6.勾股定理学生版

合集下载

初中奥数系列:.勾股定理C级.第01讲.学生版

初中奥数系列:.勾股定理C级.第01讲.学生版

1. 勾股定理的内容:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么222a b c +=.即直角三角形中两直角边的平方和等于斜边的平方注:勾——最短的边、股——较长的直角边、 弦——斜边。

CAB cba2.勾股定理的证明:知识点睛中考要求勾股定理如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

即 222,,ABC AC BC AB ABC ∆+=∆在中如果那么是直角三角形。

4.勾股数:满足222a b c +=的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17板块一、勾股定理【例1】 如图,在由单位正方形组成的网格图中标有AB , CD , EF , GH 四条线段,其中能构成一个直角三角形三边的线段是( )A .CD ,EF ,GHB .AB ,EF ,GHC .AB ,CD ,GH D .AB ,CD ,EF例题精讲奥数精品 FHGEDBC A【例2】 如图,梯子AB 斜靠在墙面上,AC BC AC BC ⊥=,,当梯子的顶端A 沿AC 方向下滑x 米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( ) A .x y = B .x y > C .x y < D .不确定CA【例3】 如图,点P 是AOB ∠的角平分线上一点,过点P 作//PC OA 交OB 于点C .若60,4AOB OC ∠== ,则点P 到OA 的距离PD 等于__________.PODC BA【例4】 已知Rt ABC ∆斜边AB 的长为5cm 2,两直角边的差为1cm 2,求三角形的周长及斜边上的高.【例5】 如图,已知Rt ABC △的周长为22AB =,求这个三角形的面积.ACB。

勾股定理的实际应用【十二大题型】(学生版)

勾股定理的实际应用【十二大题型】(学生版)

勾股定理的实际应用【十二大题型】【题型1求梯子滑落高度】【题型2求旗杆高度】【题型3求小鸟飞行距离】【题型4求大树折断前的高度】【题型5解一元一次不等式组】【题型6解决水杯中筷子问题】【题型7解决航海问题】【题型8求河宽】【题型9求台阶上地毯长度】【题型10判断汽车是否超速】【题型11选址使到两地距离相等】【题型12求最短路径】【题型1求梯子滑落高度】1(2023春·广东惠州·八年级校考期中)某地一楼房发生火灾,消防队员决定用消防车上的云梯救人如图(1),如图(2),已知云梯最多只能伸长到15m(即AB=CD=15m),消防车高3m,救人时云梯伸长至最长,在完成从12m(即BE=12m)高的B处救人后,还要从15m(即DE=15m)高的D处救人,这时消防车从A处向着火的楼房靠近的距离AC为多少米?(延长AC交DE于点O,AO⊥DE,点B在DE上,OE的长即为消防车的高3m)1(2023春·山西晋中·八年级统考期中)如图,小巷左右两侧是竖直的高度相等的墙,一根竹竿斜靠在左墙时,竹竿底端O到左墙角的距离OC为0.7米,顶端B距墙顶的距离AB为0.6米若保持竹竿底端位置不动,将竹竿斜靠在右墙时,竹竿底端到右墙角的距离OF为1.5米,顶端E距墙项D的距离DE为1米,点A、B、C在一条直线上,点D、E、F在一条直线上,AC⊥CF,DF⊥CF.求:(1)墙的高度;(2)竹竿的长度.2(2023春·浙江宁波·八年级统考期末)如图,一条笔直的竹竿斜靠在一道垂直于地面的墙面上,一端在墙面A处,另一端在地面B处,墙角记为点C.(1)若AB=6.5米,BC=2.5米.①竹竿的顶端A沿墙下滑1米,那么点B将向外移动多少米?②竹竿的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?如果不可能,请说明理由;如果可能,请求出移动的距离(保留根号).(2)若AC=BC,则顶端A下滑的距离与底端B外移的距离,有可能相等吗?若能相等,请说明理由;若不等,请比较顶端A下滑的距离与底端B外移的距离的大小.3(2023春·辽宁沈阳·八年级统考期中)拉杆箱是人们出行的常用品,采用拉杆箱可以让人们出行更轻松.如图,一直某种拉杆箱箱体长AB=65cm,拉杆最大伸长距离BC=35cm,在箱体底端装有一圆形滚轮,当拉杆拉到最长时,滚轮的圆心在图中的A处,点A到地面的距离AD=3cm,当拉杆全部缩进箱体时,滚轮圆心水平向右平移55cm到A′处,求拉杆把手C离地面的距离(假设C点的位置保持不变).【题型2求旗杆高度】1(2023春·山西临汾·八年级统考期末)同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B 的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE 为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.1(2023春·江西景德镇·八年级统考期中)2021年是中国共产党建党100周年,大街小巷挂满了彩旗.如图是一面长方形彩旗完全展平时的尺寸图(单位:cm).其中长方形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为长方形绸缎旗面,将穿好彩旗的旗杆垂直插在地面上.旗杆从旗顶到地面的高度为240cm,在无风的天气里,彩旗自然下垂.求彩旗下垂时最低处离地面的最小高度h.2(2023春·八年级课时练习)太原的五一广场视野开阔,是一处设计别致,造型美丽的广场园林,成为不少市民放风筝的最佳场所,某校八年级(1)班的小明和小亮同学学习了“勾股定理”之后,为了测得图中风筝的高度CE,他们进行了如下操作:①测得BD的长为15米(注:BD⊥CE);②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明身高1.7米.(1)求风筝的高度CE.(2)过点D作DH⊥BC,垂足为H,求BH的长度.3(2023春·山西吕梁·八年级统考期中)如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C处折断,顶部(B)着地,离旗杆底部(A)4米,工人在修复的过程中,发现在折断点C的下方1.25米D处,有一明显裂痕,若下次大风将旗杆从D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?【题型3求小鸟飞行距离】1(2023春·陕西咸阳·八年级统考期中)如图,一只小鸟旋停在空中A点,A点到地面的高度AB=20米,A点到地面C点(B、C两点处于同一水平面)的距离AC=25米.若小鸟竖直下降12米到达D点(D点在线段AB上),求此时小鸟到地面C点的距离.1(2023春·八年级课时练习)有两棵树,一棵高6米,另一棵高3米,两树相距4米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了( )米.A.3B.4C.5D.62(2023春·山东枣庄·八年级统考期中)有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?3(2023春·贵州贵阳·八年级校考期中)假期中,小明和同学们到某海岛上去探宝,按照探宝图,他们从A点登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走了3千米,再折向北走了6千米处往东一拐,仅走了1千米就找到宝藏,问登陆点A到宝藏埋藏点B的直线距离是多少千米?【题型4求大树折断前的高度】1(2023春·八年级课时练习)如图,在倾斜角为45°(即∠NMP=45°)的山坡MN上有一棵树AB,由于大风,该树从点E处折断,其树顶B恰好落在另一棵树CD的根部C处,已知AE=1m,AC=18m.(1)求这两棵树的水平距离CF;(2)求树AB的高度.1(2023春·广东云浮·八年级统考期中)海洋热浪对全球生态带来了严重影响,全球变暖导致华南地区汛期更长、降水强度更大,使得登录广东的台风减少,但是北上的台风增多.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A.10mB.15mC.18mD.20m2(2023春·山西阳泉·八年级统考期末)我国古代数学名著《算法统宗》有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:“如图,有一架秋千,当它静止时,踏板离地距离PA的长为1尺,将它向前水平推送10尺时,即P C=10尺,秋千踏板离地的距离P B和身高5尺的人一样高,秋千的绳索始终拉得很直,试问绳索有多长?”,设秋千的绳索长为x尺,根据题意可列方程为.3(2023春·广东珠海·八年级校考期中)如图,一根直立的旗杆高8m,因刮大风旗杆从点C处折断,顶部B着地且离旗杆底部A4m.(1)求旗杆距地面多高处折断;(2)工人在修复的过程中,发现在折断点C的下方1.25m的点D处,有一明显裂痕,若下次大风将旗杆从点D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?【题型5判断是否受台风影响】1(2023春·湖北武汉·八年级统考期中)如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ 上A处距离O点240米,如果火车行驶时,火车头周围150米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/小时的速度行驶时,A处受到噪音影响的时间为秒.1(2023春·陕西西安·八年级统考期中)为了鼓励大家积极接种新冠疫苗,某区镇政府采用了移动宣讲的形式进行广播宣传.如图,笔直的公路MN的一侧点A处有一村庄,村庄到公路MN的距离为300m,宣讲车P周围500m以内能听到广播宣传,宣讲车P在公路上沿MN方向行驶.(1)村庄能否听到广播宣传?请说明理由.(2)已知宣讲车的速度是50m/min,如果村庄能听到广播宣传,那么总共能听多长时间?2(2023春·山东青岛·八年级校考期末)如图所示,在甲村至乙村的公路AB旁有一块山地正在开发,现需要在C处进行爆破,已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB.为了安全起见,爆破点C周围半径250米范围内不得进入,在进行爆破时,公路AB 是否有危险而需要封锁?如果需要,请计算需要封锁的路段长度;如果不需要,请说明理由.3(2023春·广东广州·八年级校考期中)如图,A城气象台测得台风中心在A城正西方向320km的B 处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,则A城遭受这次台风影响有多长时间?【题型6解决水杯中筷子问题】1(2023春·河北唐山·八年级统考期中)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16cm的直吸管露在罐外部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.4<a<5B.3≤a≤4C.2≤a≤3D.1≤a≤21(2023春·重庆渝中·八年级重庆市求精中学校校考期中)一根竹竿插到水池中离岸边1.5m远的水底,竹竿高出水面0.5m,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为()A.2mB.2.5cmC.2.25mD.3m2(2023春·山东青岛·八年级校考期中)有一个边长为10米的正方形水池,在水池正中央有一根新生的芦苇,它高出水面1米.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问:这个水池水的深度和这根芦苇的长度分别是多少?3(2023春·河南漯河·八年级统考期中)如图,湖面上有一朵盛开的红莲,它高出水面30cm.大风吹过,红莲被吹至一边,花朵下部刚好齐及水面,已知红莲移动的水平距离为60cm,则水深是cm.【题型7解决航海问题】1(2023春·重庆巴南·八年级统考期末)在海平面上有A,B,C三个标记点,其中A在C的北偏西54°方向上,与C的距离是800海里,B在C的南偏西36°方向上,与C的距离是600海里.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为500海里,每隔半小时会发射一次信号,此时在点B处有一艘轮船准备沿直线向点A处航行,轮船航行的速度为每小时20海里.轮船在驶向A处的过程中,最多能收到多少次信号?(信号传播的时间忽略不计).1(2023春·河南信阳·八年级统考期末)如图,已知港口A东偏南10°方向有一处小岛B,一艘货轮从港口A沿南偏东40°航线出发,行驶80海里到达C处,此时观测小岛B在北偏东60°方向.(1)求此时货轮到小岛B的距离.(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.2(2023春·河南洛阳·八年级校联考期中)如图,海上救援船要从距离海岸8海里的A点位置到海岸BD的M处携带救援设备,然后到距离海岸16海里处的C点处对故障船实施救援.已知BD间的距离为18海里,为使救援船尽快赶到故障船实施救援,救援设备被放置在恰当位置.(1)试在图中确定点M的位置;(2)若救援船的速度是20节(1节=1海里/小时),求这艘救援船最快多长时间到达故障船?3(2023春·全国·八年级期末)我国在防控新冠疫情上取得重大成绩,但新冠疫情在国外开始蔓延,为了防止境外输入病例的增加,我国暂时停止了一切国际航班、水运.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我国海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,6分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,乙巡航艇的航向为北偏西n°.(1)求甲巡逻艇的航行方向(用含n的式子表示)(2)成功拦截后,甲、乙两艘巡逻艇同时沿原方向返回且速度不变,3分钟后甲、乙两艘巡逻艇相距多少海里?【题型8求河宽】1(2023春·广东广州·八年级校考期中)如图,为了测量池塘的宽度DE,在池塘周围的平地上选择了A、B、C三点,且A、D、E、C四点在同一条直线上,∠C=90°,已测得AB=100m,BC=60m,AD=20m,EC=10m,求池塘的宽度DE.1(2023春·八年级课时练习)如图所示,湖的两岸有两点A,B,在与AB成直角的BC方向上的点C处测得AC=50米,BC=40米.求:(1)A,B两点间的距离;(2)点B到直线AC的距离.2(2023春·河南洛阳·八年级统考期末)苏科版《数学》八年级上册第35页第2题,介绍了应用构造全等三角形的方法测量了池塘两端A、B两点的距离.星期天,爱动脑筋的小刚同学用下面的方法也能够测量出家门前池塘两端A、B两点的距离.他是这样做的:选定一个点P,连接PA、PB,在PM上取一点C,恰好有PA=14m,PB=13m,PC=5m,BC=12m,他立即确定池塘两端A、B两点的距离为15m.小刚同学测量的结果正确吗?为什么?3(2023春·河南南阳·八年级统考期末)如图,在一条绷紧的绳索一端系着一艘小船,河岸上一男孩拽着绳子另一端向右走,绳端从点C移动到点E,同时小船从点A移动到点B,且绳长始终保持不变,回答下列问题:(1)根据题意,可知AC BC+CE(填“>”“<”“=”);(2)若CF=5米,AF=12米,AB=4米,求男孩需向右移动的距离CE(结果保留根号).【题型9求台阶上地毯长度】1(2023春·山西吕梁·八年级统考期中)如图是楼梯的示意图,楼梯的宽为5米,AC=5米,AB=13米,若在楼梯上铺设防滑材料,则所需防滑材料的面积至少为()A.65m2B.85m2C.90m2D.150m21(2023春·八年级课时练习)如图,要修建一个育苗棚,棚高h=3m,棚宽a=4m,棚的长为12m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?2(2023春·山东济南·八年级济南外国语学校校考期中)如图,是一个三级台阶,它的每一级的长,宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物,请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是()A.12B.13C.14D.153(2023春·重庆忠县·八年级统考期末)如图是某幼儿园楼梯的截面图,拟在楼梯上铺设防撞地段,若防撞地毯每平方米售价为40元,楼梯宽为2米,则幼儿园购买防撞地毯至少需要元.【题型10判断汽车是否超速】1(2023春·山西忻州·八年级统考期中)某城市规定小汽车在街道上的行驶速度不得超过70千米/时,一辆小汽车在一条城市街道上直行,某一时刻刚好行驶到路对面“车速检测仪A”正前方30米C处,过了2秒后,测得小汽车位置B与“车速检测仪A”之间的距离为50米,这辆小汽车超速了吗?请说明理由.1(2023春·江苏扬州·八年级校考期中)“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过60千米/时.这时一辆小汽车在一条城市街道直路上行驶,某一时刻刚好行驶到路对面车速检测仪A正前方50米C处,过了8秒后,测得小汽车位置B与车速检测仪A之间的距离为130米,这辆小汽车超速了吗?请说明理由.2(2023春·内蒙古巴彦淖尔·八年级校考阶段练习)超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?3(2023春·山东济南·八年级统考期末)如图,A中学位于南北向公路l的一侧,门前有两条长度均为100米的小路通往公路l,与公路l交于B,C两点,且B,C相距120米.(1)现在想修一条从公路l到A中学的新路AD(点D在l上),使得学生从公路l走到学校路程最短,应该如何修路(请在图中画出)?新路AD长度是多少?(2)为了行车安全,在公路l上的点B和点E处设置了一组区间测速装置,其中点E在点B的北侧,且距A中学170米.一辆车经过BE区间用时5秒,若公路l限速为60km/h(约16.7m/s),请判断该车是否超速,并说明理由.【题型11选址使到两地距离相等】1(2023春·八年级课时练习)如图铁路上A,B两点相距40千米,C,D为两村庄,DA⊥AB,CB⊥AB,垂足分别为A和B,DA=24千米,CB=16千米.现在要在铁路旁修建一个煤栈E,使得C,D两村到煤栈的距离相等,那么煤栈E应距A点()A.20千米B.16千米C.12千米D.无法确定1(2023春·辽宁丹东·八年级校考阶段练习)如图,在一颗树上10米高的D处有两只猴子,其中一只猴子沿树爬下,走到离树20米处的池塘B处,另一只猴子爬到树顶A处直跃向池塘的B处,如果两只猴子所经过的路程相等,试问这颗树有多高?2(2023春·山西朔州·八年级统考期末)根据山西省教育厅“2023年度基础教育领域重点工作推进会”要求,扎实推进建设100所公办幼儿园任务落实,某地计划要在如图所示的直线AB上,新建一所幼儿园,该区域有两个小区所在的位置在点C和点D处,CA⊥AB于A,DB⊥AB于B.已知AB=2.5km,CA =1.5km,DB=1.0km求该幼儿园E应该建在距点A为多少km处,可以使两个小区到幼儿园的距离相等.3(2023春·河南洛阳·八年级统考期末)如图,某学校(A点)到公路(直线l)的距离为30m,到公交站(D点)的距离为50m,现在公路边上建一个商店(C点),使商店到学校A及公交站D的距离相等,求商店C与公交站D之间的距离(结果保留整数).【题型12求最短路径】1(2023春·辽宁沈阳·八年级校考期末)如图,长方体的长为2,宽为1,高为3,一只蚂蚁从点A出发,沿长方体的外表面到点B处觅食,则它爬行的最短路程为()A.14B.18C.20D.261(2023春·河南郑州·八年级河南省实验中学校考期末)如图,一大楼的外墙面ADEF与地面ABCD 垂直,点P在墙面上,若PA=AB=10米,点P到AD的距离是8米,有一只蚂蚁要从点P爬到点B,它的最短行程是( )米.A.20B.85C.24D.6102(2023春·山西太原·八年级校考期末)如图,圆柱形容器的高17cm,底面周长是24cm,在外侧底面S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm点F处有一苍蝇,急于捕获苍蝇充饥的蜘蛛所走的最短路线长度是()A.20cmB.83cmC.433cmD.24cm3(2023春·河南郑州·八年级校联考期末)在一张长AB=13cm,宽AD=8cm的长方形纸片上,如图放置一根直棱柱的木块,它的底面为正方形,它的侧棱平行且大于纸片的宽AD,一只蚂蚁从点A处到点C 处走的最短路程是17cm,则该四棱柱的底面边长是cm.。

六年级勾股定理知识点归纳

六年级勾股定理知识点归纳

六年级勾股定理知识点归纳勾股定理是数学中的基础定理,也是学习几何学的重要内容之一。

在六年级数学中,学生将进一步学习和应用勾股定理,深入理解三角形的性质和关系。

本文将对六年级勾股定理的知识点进行归纳和总结。

1. 勾股定理的表述勾股定理又称毕达哥拉斯定理,是指:在直角三角形中,直角边的平方之和等于斜边的平方。

可以用数学语言来表示为:设直角三角形的两条直角边的长度分别为a、b,斜边的长度为c,则有a² + b² = c²。

2. 勾股定理的应用勾股定理可以应用在解决与直角三角形相关的问题中。

一些常见的应用包括:- 通过已知两条直角边的长度求解斜边的长度。

- 判断一个三角形是否为直角三角形,只需验证是否满足勾股定理。

- 利用勾股定理计算建筑物的高度、距离等。

3. 勾股定理的证明勾股定理有多种证明方法,这里简单介绍一种基于几何的证明方法:设直角三角形ABC,其中∠B为直角,边AC为斜边,两直角边分别为AB和BC。

首先,我们将三角形ABC平移使得BC边与原点重合。

此时,点C的坐标为(0,0),点A的坐标为(a,0),点B的坐标为(0,b)。

然后,我们通过计算两个向量的内积来证明勾股定理。

向量AB可以表示为(-a,b),向量AC可以表示为(a,0)。

根据向量的内积公式,有:AB·AC = (-a,b)·(a,0) = -a²。

又因为AB与AC垂直,所以AB与AC的内积为0,即AB·AC = 0。

综上所述:-a² = 0,即a² = b² + (a-b)² = b² + a² - 2ab + b² = a² + b²- 2ab。

整理得:a² + b² = c²。

证明完成。

4. 勾股定理的推广勾股定理不仅适用于直角三角形,还可推广到其他形状的三角形中。

勾股定理及两点间距离公式B(学生版)

勾股定理及两点间距离公式B(学生版)

学科教师辅导讲义2. 已知直角三角形的两边长分别是8cm 和6cm ,求它的面积.题型三:【例9】如下图,字母B 所代表的正方形的面积是 ;【例10】如图,在一块用边长为cm 20的正方形的地砖铺设的广场上,一只飞来的鸽子落在A 点处,,鸽子吃完小朋友洒在B 、C 处的鸟食,最少需要走多远?【例11】欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?B16925C B A【例12】如图,有一个高是1.5米、半径是1米的圆柱形油桶,在上地面靠边的地方有一小孔,从孔中插入一根铁棒,已知铁棒在油桶外的部分最短是0.5米,这根铁棒有多长?【例13】中国古代的数学家们不仅很早就发现并应用勾股定理,最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。

赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明。

你能结合这幅“勾股圆方图”证明勾股定理吗?【借题发挥】1.飞机在空中水平飞行,某一时刻刚好飞到一个男孩的头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?2.如图,每个小方格都是边长为1的正方形,C(1)求图中格点四边形ABCD 的面积和周长。

(2)求∠ADC 的度数。

6.在我国古代数学著作《九章算术》中记载了一个有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池中央有一根新生的芦苇,它高出水面2尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.这个水池的深度和这个芦苇的长度各为多少?题型四:两点间距离公式【例14】求下列两点间的距离:(1)()2,8A -和()3,4B - (2)()2,1C 和()2,3D -(3)()3,2P-和()23,1Q (4)()5,2M-和()2,5N1.在直角三角形ABC 中,3,4a b ==,则c = .2.直角边分别为8cm 和15cm 的直角三角形的斜边上的中线长 cm . 3.等腰三角形的腰长为13,底边长为10,则它的面积等于 . 4.已知代数式2425x z -+-与代数式21449y y -+的值互为相反数,则以,,x y z 为三边的三角形的形状为三角形,5.如图,在圆O 中,AB 是弦,直径CD 垂直平分AB 于M ,CD 15cm =,:3:5OM OC =,则弦AB 的长为 .解答题:1.在直角坐标平面内,已知点()6,2A -,点()2,4B -,在x 轴上有一点P ,且PA PB =.求点P 的坐标.2.已知:在△ABC 中,26,24,10AB cm AC cm BC cm ===,D 是AB 中点.求线段CD 的长.3.以()()()1,1,0,3,3,1A B C --三点为顶点,能否构成一个三角形?若能,请判断这个三角形的形状;若不能,请说明原因,4.菱形的周长为20cm ,它的一个锐角等于60°,求它的面积.【课堂总结】【课后作业】 一、基础巩固训练填空题:1.如果等腰直角三角形有一条边长2厘米,那么它的另两条边长分别长 厘米.2.如图所示,在Rt △ABC 中,∠BCA =90°,CD ⊥AB 于D ,E 为AB 的中点,3,33AC BC ==,则∠DCE 的度数为 .3.点()2,1A -和点()3,2B -之间的距离AB 为 .4.如果边长为3厘米的小正方形的面积之和等于一个大正方形的面积,那么大正方形的边长为 厘米.5.如果点()4,8M 和点(),5N a 之间的距离等于5,那么a 的值为 .选择题:1.以下列各组数为三边长的三角形中,不能组成三角形的是( )A.31,31,22+-;B.3.5,4.5,5;C.4,7.5,8.5;D.()221,2,11n n n n -+>.2.在直角三角形中,若斜边上的中线是奇数,一条直角边是偶数,则另一条直角边一定是( ) A.偶数; B.奇数; C.自然数; D.以上结论都不对. 3.在下列命题中,真命题有( )①有一个角等于另外两个角的差的三角熊是直角三角形;②有一条边的平方等于另外两条边的平方和的三角形是直角三角形; ③三条边长分别为10,20,30的三角形是直角三角形;④三个外角的度数之比为3:4:5的三角形是直角三角形. A.4个; B.3个; C.2个; D.1个.4.三角形三个内角的度数比为3:2:1,那么它的三条边的长度之比为( ) A.3:2:1; B.3:2:1; C.2:3:1; D.9:4:1.5.已知直角三角形有一条直角边长11厘米,另外两条边的长度都是自然数,那么这个三角形的周长为( ) A.120厘米; B.132厘米; C.144厘米; D.156厘米. 解答题:1.已知:在△ABC 中,AB AC =,D 是底边BC 上任意一点,连结AD .求证:22AB AD BD DC -=⋅.2.如图所示,在△ABC中,∠B=90°,2AB BC a==,AD是BC边上的中线,把点A翻折与点D重合,得到折痕EF,求线段AE与线段BE的长度之比.3.点P、Q为Rt△ABC斜边AB的三等分点.(1)若CP⊥AB,CP=2,求斜边AB的长.(2)若2CP CQ==,求斜边AB的长.二、综合提高训练1.△ABC三边a,b,c为边向外作正方形,正三角形,以三边为直径作半圆,若S1+S2=S3成立,则是直角三角形吗?A BCabcS1S3S2ACabcS2S3BS12.你能用下面的图形也来验证一下勾股定理吗?试一试!。

勾股定理学生活动及设计意图

勾股定理学生活动及设计意图

勾股定理学生活动及设计意图
勾股定理是一个著名的数学定理,它宣称了一个直角三角形的两组相较边的平
方和等于另一边的平方的定理,是中国古代数学家们创造的著名定理之一。

在基础教育阶段,为了让学生了解并深入探索这一定理,教研室特别举办了一次以勾股定理为主题的学生实践活动。

本次活动以勾股定理为主题,由学校教师根据学生的实际情况,确定课时设计
细节,教师提出完整的教学方案,实施学生实践活动,以课程设计有效教学。

本次活动安排学生进行实践分解式学习,教师在课前充分讲解勾股定理的数学
原理,让学生明白它的定义和特点,学生了解它的特点后,可以仔细观察三角形的一些特征,让学生思考这一著名定理的实际应用,采取几何建模,找出勾股定理中kaa和uue的结论,有助于学生在本次实践中收获更多的知识。

实践活动在进行过程中,学生采取探究式的学习方式,加强培养学生的解决问
题能力,增强学生的创新能力,在学习过程中,学生要增强技能操作的能力,团结协作,解决问题,加强 communication和数学的综合能力,提高学生的自学能力。

本次活动的设计意图是,通过实践活动,让学生深入学习和了解勾股定理,培
养学生独立思考、探究和创新能力,丰富学生的课外活动,增强学生学习学科基础知识和技能操作能力。

3.1 探索勾股定理(学生版) 2024-2025学年七年级数学上册同步课堂(鲁教版五四制)

3.1 探索勾股定理(学生版) 2024-2025学年七年级数学上册同步课堂(鲁教版五四制)

3.1 探索勾股定理◆勾股定理的定义:直角三角形的两条直角边a 、b 的平方和等于斜边c 的平方,即:222a b c += .题型一 应用勾股定理求线段长1.(2024春•嘉祥县期中)如图,在ABC D 中,90C Ð=°,若1AC =,2AB =,则BC 的长是( )A .1BC.2D2.(2023秋•临淄区期末)如图,在Rt ABC D 中,90ACB Ð=°,3BC =,4AC =,CD AB ^于点D ,E是AB的中点,则DE的长为( )A.0.6B.0.7C.0.8D.0.9题型二应用勾股定理求面积1.(2024春•齐河县校级月考)如图,字母B所代表的正方形的面积是( )cmcm D.306 2cm B.15 2A.12 2cm C.144 22.(2022秋•郓城县期中)如图,在Rt ABCD中,90Ð=°,分别以各边为直径作半圆,图中阴影部分在C数学史上称为“希波克拉底月牙”,当4BC=时,则阴影部分的面积为( )AC=,2A.4B.4p C.8p D.83.(2024春•济南期末)已知,如图长方形ABCD中,3=,将此长方形折叠,使点BAD cmAB cm=,9D的面积为( )与点D重合,折痕为EF,则ABE6cm D.212cm3cm B.24cm C.2A.24.(2023秋•阳信县期末)如图,在Rt ABCAB=,则正方形ADEC和正方形BCFGÐ=°,若15D中,90C的面积和为( )A.225B.200C.150D.无法计算5.(2024春•沂水县校级月考)如图所示的是由两个直角三角形和三个正方形组成的图形,其中阴影部分的面积是( )A.50B.16C.25D.416.如图,由两个直角三角形和三个大正方形组成的图形,其中阴影部分面积是( )A.16B.25C.144D.169题型三勾股定理的证明1.(2024春•历下区期末)勾股定理是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端,下面四幅图中不能证明勾股定理的是( )A.B.C.D.2.(2024春•梁山县校级月考)如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.如果直角三角形较长直角边的长为a,较短直角边的长为b,若7ab=,大正方形的面积为30,则小正方形的边长为( )A.16B.8C.4D.23.(2024春•阳谷县校级月考)如图是“赵爽弦图”,它是由4个全等的直角三角形拼成的图形,若大正方形的面积是29,小正方形的面积是9,设直角三角形较长直角边为b,较短直角边为a,则a b+的值是( )A .5B .6C .7D .84.(2024春•嘉祥县期中)如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形的面积是17,小正方形的面积是5,直角三角形较长直角边为a ,较短直角边为b ,则2()a b +的值是( )A .25B .17C .29D .225.(2023秋•邹平市期末)下面图形能够验证勾股定理的有( )A .0B .1C .2D .36.(2022春•兖州区期末)我国是最早了解勾股定理的国家之一.据《周髀算经》记载,勾股定理的公式与证明是在商代由商高发现的,故又称之为“商高定理”;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,并给出了另外一个证明,下面四幅图中,不能证明勾股定理的是( )A .B .C .D .7.(2024春•齐河县校级月考)如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,如果大正方形的面积为16,小正方形的面积为3,那么2()a b +的值为 .8.(2015秋•滕州市校级期末)如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两边长分别为3和5,则小正方形的面积为 .9.(2024春•河东区校级月考)阅读下列材料,并完成相应任务.教材第九章探索整式乘法法则时,我们用不同方法表示同一个图形的面积,直观地理解乘法法则.如图1,现有4张大小形状相同的直角三角形纸片,三边长分别是a 、b 、c ,将它们拼成如图2的大正方形.(1)观察:图2中,大正方形的面积可以用2()a b +表示,也可以用含a 、b 、c 的代数式表示为 ,那么可以得到等式: .整理后,得到a 、b 、c 之间的数量关系:222a b c +=,这就是著名的“勾股定理”,它反映了直角三角形的三边关系,即直角三角形的两直角边a 、b 与斜边c 所满足的关系式.(2)思考:爱动脑的小明通过图2得到启示,发现其它图形也能验证“勾股定理”,请你帮助小明画出该图形.(画出一种即可)(3)应用:如图3,在直角三角形ABC 中,90C Ð=°,3AC =,4BC =,那么AB = ,点D 为射线BC 上一点,将ACD D 沿AD 所在直线翻折,点C 的对应点为点1C ,如果点1C 在射线BA 上,那么CD = .(直接写出答案)10.(2024春•兰山区校级月考)如图①,直角三角形的两条直角边长分别是a ,()b a b <,斜边长为c .(1)探究:用四个这样的直角三角形拼成一大一小两个正方形(如图②).①小正方形的边长为c ,大正方形的边长为 ;②由大正方形面积的不同表示方式可以得出等式 ,整理得 ,从而验证勾股定理;(2)应用:将两个这样的直角三角形按图③所示摆放,使BC 和CD 在一条直线上,连接AE .请你类比(1)中的方法用图③验证勾股定理.11.(2024春•昌乐县期中)公元3世纪,古人就通过拼图验证了勾股定理:在直角三角形中两直角边a 、b 与斜边c 满足关系式222a b c +=.还探索验证了勾股定理的逆定理:如果三角形三边满足222a b c +=,则这个三角形是直角三角形.(1)小明发现证明勾股定理的新方法:如图1,在正方形ACDE 边CD 上取点B ,连接AB ,得到Rt ACB D ,三边分别为a ,b ,c ,剪下ACB D 把它拼接到AEF D 的位置,如图2所示,请利用面积不变证明勾股定理.(2)一个零件的形状如图3,按规定这个零件中A Ð和C Ð都应是直角,小明测得这个零件各边尺寸(单位:)cm 如图③所示,这个零件符合要求吗?12.(2024春•长清区期中)(1)计算:(2)()a b a b ++= ;(2)图形是一种重要的数学语言,它直观形象,我们可以用几何图形的面积来解释一些代数中的等量关系.例如:上面的计算是否正确我们可以通过图1来进行验证和解释.请同学们分别写出图2、图3能解释的乘法公式:图2: ;图3: ;(3)利用几何图形的面积,我们还可以去探究一些其它的等量关系:做4个全等的直角三角形,设它们的两条直角边分别为a ,b ,斜边为c ,再做1个长分别为c 的正方形,把它们按图4所示的方式拼成一个大正方形.试用不同的方法计算正方形的面积,就可以得到直角三角形的三边的数量关系:222a b c +=.这一个数量关系,我们叫做“勾股定理”,请你利用图4来证明勾股定理,即222a b c +=.(4)如图5,在Rt ABC D 中,90ACB Ð=°,CD 是AB 边上高,4AC =,3BC =,求CD 的长度.。

勾股定理中的四类最短路径模型(学生版)--初中数学

勾股定理中的四类最短路径模型勾股定理中的最短路线问题通常是以“两点之间,线段最短”为基本原理推出的。

人们在生产、生活实践中,常常遇到带有某种限制条件的最近路线即最短路线问题。

对于数学中的最短路线问题可以分为两大类:第一类为在同一平面内;第二类为空间几何体中的最短路线问题,对于平面内的最短路线问题可先画出方案图,然后确定最短距离及路径图。

对于几何题内问题的关键是将立体图形转化为平面问题求解,然后构造直角三角形,利用勾股定理求解。

模型1.圆柱中的最短路径模型【模型解读】圆柱体中最短路径基本模型如下:计算跟圆柱有关的最短路径问题时,要注意圆柱的侧面展开图为矩形,利用两点之间线段最短结合勾股定理进行求解,注意展开后两个端点的位置,有时候需要用底面圆的周长进行计算,有时候需要用底面圆周长的一半进行计算。

注意:1)运用勾股定理计算最短路径时,按照展开-定点-连线-勾股定理的步骤进行计算;2)缠绕类题型可以求出一圈的最短长度后乘以圈数。

【最值原理】两点之间线段最短。

1(2023·广东·八年级期中)如图,一个底面圆周长为24cm,高为9cm的圆柱体,一只蚂蚁从距离上边缘4cm的点A沿侧面爬行到相对的底面上的点B所经过的最短路线长为()A.413cmB.15cmC.14cmD.13cm【答案】D【分析】将圆柱体展开,利用勾股定理进行求解即可.【详解】解:将圆柱体的侧面展开,连接AB,如图所示:由于圆柱体的底面周长为24cm,则BD=24×12=12cm,又因为AD=9-4=5cm,所以AB=122+52=13(cm),即蚂蚁沿表面从点A到点B所经过的最短路线长为13cm.故选:D.【点睛】本题考查勾股定理的应用-最短路径问题.解题的关键是将立体图形展开为平面图形,利用勾股定理进行求解.2(2023·重庆·八年级期末)如图,圆柱形玻璃杯高14cm,底面周长为18cm,在外侧距下底处1cm有一只蜘蛛,与蜘蛛相对的圆柱形容器的上端距开口处1cm的外侧点处有一只苍蝇,蜘蛛捕到苍蝇的最短路线长是cm.【答案】15【分析】展开后连接SF,求出SF的长就是捕获苍蝇的蜘蛛所走的最短路径,过S作SE⊥CD于E,求出SE、EF,根据勾股定理求出SF即可.【详解】解:如图展开后连接SF,求出SF的长就是捕获苍蝇的蜘蛛所走的最短路径,过S作SE⊥CD于E,则SE=BC=12×18=9(cm),EF=14-1-1=12(cm),在Rt△FES中,由勾股定理得:SF=SE2+EF2=92+122=15(cm),故答案为15.【点睛】本题考查勾股定理、平面展开-最短路线问题,关键是构造直角三角形,题目比较典型,难度适中.3(2023春·山东济宁·八年级校考期中)春节期间,某广场用彩灯带装饰了所有圆柱形柱子.为了美观,每根柱子的彩灯带需要从A点沿柱子表面缠绕两周到其正上方的B点,如图所示,若每根柱子的底面周长均为2米,高均为3米,则每根柱子所用彩灯带的最短长度为米.【答案】5【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】解:将圆柱表面切开展开呈长方形,则彩灯带长为2个长方形的对角线长,∵圆柱高3米,底面周长2米,∴AC2=22+1.52=6.25,∴AC=2.5,∴每根柱子所用彩灯带的最短长度为5m.故答案为5.【点睛】本题考查了平面展开-最短路线问题,勾股定理的应用.圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.1.(2023·湖北十堰·统考一模)如图,这是一个供滑板爱好者使用的U形池,该U形池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是弧长为12m的半圆,其边缘AB= CD=20m(边缘的宽度忽略不计),点E在CD上,CE=4m.一滑板爱好者从A点滑到E点,则他滑行的最短距离为()A.28mB.24mC.20mD.18m【答案】C【分析】滑行的距离最短,即是沿着AE的线段滑行,我们可将半圆展开为矩形来研究,展开后,A、D、E 三点构成直角三角形,AE为斜边,AD和DE为直角边,写出AD和DE的长,根据题意,由勾股定理即可得出AE的距离.【解析】解:将半圆面展开可得:AD =12米,DE =DC -CE =AB -CE =16米,在Rt △ADE 中,AE =122+162=20(米).即滑行的最短距离为20米.故选:C .【点睛】本题考查了平面展开-最短路径问题,U 型池的侧面展开图是一个矩形,此矩形的宽是半圆的弧长,矩形的长等于AB =CD =20m .本题就是把U 型池的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.2.(2023春·四川德阳·八年级校考期中)如图,圆柱底面半径为2πcm ,高为9cm ,点A ,B 分别是圆柱两底面圆周上的点,且A ,B 在同一条竖直直线上,用一根棉线从A 点顺着圆柱侧面绕3圈到B 点,则这根棉线的长度最短为cm .【答案】15【分析】要求圆柱体中两点之间的最短路径,最直接的作法,就是将圆柱体展开,然后利用两点之间线段最短解答.【解析】解:圆柱体的展开图如图所示:用一棉线从A 顺着圆柱侧面绕3圈到B 的运动最短路线是:AC →CD →DB ;即在圆柱体的展开图长方形中,将长方形平均分成3个小长方形,A 沿着3个长方形的对角线运动到B的路线最短;∵圆柱底面半径为2πcm ∴长方形的宽即是圆柱体的底面周长:2π×2π=4cm ;又∵圆柱高为9cm ,∴小长方形的一条边长是3cm ;根据勾股定理求得AC =CD =DB =32+42=5(cm );∴AC +CD +DB =15(cm );故答案为:15.【点睛】本题主要考查了平面展开--路径最短问题.圆柱的侧面展开图是一个长方形,此长方形的宽等于圆柱底面周长,长方形的长等于圆柱的高.本题就是把圆柱的侧面展开成长方形,“化曲面为平面”,用勾股定理解决.3.(2022·山东青岛·八年级期末)如图,一个圆桶,底面直径为16cm,高为18cm,则一只小虫从下底点A处爬到上底B处再回到A处,则小虫所爬的最短路径长是( )(π取3)A.60cmB.40cmC.30cmD.20cm【答案】A【分析】先将圆柱的侧面展开为一矩形,而矩形的长就是底面周长的一半,高就是圆柱的高,再根据勾股定理就可以求出其值.【解析】解:展开圆柱的侧面如图,根据两点之间线段最短就可以得知AB最短.由题意,得AC=3×16÷2=24,在Rt△ABC中,由勾股定理,得AB=AC2+BC2=242+182=30cm.∵一只小虫从下底点A处爬到上底B处再回到A处,∴最短路径长为60cm.故选:A.【点睛】本题考查了圆柱侧面展开图的运用,两点之间线段最短的运用,勾股定理的运用.在解答时将圆柱的侧面展开是关键.模型2.长方体中的最短路径模型【模型解读】长方体中最短路径基本模型如下:计算跟长方体有关的最短路径问题时,要熟悉长方体的侧面展开图,利用两点之间线段最短结合勾股定理进行求解,注意长方体展开图的多种情况和分类讨论。

勾股定理中的七类翻折模型(学生版)

勾股定理中的七类翻折模型翻折问题属于图形变换中的实际问题,也是近些年中考试卷出题老师青睐的题型。

在解决翻折问题的有关的题目中,要注意隐含的已知条件比较多。

比如翻折前后的图形全等,这样就好出现相等的线段和相等的角;因为大部分翻折问题是对矩形进行翻折,所以翻折后由于线段交错,出现的直角三角形也引起注意;因为翻折问题本身是轴对称的问题,所以翻折前后对应点所连线段会被折痕所在直线垂直平分;折痕还会平分翻折所形成的的两个角。

总之,翻折问题并不复杂,只要要把隐含已知条件熟记于心,再结合其他有关知识就能让此类问题迎刃而解了。

【知识储备】勾股定理在有关图形折叠计算的问题中的共同方法是:在图形中找到一个直角三角形,然后设图形中某一未知数为x,将此三角形中的三边长用具体数或含x的代数式表示,再利用勾股定理列出方程,从而得出要求的线段的长度。

1模型1.折痕过对角线模型【模型解读】沿着矩形的对角线所在直线进行翻折。

已知矩形ABCD中,以对角线AC为折痕,折叠△ABC,点B的对应点为B'.结论1:△ABC≌△AB C;结论2:折痕AC垂直平方BB';结论3:△AEC是等腰三角形。

1(2023·成都市八年级课时练习)如图,在矩形ABCD中,AB=6,将△ABD沿对角线BD对折,得到△EBD,DE与BC交于F,∠ADB=30°,则EF=()A.23B.3C.33D.62(2022·浙江杭州·八年级校联考期中)如图,矩形ABCD中,BC=4,DC=2,如果将该矩形沿对角线BD 折叠,使点C落在点F处,那么图中阴影部分的面积是.1.(2022·四川初二期末)如图,在长方形纸片ABCD 中,AB =8cm ,AD =6cm . 把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则AF 的长为()A.254cmB.152cmC.7cmD.132cm 2.(2022春·福建泉州·八年级校考期中)如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿对角线AC 折叠,点D 落在D 处.(1)求CF 的长;(2)求重叠部分△AFC 的面积.2模型2.折痕过一顶点模型【模型解读】沿着矩形的一个顶点和一边上的点的线段所在直线进行翻折。

人教版八年级下册专项训练专题02 勾股定理逆定理及应用(学生版)

专题02 勾股定理逆定理及应用一、知识点勾股定理的逆定理:两个边平方之和等于第三边的平方的三角形是直角三角形。

第三边即为直角三角形的斜边。

勾股定理逆定理的应用:证明直角三角形二、标准例题:例1:如图,一个零件的形状如图所示,按规定这个零件中∠A 与∠DBC 都应为直角.工人师傅量的这个零件各边的尺寸如图所示.(1)这个零件符合要求吗?(2)求这个四边形的面积.例2:课堂上学习了勾股定理后,知道“勾三、股四、弦五”.王老师给出一组数让学生观察:3、4、5;5、12、13;7、24、25;9、40、41;…,学生发现这些勾股 数的勾都是奇数,且从 3 起就没有间断过,于是王老师提出以下问题让学生解决.(1)请你根据上述的规律写出下一组勾股数:11、________、________;(2)若第一个数用字母a (a 为奇数,且a ≥3)表示,那么后两个数用含a 的代数式分别怎么表示?小明发现每组第二个数有这样的规律4=32−12,12=52−12,24=72−12……,于是他很快表示了第二数为a 2−12,则用含a 的代数式表示第三个数为________;(3)用所学知识证明你的结论.三、练习1.将下列长度的三根木棒首尾顺次连接,能构成直角三角形的是( )A .1,2,3B .4,5,6C .5,12,15D .1,√3,22.下列几组数中,不能作为直角三角形三边长度的是( ) A .a=23 ,b=2 , c=54; B .a=1.5 ,b=2 , c=2.5 C .a=6 ,b=8 , c= 10; D .a= 15,b=8 , c=173.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是 ( ) A .∠A =∠C -∠B B .a 2=b 2-c 2 C .a:b:c =2:3:4 D .a =34,b =54,c =14.以下列数组为边长,能构成直角三角形的是( ) A .2 ,3,4 B .1,12,13 C .1,√2,√3 D .0.2,0.5,0.6 5.下列说法中,正确的有( )①如果∠A+∠B -∠C=0,那么△ABC 是直角三角形; ②如果∠A:∠B:∠C=5:12:13,则△ABC 是直角三角形; ③如果三角形三边之比为√7:√10:√17,则△ABC 为直角三角形;④如果三角形三边长分别是n 2−4、4n 、n 2+4(n >2),则△ABC 是直角三角形; A .1个 B .2个 C .3个 D .4个6.已知△ABC 的三边长a 、b 、c 满足√a −1+|b −1|+(c −√2)2=0,则△ABC 一定是( )三角形。

几何第16讲_勾股定理(学生版)A4

一.勾股定理的概念勾股定理(毕达哥拉斯定理):直角三角形中的两条直角边的平方和等于斜边的平方.即若a 、b 为直角边,c 为斜边,则222a b c +=.二.勾股定理逆定理如果三角形两边的平方和等于第三边的平方,那么该三角形是直角三角形.即△ABC 的三边分别是a 、b 、c ,其中c 为最长边,若222a b c +=,则△ABC 是直角三角形,∠C 为直角. 三.勾股数能够构成直角三角形三边长的三个正整数称为勾股数,即222a b c +=,a 、b 、c 为正整数时,称a 、b 、c 为一组勾股数.(1)每组勾股数的相同整数倍也是勾股数.(2)3、4、5是勾股数,又是三个连续整数,并不是所有三个连续整数都是勾股数. (3)常见的勾股数有:3、4、5;5、12、13;7、24、25;8、15、17;9、40、41等. 四.勾股定理的证明:重难点:勾股定理的实际应用. 题模一:勾股定理与勾股数例1.1.1如图在直角三角形ABC 中,AB =6,BC =8,求AC =______________.几何第16讲_勾股定理A BCa b cDCB A ba a a a bbbc c c c DCBAb a aaa b b bcc ccDC BA aa b bc cAB C例1.1.2如图在直角三角形ABC中,AB=8,AC=17,求.BC=______________.AB C例1.1.3一个长方形的长为12cm,对角线长为13cm,则该长方形的周长为_____________.例1.1.4如图一只小蚂蚁都在一个如图所示的长方体A点处,现在它要沿长方体表面爬向C 点,能不能帮这只小蚂蚁找到最短路线呢,最短路线的长度是多少?例 1.1.5三角形的三边长度之比为5:12:13,总长度为120厘米,那么三角形的面积为______平方厘米.(改自2014年6月22日考试真题)例1.1.6在一棵树的10米高处的B处有两只猴子,一只猴子爬下树走到离树20米的池塘的A处.另一只爬到树顶D后直接跃到A处,距离以直线计算(如图).如果两只猴子所进过的距离相等,请判断:这棵树高__________米.DBC A例1.1.7在测量旗杆的方案中,若旗杆高为21m,目测点到杆的距离为15m,则目测点到杆顶的距离为(设目高为1m)( )A.20m B.25m C.30m D.35m例1.1.8如图,请根据所给的条件,计算出大梯形的面积(单位:厘米).例1.1.9如图,四边形ABCD 各边的边长均已标在图中,其中∠A =90°,求四边形ABCD 的面积.例1.1.10根据图中所给的条件,求梯形ABCD 的面积.例1.1.11如图,梯形ABCD 中,AB 平行于CD ,又4BD =,3AC =,5AB CD +=.试求梯形ABCD 的面积.例1.1.12如图所示,在边长为15厘米的正方形纸片从各顶点起4厘米处,沿着45°角剪下,中间形成一个小正方形,这个小正方形面积为__________(平方厘米).103413121510ADCBEBA C D例1.1.13右图的图案由1个圆和2个大小相同的正方形组成(2个正方形的公共部分为正八边形)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年秋季同步课初二年级学生姓名:上课时间:勾股定理内容 基本要求略高要求较高要求勾股定理 及其逆定理 已知直角三角形的两边长,会求第三边长会用勾股定理及其逆定理解决简单问题知识框架图⎩⎨⎧勾股逆定理勾股定理勾股定理知识点讲解1. 勾股定理的内容:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么222a b c +=.即直角三角形中两直角边的平方和等于斜边的平方。

注:勾——最短的边、股——较长的直角边、弦——斜边。

CAB cba2. 勾股定理的证明:(1)方法一:将四个全等的直角三角形拼成如图所示的正方形:()22222142.ABCD S a b c aba b c =+=+⨯∴+=正方形 DC BA(2)方法二:将四个全等的直角三角形拼成如图所示的正方形:中考考纲知识体系()22222142.S c a b aba b c =-+⨯∴+=正方形EFGHGFEH(3)方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形:2()()112222ABCD a b a b S ab c +-==⨯+梯形222.a b c ∴+=c bacba ED CBA3. 勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

即 222,,ABC AC BC AB ABC ∆+=∆在中如果那么是直角三角形。

4. 勾股数:满足222a b c +=的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。

一 勾股定理【例1】 下列说法正确的是( )A. 若a b c ,,是ABC ∆的三边,则222a b c += B . 若a b c ,,是Rt ABC ∆的三边,则222a b c += C. 若 a b c ,,是Rt ABC ∆的三边,90A ∠=︒,则222a b c += D. 若 a b c ,,是Rt ABC ∆的三边,90C ∠=︒,则222a b c +=【例2】 一个直角三角形的三边为三个连续偶数,则它的三边长分别为______.【练一练】在直角三角形中,一条直角边为11cm ,另两边是两个连续自然数,则此直角三角形的周长为______.【例3】 在Rt ABC ∆中, 90C ∠=︒,(1)如果34a b ==,, 则c =_______; 例题精讲(2)如果68a b ==,, 则c =_______; (3)如果512a b ==,, 则c =_______; (4)如果1520a b ==,,则c =_______。

【例4】 等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.【例5】 已知直角三角形两边x ,y 的长满足224560x y y -+-+=,则第三边长为______________.【例6】 (2014•张家界)如图,在Rt △ABC 中,∠ACB=60°,DE 是斜边AC 的中垂线,分别交AB 、AC 于D 、E 两点.若BD=2,则AC 的长是________【例7】 Rt △ABC 中,斜边BC =2,则222AB AC BC ++的值为___________.【例8】 已知直角三角形的周长为62+,斜边为2,则该三角形的面积是 .【例9】 已知Rt ABC ∆斜边AB 的长为5cm 2,两直角边的差为1cm2,求三角形的周长及斜边上的高.【例10】 如图,已知Rt ABC △的周长为262AB =,求这个三角形的面积.ACB【例11】 在Rt ABC △,90C ∠=︒,若54a b c +==,,则ABC S ∆= .【例12】 在三角形ABC 中,已知232AB AC BC ==,边上的高3AD =,求边BC 的长【例13】 已知ABC ∆中,20,15,AB AC BC ==边上的高为12,求ABC ∆的面积.DCBA【例14】ABC ∆中,BC a =,AC b =,AB c =.若90C ∠=︒,如图1,根据勾股定理,则222a b c +=.若ABC ∆不是直角三角形,如图2和图3,请你类比勾股定理,试猜想22a b +与2c 的关系,并证明你的结论.图3图2图1abca bccb a AB CABCCBA二 勾股的实际应用【例15】 如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( )A. 0B. 1C. 2D. 3CBA【例16】 将一根长为24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中,设筷子露在杯子外边的长度为cm h ,则h 的取值范围为【练一练】已知,如图所示,折叠长方形的一边AD,使点D落在BC边的点F处,•如果8cmAB=,BC=,EC的长为.10cm【例17】如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,则BC的长为.【例18】如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为.【练一练】如图,以一个直角三角形的三边为边长分别向外作三个正方形,如果两个较大正方形的面积分别是576和676,那么最小的正方形的面积为【例19】如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.【练一练】在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______.【例20】 如图,在由单位正方形组成的网格图中标有AB , CD , EF , GH 四条线段,其中能构成一个直角三角形三边的线段是( )A .CD ,EF ,GHB .AB ,EF ,GHC .AB ,CD ,GH D .AB ,CD ,EFFHGEDBCA【例21】 如图,点P 是AOB ∠的角平分线上一点,过点P 作//PC OA 交OB 于点C .若60,4AOB OC ∠==,则点P 到OA 的距离PD 等于__________.PODCBA【例22】 某片绿地的形状如图所示,其中60A ∠=,AB BC ⊥,AD CD ⊥,200m AB =,100m CD =,求AD 、BC 的长(精确到1m ,3 1.732≈).DCBA【练一练】如图,△ABC 中,∠C =90°.(1)以直角三角形的三边为边向形外作等边三角形(如图①),探究S 1+S 2与S 3的关系; (2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图②),探究S 1+S 2与S 3的关系; (3)以直角三角形的三边为直径向形外作半圆(如图③),探究S 1+S 2与S 3的关系.图① 图② 图③【例23】 如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?【例24】 如图,ON 是垂直于地面OM 的前面,AB 是一根斜靠在墙面上长为a 的木条,当木条端点A 沿墙面下滑时,B 沿地面向右滑行(1)木条AB 的中点为P ,试判断木条滑行过程中,墙角处点O 到P 的距离怎样变化?说明理由 (2)木条在什么位置时,ABO ∆的面积最大?最大面积为多少?HP N MOBA【例25】 如图,有一个直角三角形纸片,两直角边6cm 8cm AC BC ==,,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,那么CD 的长为多少?EDCBA【例26】 如图,两个村庄A 、B 在河CD 的同侧,A 、B 两村到河的距离分别为AC =1千米,BD =3千米,CD =3千米.现要在河边CD 上建造一水厂,向A 、B 两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD 上选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用W .【例27】 如图,在ABC ∆中,AD 是BC 边上的中线,且AE BC ⊥于E ,若12AB =,=10BC ,=8AC ,求DE 的长.ED CBA【例28】 如图,在直角梯形ABCD 中,AD BC ∥(BC AD >),90A B ∠=∠=︒,12AB BC ==,E 是AB上一点,且45DCE ∠=︒,4BE =,求DE 的长.E DCBA【例29】 如图,在ABC ∆中,==4AB AC ,P 是BC 上异于,B C 的一点,求2AP BP PC +•的值. PCBA【例30】 如图,在Rt △ABC 中,∠C =90°,D 、E 分别为BC 和AC 的中点,AD =5,BE =102求AB 的长.【例31】 如图,△ABC 中,∠A =90°,AC =20,AB =10,延长AB 到D ,使CD +DB =AC +AB ,求BD的长.【例32】 如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的长.【例33】 如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长.【例34】 已知:如图,△ABC 中,∠C =90°,D 为AB 的中点,E 、F 分别在AC 、BC 上,且DE ⊥DF .求证:222AE BF EF +=.【例35】 如图,已知ABC △中,90ABC ∠=︒,AB BC =,三角形的顶点在相互平行的三条直线123l l l ,,上,且123l l l ,,之间的距离为2,23l l ,之间的距离为3,求AC 的长是多少?课后练习【题1】 如图,△ABC 和△DCE 都是边长为4的等边三角形,点B 、C 、E 在同一条直线上,连接BD ,则BD 的长为( )A . 3B .23C .33D .43EDC BA【题2】 一个有45︒角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边 的长为 .30°DCB30°A【题3】 小华将一条直角边长为1的一个等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得到一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到一个等腰直角三角形(如图3),则图3中的等腰直角三角形的一条腰长为_____________;同上操作,若小华连续将图1的等腰直角三角形折叠n 次后所得到的等腰直角三角形(如图1n +)的一条腰长为_______________________.【题4】 如图,如果以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去,……已知正方形ABCD 的面积S 1为1,按上述方法所作的正方形的面积依次为S 2,S 3,…,S n (n 为正整数),那么第8个正方形的面积S 8=______,第n 个正方形的面积S n =______.IJHGF EDC BA【题5】 在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?【题6】 如图所示,四边形ABCD 中,AB =3cm ,AD =4cm ,BC =13cm ,CD =12cm ,∠A =90°,求四边形ABCD的面积.DCBA【题7】 如图,点D 是△ABC 内一点,把△ABD 绕点B 顺时针方向旋转600得到△CBE ,若AD=4,BD=3,CD =5.(1)判断△DEC 的形状,并说明理由;(2)求∠ADB 的度数.ECBDA【题8】 已知:如图,∠A =60°,BD ⊥AC ,垂足为D ,CE ⊥AB ,垂足为E ,BD 和CE 交于点H ,HD =1cm ,HE =2cm ,求:BD ,CE 的长及△ABC 的面积.HEDCBA【题9】 如图,以等腰直角三角形ABC 的斜边AB 与边面内作等边△ABD ,连接DC ,以DC 当边作等边△DCE ,B 、E 在C 、D 的同侧,若AB 2求BE 的长.EDCBA【题10】 如图,第①个等腰直角三角形的直角边长等于1,以它的斜边长为腰长作第②个等腰直角三角形,再以第②个等腰直角三角形的斜边长为腰长作第③个等腰直角三角形….依次得到一系列的等腰直角三角形,其序号依次为①、②、③、④、….(1)分别求出第①、②、③、④个等腰直角三角形的斜边长; (2)归纳出第n 个等腰直角三角形的斜边长.(n 为正整数)⑤④③①②11【题11】 解答下列各题:(1)等腰直角ABC △和等腰直角CDE △的位置如图所示,连接BE ,并延长交AD 于F ,试问AD 与BE 之间有什么关系?证明你的结论;(2)若保持其他条件不变,等腰直角△CDE 绕C 点旋转,位置如下图所示,试问AD 与BE 之间的关系还存在吗?若存在,给予证明,若不存在,则说明理由.A BCDEFABCD E【题12】 一位同学拿了两块45°的三角尺△MNK 、△ACB 做了一个探究活动:将△MNK 的直角顶点M 放在△ABC 的斜边AB 的中点处,设AC =BC =a .图1MKNBC A图2K NMC BA图3A MBKCN(1)如图1,两个三角尺的重叠部分为ACM △,则重叠部分的面积为( ),周长为( ) (2)将图1中的△MNK 绕顶点M 逆时针旋转45 ,得到图2,此时重叠部分的面积为 ( ),周长为( ).(3)如果将△MNK 绕M 旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.【题13】 已知:三角形ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,(1)如图,E ,F 分别是AB ,AC 上的点,且BE =AF ,求证:△DEF 为等腰直角三角形;(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE =AF ,其他条件不变,那么,△DEF 是否仍为等腰 直角三角形?证明你的结论.FE DCBA【题14】 如图(1)是某种台灯的示意图,灯柱BC 固定垂直于桌面,AB 是转轴,可以绕着点B 转动,AB =10cm ,BC =20cm ,圆锥形灯罩的轴截面△APQ 是等腰直角三角形,∠P AQ =90°,且PQ ∥AB .转动前,点A 、B 、C 在同一直线上.(1)转动AB ,如图(2)所示,若灯心A 到桌面的距离AM =25cm ,求∠ABC 的大小; (2)继续转动AB ,使AB ⊥BC ,求此时台灯光线照在桌面上的面积?(假设桌面足够大)NQ PCB A N MPQA B C。

相关文档
最新文档