计算机网络技术基础3.3多路复用技术

合集下载

多路复用的基本原理

多路复用的基本原理

多路复用的基本原理多路复用是计算机网络中的一种通讯技术,它是指在同一个物理通讯通道(例如一条网络电缆或光纤),在同一时间内,同时传输多个独立的信号,实现多个通讯线路共享一个物理通讯通道的方法。

多路复用使得网络使用率大大提高,提高了网络的可靠性和性能。

本文将从多路复用的基本原理入手,详细阐述多路复用的原理、分类、实现、优缺点以及应用场景。

一、多路复用的原理在计算机网络中,假设有多个用户A、B、C、D,需要同时与网络服务器通信,而服务器只有一条物理链路,如果每个用户都从服务器上获取一条物理链路,那么服务器的物理链路就会被占用。

于是,多路复用技术就有了应用的基础。

多路复用的原理是将多个用户的数据流复用在同一物理通讯线路上,形成一个混合流向目标地址传输。

在服务器端,对来自每个用户的数据进行分类处理,将它们区分开来,并打上标记码,发送到混合流中。

在客户端接收到混合流后,对它进行解复用,将其区分开来,并根据标记码将数据还原到原来的各自的用户数据流。

如下图所示:二、多路复用的分类多路复用根据传输数据的特点和处理方法,可以分为如下两种类型:1、频分多路复用(FDM)频分多路复用是将信号在频域上分成不同的频带,不同频带内的信号被分别转换成数字信号,再将数字信号按不同频率排列,通过调制传输到接收端,接收端采用解调的方法将各个频率上的数据恢复为原数据,实现多路复用。

在频分多路复用中,各个用户占用频带的带宽是相等的,但也有可能因为传输距离和信号衰减等原因导致传输质量的不均衡。

常用于有线电视信号传输。

2、时分多路复用(TDM)时分多路复用是将信号在时间域上分隔开,按不同时间段分配给不同通道,从而实现多路复用。

时分多路复用中,各个用户占用时间段的时间是相等的,但数据量不一定相等,需要在传输过程中进行适当的压缩和解压缩。

常用于数字电话、网路等数据传输。

三、多路复用的实现多路复用的实现需要网络的发送方和接收方都支持多路复用协议。

计算机网络 多路复用技术

计算机网络  多路复用技术

计算机网络多路复用技术《计算机网络多路复用技术》在当今数字化的时代,计算机网络已经成为我们生活和工作中不可或缺的一部分。

当我们享受着高速、稳定的网络连接,畅快地浏览网页、观看视频、进行在线游戏时,背后有一项关键技术在默默地发挥着作用,那就是多路复用技术。

想象一下,有一条道路,上面有许多车辆(数据)在行驶,如果没有良好的交通规则和管理方式,道路就会拥堵不堪,交通效率会极其低下。

计算机网络中的数据传输也是如此,如果没有有效的多路复用技术,网络带宽就会被浪费,数据传输的效率和质量也会大打折扣。

多路复用技术,简单来说,就是允许多个数据源共享一个通信信道,从而提高信道的利用率。

这就好比在一条高速公路上,设置了多个车道,让不同类型、不同目的地的车辆能够有序地行驶,充分利用道路资源。

常见的多路复用技术主要有时分多路复用(TDM)、频分多路复用(FDM)和波分多路复用(WDM)。

时分多路复用就像是把时间切成了很多小片段,然后按照一定的顺序分配给不同的数据源。

比如说,有三个数据源 A、B、C,在第一个时间段里,信道传输 A 的数据;第二个时间段传输 B 的数据;第三个时间段传输 C 的数据,然后再循环往复。

这样,在宏观上看起来,好像是这三个数据源同时在使用信道进行数据传输,但实际上是在不同的时间片段里轮流使用。

时分多路复用技术适用于数字信号的传输,它的优点是控制简单,但缺点是如果某个数据源在分配的时间段内没有数据要传输,那么这段时间就会被浪费,信道的利用率可能不高。

频分多路复用则是根据不同的频率来划分信道。

它把信道的带宽划分成多个不同的频段,每个频段分配给一个数据源。

就像广播电台,不同的电台使用不同的频率进行广播,听众可以通过调整收音机的频率来选择收听自己喜欢的电台。

频分多路复用技术适用于模拟信号的传输,它能够充分利用信道的带宽,但缺点是容易受到干扰,而且不同频段之间需要设置保护频带,会造成一定的带宽浪费。

波分多路复用是在光纤通信中常用的技术。

多路复用解释

多路复用解释

多路复用(Multiplexing)是指在计算机网络通信中,利用一个物理通道传输多个数据流的技术。

它通过将多个数据流分解成小块,并交替地在通信链路上传输,实现了在一条物理通道上同时传输多个数据流的目的。

多路复用的使用可以提高带宽利用率和传输效率,降低通信成本,并且能够满足多用户同时访问的需求。

在传统的通信方式中,每个数据流都需要独占一个物理通道才能进行传输。

然而,随着网络应用的不断发展,用户对于网络带宽的需求逐渐增加,传统的通信方式已经无法满足多用户同时访问的需求。

此时,多路复用技术应运而生,它可以复用已有的通信资源,将多个数据流同时传输,提高通信效率。

在多路复用的实现过程中,通常使用了两种主要的技术:时分复用(TDM)和分组复用(FDM)。

时分复用是指将时间划分为若干个时隙,每个时隙用于传输不同的数据流。

发送端将要发送的数据流按照一定的顺序放置在不同的时隙里,接收端则按照相同的顺序将相应的时隙中的数据恢复出来。

时分复用的优点是实现简单,对于时延敏感性较低的应用比较适用。

但是,时分复用的缺点是无法随着数据流量的变化灵活调整带宽分配,因此在网络负载较大时容易出现拥塞。

分组复用是指将每个数据流分成小的数据包,然后交替地传输这些数据包。

发送端将不同数据流的数据包按照一定的规则混合在一起发送,接收端则根据数据包的标识将它们恢复出来。

分组复用的优点是带宽分配灵活,能够根据网络负载情况动态调整带宽分配,提高网络的利用率。

但是,分组复用的缺点是在传输过程中会增加一定的延迟,并且对数据包的排序和恢复需要一定的处理时间。

多路复用广泛应用于各种计算机网络中,例如电话网络、数据通信网络等。

在电话网络中,多路复用可以实现多个电话用户共享一条物理线路进行通话,从而减少了线路的占用。

在数据通信网络中,多路复用可以将多个应用程序的数据流同时传输,提高网络的带宽利用率,并且能够满足多用户同时访问的需求。

总而言之,多路复用是一种有效的网络通信技术,通过复用已有的通信资源,可以在一条物理通道上同时传输多个数据流,提高带宽利用率和传输效率,降低通信成本,并且能够满足多用户同时访问的需求。

多路复用技术

多路复用技术

信号复合
¶ Â à · ´ Ó · Ã Æ ÷ ß Ë · Ù Í ¨Ð Å Ï ß Â ·
信号分离
¶ Â à · ´ Ó · Ã Æ ÷
多路复用技术的分类:
◇ 频分多路复用FDMA ◇ 时分多路复用TDMA ◇ 波分多路复用WDMA
◇ 码分多路复用CDMA
1 频分多路复用(FDMA)
定义:是将具有一定带宽的信道分割成若干个有较小频带的子信 道,每个子信道传输一路信号,即供一个用户使用,这就是频分 多路复用。 特点: (1)在一条通信线路上设计有多路通信信道;
¦ ¸ Ê Â
¸Ï â Ë1 IJ µ ¨Æ × âÏ ¸ Ë1 ¨³ ² ¤ ¸Ï â Ë2 IJ µ ¨Æ × âÏ ¸ Ë2 ¨³ ² ¤
²í ¸ ϸ âÏ Ë Ä² µ ¨Æ × ¦ ¸ Ê Â ¨³ ² ¤ âÏ ¸ Ë3 ¦ ¸ Ê Â
¸Ï â Ë3 IJ µ ¨Æ ×
¨³ ² ¤ ¸Ï â Ë4 IJ µ ¨Æ ×
填空题
1、数据交换方式基本上分为三种 电路交换 、报文交 换和分组交换 。 2、分组交换有两种方式:数据报方式和虚电路方式。 3、用电路交换技术完成的数据传输要经历电路建立 阶段 、 数据传输阶段和拆除电路连接阶段 。 4、在计算机的通信子网中,其操作方式有两种,它 们是面向连接的电路交换方式和虚电路方式和无连接 的报文交换方式和数据报交换方式。 5、在数据报服务方式中,网络节点要为每个数据报/ 分组选择路由,在虚电路服务方式中,网络节点只在 连接建立时选择路由。
异步时分复用技术又被称为统计时分复用或智能时分复 用(ITDM)技术,它能动态地按需分配时隙,时间片位 置与信号源没有固定的对应关系
时分多路复用常用于传输数字信号。 但是也不局限于传输数字信号,模拟信号也 可 以同时交叉传输。另外,对于模拟信号, 时分多路复用和频分多路复用结合起来使用 也是可能的。一个传输系统可以频分许多条 通道,每条通道再用时分多路复用来细分。

计算机网络 多路复用技术

计算机网络  多路复用技术

计算机网络 多路复用技术在计算机网络或数据通信系统中,传输介质的传输能力往往会超过传输单一信号的要求。

为了提高通信线路的利用率,实现在一条通信线路上同时发送多个信号,使得一条通信线路可以由多个数据终端设备同时使用而互不影响,这就是多路复用技术。

常见的多路复用技术主要由两大类:一种是将带宽较大的信道分割成为多个子信道,即频分多路复用技术;另一种是将多个带宽较窄的信道组合成一个频率较大的信道,即时分多路复用技术。

1.频分多路复用技术频分多路复用技术(Frequency Division Multiplexing ,FDM )是一种在信道上同时发送多个模拟信号的方法。

它将传输频带划分为若干个较窄的频带,每个频带构成一个子信道,每个子信道都有各自的载波信号,而且其载波信号的频率是唯一的。

一个具有一定带宽的通信线路可以划分为若干个频率范围,互相之间没有重叠,且在每个频率范围的中心频率之间保留一段距离。

这样,一条通信线路被划分成多个带宽较小的信道,每个信道能够为一对通信终端提供服务。

频分多路复用技术是在20世纪30年代由电话公司开发的,用来在一条电话线上传输多个语音信号。

它可以用于语音、视频或数据信号,但是最常见的应用是无线电广播传输和有线电视。

例如电话线的带宽达250kHz ,而音频信号的有效范围为300Hz~3400Hz ,4000Hz 的带宽就足够用来传输音频信号。

为了使各信道之间保留一定的距离减少相互干扰,60kHz~108kHz 的带宽可以划分为12条载波电话的信道(此为CCITT 标准),每对电话用户都可以使用其中的一条信道进行通信。

如图3-17所示,为6路频分多路复用的示意图。

D E F’’’’’’图3-17 6路频分多路复用示意图2.时分多路复用技术时分多路复用技术(Time Division Multiplexing ,TDM )是一种多路传输数字信号的方法,它已经在现代数据网络中替代了频分多路复用技术。

多路复用技术

多路复用技术

多路复用技术多路复用技术是计算机网络中的一种重要技术,其主要作用是在一条物理通信链路上同时传输多个数据流。

通过使用多路复用技术,可以显著提高系统的传输效率和性能,减少网络的拥塞情况,提升用户的体验。

在传统的通信方式中,一条物理链路仅能传输一个数据流。

这种方式在网络资源紧张、用户数量众多的情况下,会导致资源的浪费和系统的拥塞。

为了解决这一问题,多路复用技术应运而生。

多路复用技术的核心思想是将多个数据流同时传输在同一条物理链路上,通过在发送端将多个数据流分割成小的数据包,并添加标识信息,然后在接收端根据标识信息将数据包重新组合成完整的数据流。

这样一来,多个数据流可以通过同一条物理链路进行传输,大大提高了链路的利用率。

多路复用技术有多种实现方式,其中最常用的是分时多路复用和频分多路复用。

分时多路复用(Time-Division Multiplexing,TDM)是将不同的数据流按照时间片的方式进行传输。

发送端将不同的数据流按照预定的时间片大小进行划分,并按照顺序传输。

接收端根据时间片的标识信息,按照相同的顺序将数据包进行重新组合。

这种方式要求发送端和接收端的时钟高度同步,以确保数据的准确传输。

频分多路复用(Frequency Division Multiplexing,FDM)是将不同的数据流按照频率范围进行传输。

发送端将不同的数据流分配到不同的频率上进行传输,接收端根据频率范围将数据流进行分离和重新组合。

这种方式要求发送端和接收端的频率范围必须一致,以确保数据的正确传输。

除了分时多路复用和频分多路复用外,还有一种常见的多路复用技术是码分多路复用(Code Division Multiplexing,CDM)。

码分多路复用通过使用不同的扩频码对不同的数据流进行编码,并将编码后的数据进行传输,在接收端使用相应的扩频码对数据进行解码和还原。

码分多路复用不仅可以提高链路利用率,还具有一定的抗干扰能力。

总之,多路复用技术是一种能够提高网络传输效率和性能的重要技术。

《计算机网络技术》课程标准

《计算机网络技术》课程标准

《计算机网络技术》课程标准《计算机网络技术》课程标准1、课程简介1.1 课程名称:计算机网络技术1.2 课程代码:NET1011.3 课程学分.3学分1.4 先修课程:无2、课程目标2.1 掌握计算机网络的基本概念和原理2.2 理解计算机网络的体系结构和协议2.3 掌握常见的局域网和广域网技术2.4 了解网络安全和网络管理的基本知识3、课程内容3.1 计算机网络基础3.1.1 计算机网络的定义和分类3.1.2 通信方式和网络拓扑结构3.1.3 OSI参考模型和TCP/IP协议3.2 物理层3.2.1 传输介质和编码技术3.2.2 数字传输系统和调制解调器3.2.3 信道复用和多路复用技术3.3 数据链路层3.3.1 数据链路层的功能和设计3.3.2 帧的封装和差错检测3.3.3 数据链路层的错误控制和流量控制 3.4 网络层3.4.1 网络层的功能和地质分配3.4.2 路由算法和转发表3.4.3 IP协议和路由协议3.5 传输层3.5.1 传输层的功能和服务3.5.2 TCP和UDP协议3.5.3 传输层的错误控制和流量控制3.6 应用层3.6.1 应用层协议和客户端/服务器模型 3.6.2 常见的应用层协议和应用程序3.7 局域网和广域网技术3.7.1 以太网和局域网交换技术3.7.2 VLAN和虚拟局域网技术3.7.3 广域网的连接技术和路由选择3.8网络安全和网络管理3.8.1 网络安全的基本概念和原理3.8.2 防火墙和入侵检测系统3.8.3 网络管理的基本知识和工具4、课程考核方式4.1 平时成绩占评分比例的30%4.2 课堂测验占评分比例的20%4.3 实验报告占评分比例的20%4.4 期末考试占评分比例的30%5、课程参考资料5.1 《计算机网络》- 谢希仁5.2 《计算机网络:自顶向下方法》- James F: Kurose, Keith W: Ross5.3 《TCP/IP详解卷1:协议》- W: Richard Stevens附件:无法律名词及注释:1、OSI参考模型:开放系统互联参考模型,是国际标准化组织(ISO)制定的一种通信系统参考模型,将通信系统划分为七个层次,每个层次负责特定的功能。

通信系统中的多路复用技术介绍

通信系统中的多路复用技术介绍

通信系统中的多路复用技术介绍多路复用技术指的是在通信系统中,通过将多个信号合并在一个信道中传输,以提高通信信道的利用率和传输效率的一种技术。

它可以将不同用户的信号同时传输在同一个信道中,从而实现多个用户同时进行通信。

下面将详细介绍多路复用技术的原理和步骤。

一、多路复用技术的原理1. 频分多路复用(FDM):将传输信道频带划分为若干个不重叠的子信道,每个子信道用于传输一个用户的信号。

通过控制每个子信道的带宽,可以使不同用户之间的信号不会相互干扰。

2. 时分多路复用(TDM):将传输信道的时间分成若干个时隙,每个时隙用于传输一个用户的信号。

用户的信号在不同的时隙进行传输,通过控制每个用户的传输速率,可以实现多用户同时传输。

3. 统计多路复用(SDM):根据用户的传输需求和信道的使用情况,动态地分配信道资源。

当用户的传输需求较小或者其他用户没有传输时,可以将信道资源分配给其他用户使用。

二、多路复用技术的步骤1. 信号接入:将不同用户产生的信号接入到通信系统中。

用户的信号可以通过不同的方式接入,如数字化后通过信号结构器输入、模拟信号通过模数转换器转换为数字信号后输入等。

2. 信号编码:对每个用户的信号进行编码。

编码可以使得不同用户的信号在传输过程中相互独立,不会相互干扰。

常见的编码方式有频分编码、时分编码等。

3. 多路复用:将各个用户的信号按照多路复用技术的原理进行合并。

例如,对于频分多路复用技术,可以将每个用户的信号经过调制后分配到不同的频带中;对于时分多路复用技术,可以将每个用户的信号按照时间顺序分配到不同的时隙中。

4. 信号传输:将多路复用后的信号通过信道传输。

传输过程中需要保持信号的完整性和准确性,避免信号受到干扰或衰减。

5. 信号分解:在接收端,将传输的信号进行分解,分离出各个用户的信号。

分解可以使用与多路复用技术相对应的解复用技术,如频分解复用、时分解复用等。

6. 信号解码:对分离出的每个用户的信号进行解码。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、知识巩固
(1)数据传输技术有哪些?
(2)数据编码技术?
2、自学内容检查
(1)多路复用技术有哪些?
时分多路复用、码分多路复用、波分、频分
(2)宽带接入技术有哪些?
xDSL、HFC、WLAN、FTTx+PON等
3、学生知识讲解
(1)学生讲解多路复用技术的特点及应用
学生一:频分多路复用特点及应用场景
学生二:时分多路复用技术特点及应用
学生三:波分多路复用技术特点及应用场景
学生四:码分多路复用技术特点及应用场景
(2)教师归纳总结
→问题1:频分多路复用特点及应用?(应用:电话)
→问题2:时分多路复用特点及应用?(应用:集线器)
→问题3:波分多路复用特点及应用?(应用:集线器)
→问题4:码分多路复用技术特点及应用?
(3)学生讲解宽带接入技术
4、教师难点讲解
(1)多路复用技术的特点及应用
频分多路复用技术:在一个传输介质上使用多个不同频率的模拟载波信号进行多路传输,每一个载波信号形成一个信道的技术。

波分多路复用技术:指在一根光纤上能同时传送多个波长不同的光波信号的
复用技术。

(2)ADSL
ADSL 的全称是非对称数字用户线路(Asymmetrical Digital Subscriber Loop ),ADSL 技术是运行在原有普通电话线上的一种新的高速宽带技术,它利用现有的一对电话铜线为用户提供上、下行非对称的传输速率(带宽)。

因为上行(从用户到电信服务提供商方向,如上传动作)和下行(从电信服务提供商到用户的方向,如下载动作)带宽不对称(即上行和下行的速率不相同)因此称为非对称数字用户线路。

(3)HFC
分离器
电话 分离器
Internet
电话网
波长λ2
波长λ1
波长λ2
混合光纤同轴电缆网。

是一种经济实用的综合数字服务宽带网接入技术。

HFC 采用非对称的数据传输速率,上行为10Mbit/s,下行为10~40Mbit/s ,可以将一台主机或一个局域网接入Internet 。

(4)FTTH
5、课程总结,通过抢答的方式进行,并检验学生学习效果
针对知识点,设置抢答试题进行抢答总结练习,将知识点串联起来,并起到回顾的作用。

6、课程作业
(1)完成传输介质网上作业
(2)学习局域网和虚拟局域网网上视频,完成任务单回答问题 (3)准备数据链层作用及帧结构讲解内容
任务单回答问题:
(1)主要有哪些网络传输介质各自的特点是什么? (2)网络中常用的网络设备有哪些?
Internet
分离器
Internet
上课准备讲解内容:
一:双绞线的特点、线序及种类
二:同轴电缆的特点、应用场所
三:光纤的特点、工作原理、种类、应用场所四:无线传输介质的种类、特点、应用场所。

相关文档
最新文档