÷.19.试说明方程kx2﹣(k+2)x+1=0必有实数根.20.已知关于x的方程x2+(2k+1)x+k2﹣2=0有两个相等的实数根.(1)试求k的值;(2)求出此时方程的根.21.如图矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)求证:△ABE∽△DFA;(2)若AB=6,AD=12,BE=8,求DF的长.22.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?2014-2015学年湖南省衡阳市衡东县杨林中学九年级(上)期中数学试卷一、选择题(每题3分,共30分)1.要使有意义,则字母x应满足的条件是( )A.x=2 B.x<2 C.x≤2 D.x≥2【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,列不等式求解.【解答】解:由题意得x﹣2≥0,解得x≥2.故选D.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.下列二次根式中与是同类二次根式的是( )A. B.C.D.【考点】同类二次根式.【专题】常规题型.【分析】根据同类二次根式的定义,先化简,再判断.【解答】解:A、=2,与的被开方数不同,不是同类二次根式,故A选项错误;B、=,与的被开方数不同,不是同类二次根式,故B选项错误;C、=,与的被开方数不同,不是同类二次根式,故C选项错误;D、=3,与的被开方数相同,是同类二次根式,故D选项正确.故选:D.【点评】此题主要考查了同类二次根式的定义,即:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.3.方程x2=x的解是( )A.0 B.1 C.无解 D.0和1【考点】解一元二次方程-因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2=x,x2﹣x=0,x(x﹣1)=0,x=0,x﹣1=0,x=0或1.故选D.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.4.某型号的手机连续两次降价,每个售价由原来的1185元降到了580元,设平均每次降价的百分率为x,列出方程正确的是( )A.580(1+x)2=1185 B.1185(1+x)2=580 C.580(1﹣x)2=1185 D.1185(1﹣x)2=580 【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】根据降价后的价格=原价(1﹣降低的百分率),本题可先用x表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程.【解答】解:设平均每次降价的百分率为x,由题意得出方程为:1185(1﹣x)2=580.故选:D.【点评】本题考查一元二次方程的应用,解决此类两次变化问题,可利用公式a(1+x)2=c,其中a是变化前的原始量,c是两次变化后的量,x表示平均每次的增长率.5.已知+|b﹣1|=0,那么(a+b)2007的值为( )A.﹣1 B.1 C.32007D.﹣32007【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】本题首先根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0.”得到关于a、b的方程组,然后解出a、b的值,再代入所求代数式中计算即可.【解答】解:依题意得:a+2=0,b﹣1=0∴a=﹣2且b=1,∴(a+b)2007=(﹣2+1)2007=(﹣1)2007=﹣1.故选A.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.6.两个相似三角形的相似比为1:2,则它们周长的比为( )A.1:4 B.1:2 C.D.4【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比解答即可.【解答】解:∵两个相似三角形的相似比为1:2,∴它们周长的比为1:2.故选:B.【点评】本题考查的是相似三角形性质,掌握相似三角形周长的比等于相似比是解题的关键.7.如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若AD=4,AB=6,则DE:BC的值为( )A.B.C.D.【考点】相似三角形的判定与性质.【分析】如图,由DE∥BC,得到△ADE∽△ABC,列出比例式即可解决问题.【解答】解:如图,∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB=4:6,故选A.【点评】该题主要考查了相似三角形的判定及其性质及其应用问题;直接运用相似三角形的判定及其性质即可解决问题.8.如果关于x的一元二次方程x2+3x﹣7=0的两根分别为x和x2,那么x+x2=( ) A.﹣3 B.3 C.﹣7 D.7【考点】根与系数的关系.【分析】根据根与系数的关系进行解答.【解答】解:∵关于x的一元二次方程x2+3x﹣7=0的两根分别为x和x2,∴x+x2=﹣3.故选:A.【点评】本题考查了根与系数的关系.若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.9.如图,已知△ABC,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是( )A.∠ACP=∠B B.∠APC=∠ACB C.D.【考点】相似三角形的判定.【分析】由图可得∠A=∠A,又由有两角对应相等的三角形相似,即可得A与B正确,又由两边对应成比例且夹角相等的三角形相似,即可得C正确,利用排除法即可求得答案.【解答】解:∵∠A=∠A,∴当∠ACP=∠B时,△ACP∽△ABC,故A选项正确;∴当∠APC=∠ACB时,△ACP∽△ABC,故B选项正确;∴当时,△ACP∽△ABC,故C选项正确;∵若,还需知道∠ACP=∠B,∴不能判定△ACP∽△ABC.故D选项错误.故选:D.【点评】此题考查了相似三角形的性质.此题比较简单,解题的关键是掌握有两角对应相等的三角形相似与两边对应成比例且夹角相等的三角形相似定理的应用.10.下列各组线段(单位:cm)中,成比例线段的是( )A.1、2、3、4 B.1、2、2、4 C.3、5、9、13 D.1、2、2、3【考点】比例线段;比例的性质.【专题】计算题.【分析】根据成比例线段的概念,对选项一一分析,排除错误答案.【解答】解:A、1×4≠2×3,故选项错误;B、1×4=2×2,故选项正确;C、3×13≠5×9,故选项错误;D、1×3≠2×2,故选项错误.故选B.【点评】考查成比例线段的概念.对于四条线段,如果其中两条线段的长度的比与另两条线段的长度的比相等,那么,这四条线段叫做成比例线段.注意用最大的和最小的相乘,中间两数相乘.二、填空题(每小题3分,共18分)11.在函数中,自变量x的取值范围是x<1.【考点】函数自变量的取值范围.【分析】函数式有意义的x的取值范围.一般地从两个角度考虑:分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【解答】解:根据题意得到:1﹣x>0,解得x<1.故答案为x<1.【点评】本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.12.若x1,x2是方程x2﹣5x+6=0的两根,则x12+x22的值是13.【考点】根与系数的关系.【专题】计算题.【分析】已知x1,x2是方程x2﹣5x+6=0的两根,根据根与系数的关系即可求解.【解答】解:∵x1,x2是方程x2﹣5x+6=0的两根,∴x1+x2=﹣5,x1x2=6,又∵x12+x22=(x1+x2)2﹣2x1x2,∴x12+x22=25﹣12=13.故答案为:13.【点评】本题主要考查了根与系数的关系,属于基础题,关键是掌握根与系数的关系.13.在两个连续整数a和b之间,且,那么a、b的值分别是3,4.【考点】估算无理数的大小.【分析】首先找出与10邻近的两个完全平方数,则这两个数应该是9和16,即<<,由此可求得a、b的值.【解答】解:由于3=,4=,∴<<;∴a=3,b=4.故答案为:3,4.【点评】此题主要考查了无理数的估算能力,用估算的方法求无理数的近似值,主要是依据两个公式:(1)=a(a≥0);(2)=a (a为任意数).熟记这两个公式是解答此类题的关键.14.如图,当∠AED=∠ACB或∠ABC时,△ADE与△ABC相似.【考点】相似三角形的判定.【分析】根据题目所给的条件,利用一个三角形的两个角与另一个三角形的两个角对应相等,即可得出答案.此题答案不唯一.再找一个对应角相等的条件即可.【解答】解:∵∠BAC=∠EAD(公共角),再由∠AED=∠ACB或∠AED=∠ABC,即可证明,△ADE与△ABC相似,故答案为:∠ACB或∠ABC.【点评】此题主要考查学生对相似三角形的判定定理的理解和掌握,此题答案不唯一,属于开放型,大部分学生能正确做出,对此都要给予积极鼓励,以激发他们的学习兴趣.15.已知△ABC的三边分别是4,5,6,则与它相似△A′B′C′的最长边为12,则△A′B′C′的周长是30.【考点】相似三角形的性质.【专题】计算题.【分析】由于△A′B′C′的最大边为12,所以边长12对应的边只能是△ABC中边长为6的边,进而再由对应边成比例即可求解.【解答】解:∵△ABC∽△A′B′C′,且其最大边为12,所以边长12对应的边只能是△ABC 中边长为6的边,∴△′B′C′的另两边的长为8,10,故△′B′C′的周长为8+10+12=30.故答案为30.【点评】本题主要考查了相似三角形的性质问题,能够熟练掌握.16.某售价为100元的食品连续两次降价10%后,售价为81元.【考点】有理数的混合运算.【专题】应用题.【分析】直接利用连续降价两次可得售价为:100(1﹣10%)2,进而得出答案.【解答】解:设售价为x元,根据题意可得:100(1﹣10%)2=x,解得:x=81.故答案为:81元.【点评】此题主要考查了有理数的混合运算,正确表示出两次降价后的价格是解题关键.三、解答题(共72分)17.(16分)用适当的方法解方程:①x2﹣4x﹣2=0(用配方法解);②5x2﹣4x﹣12=0;③(3x﹣1)2=(x﹣1)2④x2+5(2x+1)=0(用公式法解)【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【分析】①移项,配方,开方,即可得出两个方程,求出方程的解即可;②先分解因式,即可得出两个一元一次方程,求出方程的解即可;③两边开方,即可得出两个一元一次方程,求出方程的解即可;④整理后求出b2﹣4ac的值,再代入公式求出即可.【解答】解:①x2﹣4x﹣2=0,x2﹣4x=2,x2﹣4x+4=2+4,(x﹣2)2=6,x﹣2=,x1=2+,x2=2﹣;②5x2﹣4x﹣12=0,(5x+6)(x﹣2)=0,5x+6=0,x﹣2=0,x1=﹣,x2=2;③(3x﹣1)2=(x﹣1)2,开方得:3x﹣1=±(x﹣1),解得:x1=0,x2=;④x2+5(2x+1)=0,x2+10x+5=0,b2﹣4ac=102﹣4×1×5=80,x=,x1=﹣5+2,x2=﹣5﹣2.【点评】本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程是解此题的关键.18.计算(1)(2)(+)÷.【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后进行二次根式的除法运算.【解答】解:(1)原式=4+2﹣﹣=2;(2)原式=(4+)÷3=+.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.试说明方程kx2﹣(k+2)x+1=0必有实数根.【考点】根的判别式;一元一次方程的解.【分析】当k=0时,方程为一元一次方程,可求出x的值;当k≠0时,方程为一元二次方程,可利用根的判别式解答.【解答】解:当k=0时,方程为一元一次方程,即﹣2x+3=0,解得x=1.5,符合题意;当k≠0时,方程为一元二次方程,其判别式b2﹣4ac=(k+2)2﹣4k=k2+4>0,恒有实数根,综上所述,方程kx2﹣(k+2)x+1=0必有实数根.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时考查了一元一次方程的解.20.已知关于x的方程x2+(2k+1)x+k2﹣2=0有两个相等的实数根.(1)试求k的值;(2)求出此时方程的根.【考点】根的判别式.【分析】(1)当关于x的方程x2+(2k+1)x+k2﹣2=0有两个相等的实数根时,根的判别式△=0;(2)将k的值代入已知方程,然后解方程.【解答】解:(1)∵关于x的方程x2+(2k+1)x+k2﹣2=0有两个相等的实数根,∴△=(2k+1)2﹣4(k2﹣2)=0,即4k+9=0,解得,k=﹣;(2)由(1)知,k=﹣,则原方程是:x2+[2×(﹣)+1]x+(﹣)2﹣2=0,即(x﹣)2=0,解得,x1=x2=.【点评】本题考查了根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.21.如图矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)求证:△ABE∽△DFA;(2)若AB=6,AD=12,BE=8,求DF的长.【考点】正方形的性质;相似三角形的判定与性质.【分析】(1)△ABE和△DFA都是直角三角形,还需一对角对应相等即可.根据AD∥BC可得∠DAF=∠AEB,问题得证;(2)运用相似三角形的性质求解.【解答】(1)证明:∵DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD=90°.又∵AD∥BC,∴∠DAE=∠AEB.∴△ABE∽△DFA.(2)解:∵AB=6,BE=8,∠B=90°,∴AE=10.∵△ABE∽△DFA,∴=.即=.∴DF=7.2.【点评】此题考查了相似三角形的判定和性质,以及矩形的性质、勾股定理等知识点,难度中等.22.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)解答此题利用的数量关系是:第一天收到捐款钱数×(1+每次增长的百分率)2=第三天收到捐款钱数,设出未知数,列方程解答即可;(2)第三天收到捐款钱数×(1+每次增长的百分率)=第四天收到捐款钱数,依此列式子解答即可.【解答】解:(1)设捐款增长率为x,根据题意列方程得,10000×(1+x)2=12100,解得x1=0.1,x2=﹣2.1(不合题意,舍去);答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.【点评】本题考查了一元二次方程的应用,列方程的依据是:第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数.。