大学物理课件 第14章光的干涉习题答案
大学物理光的干涉习题答案

2.光程 . 的介质中通过几何路程L (1)光在折射率为 n 的介质中通过几何路程 ) 所引起的相位变化, 所引起的相位变化,相当于光在真空中 通过nL的路程所引起的相位变化。 通过 的路程所引起的相位变化。 的路程所引起的相位变化
δ (2)光程差引起的相位变化为 ∆ϕ = 2π ) λ 为光程差, 其中 δ 为光程差, λ 为真空中光的波长
4π
e
λ
n2e
上下面的反射皆无半波损失
n3
练习39 填空题 练习
n1
1. 上表面反射有半波损失
n
e
δ = 2ne + λ / 2 = 3e + λ / 2
2.
n1 < n2 < n3
上下面的反射皆有半波损失 δ = 2n2e = 2.6e
n1
n3
n2
e
3. 上表面反射有半波损失 反射增强 透射增强 即反射减弱
λ1
2
2 在这两波长之间无其它极大极小, 在这两波长之间无其它极大极小, 所以 k1 = k2 = k
得:
λ 2 : δ = 2 n′e = 2 k 2 ( λ 2 ) 对 λ1
2 2 k + 1 2λ 2 7 = = k λ1 3 k λ1 3 × 700 e= = = 78.6(nm) 2n′ 2 × 1.34
λ 5500 4n2 = = (A) 2k 2k k
λ
显然在白光范围内不可能产生反射加强。 显然在白光范围内不可能产生反射加强。 不可能产生反射加强
练习40 选择题 练习 1. D 相邻条纹的高差
2n 两滚柱的直径不变,即总高差不变, 两滚柱的直径不变,即总高差不变, 则条纹数不变。 则条纹数不变。 λ 2. C 比较劈尖条纹间距 l = 2n sin θ 或牛顿环暗环半径差 ∆r = rk +1 − rk
大学物理答案第14章

⼤学物理答案第14章⼤学物理答案第14章 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第⼗四章波动光学14-1 在双缝⼲涉实验中,若单⾊光源S 到两缝S 1 、S 2 距离相等,则观察屏上中央明条纹位于图中O 处,现将光源S 向下移动到图中的S ′位置,则()(A )中央明纹向上移动,且条纹间距增⼤(B )中央明纹向上移动,且条纹间距不变(C )中央明纹向下移动,且条纹间距增⼤(D )中央明纹向下移动,且条纹间距不变分析与解由S 发出的光到达S 1 、S 2 的光程相同,它们传到屏上中央O 处,光程差Δ=0,形成明纹.当光源由S 移到S ′时,由S ′到达狭缝S 1 和S 2 的两束光产⽣了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O ′处.使得由S ′沿S 1 、S 2 狭缝传到O ′处的光程差仍为0.⽽屏上各级条纹位置只是向上平移,因此条纹间距不变.故选(B ).题14-1 图14-2 如图所⽰,折射率为n 2 ,厚度为e 的透明介质薄膜的上⽅和下⽅的透明介质的折射率分别为n 1 和n 3,且n 1 <n 2 ,n 2>n 3 ,若⽤波长为λ的单⾊平⾏光垂直⼊射到该薄膜上,则从薄膜上、下两表⾯反射的光束的光程差是()()()()()2222222D 2C 22B 2A n e n e n e n e n λλλ---题14-2 图分析与解由于n 1 <n 2 ,n 2 >n 3 ,因此在上表⾯的反射光有半波损失,下表⾯的反射光没有半波损失,故它们的光程差222λ±=?e n ,这⾥λ是光在真空中的波长.因此正确答案为(B ).14-3 如图(a )所⽰,两个直径有微⼩差别的彼此平⾏的滚柱之间的距离为L ,夹在两块平⾯晶体的中间,形成空⽓劈形膜,当单⾊光垂直⼊射时,产⽣等厚⼲涉条纹,如果滚柱之间的距离L 变⼩,则在L 范围内⼲涉条纹的()(A )数⽬减⼩,间距变⼤(B )数⽬减⼩,间距不变(C )数⽬不变,间距变⼩(D )数⽬增加,间距变⼩题14-3图分析与解图(a )装置形成的劈尖等效图如图(b )所⽰.图中 d 为两滚柱的直径差,b 为两相邻明(或暗)条纹间距.因为d 不变,当L 变⼩时,θ变⼤,L ′、b 均变⼩.由图可得L d b n '==//2sin λθ,因此条纹总数n d b L N λ//2='=,因为d 和λn 不变,所以N 不变.正确答案为(C )14-4 ⽤平⾏单⾊光垂直照射在单缝上时,可观察夫琅⽲费衍射.若屏上点P 处为第⼆级暗纹,则相应的单缝波阵⾯可分成的半波带数⽬为()(A ) 3 个(B ) 4 个(C ) 5 个(D ) 6 个分析与解根据单缝衍射公式()()(),...2,1 212 22sin =+±±=k λk λk θb 明条纹暗条纹因此第k 级暗纹对应的单缝处波阵⾯被分成2k 个半波带,第k 级明纹对应的单缝波阵⾯被分成2k +1 个半波带.则对应第⼆级暗纹,单缝处波阵⾯被分成4个半波带.故选(B ).14-5 波长λ=550 nm 的单⾊光垂直⼊射于光栅常数d =='+b b 1.0 ×10-4 cm 的光栅上,可能观察到的光谱线的最⼤级次为()(A ) 4 (B ) 3 (C ) 2 (D ) 1分析与解由光栅⽅程(),...1,0dsin =±=k k λθ,可能观察到的最⼤级次为()82.1/2dsin max =≤λπk 即只能看到第1 级明纹,正确答案为(D ).14-6 三个偏振⽚P 1 、P 2 与P 3 堆叠在⼀起,P 1 与P 3的偏振化⽅向相互垂直,P 2与P 1 的偏振化⽅向间的夹⾓为30°,强度为I 0 的⾃然光⼊射于偏振⽚P 1 ,并依次透过偏振⽚P 1 、P 2与P 3 ,则通过三个偏振⽚后的光强为()(A ) 3I 0/16 (B ) 3I 0/8 (C ) 3I 0/32 (D ) 0分析与解⾃然光透过偏振⽚后光强为I 1 =I 0/2.由于P 1 和P 2 的偏振化⽅向成30°,所以偏振光透过P 2 后光强由马吕斯定律得8/330cos 0o 212I I I ==.⽽P 2和P 3 的偏振化⽅向也成60°,则透过P 3 后光强变为32/360cos 0o 223I I I ==.故答案为(C ).14-7 ⾃然光以60°的⼊射⾓照射到两介质交界⾯时,反射光为完全线偏振光,则折射光为()(A )完全线偏振光,且折射⾓是30°(B )部分偏振光且只是在该光由真空⼊射到折射率为3的介质时,折射⾓是30°(C )部分偏振光,但须知两种介质的折射率才能确定折射⾓(D )部分偏振光且折射⾓是30°分析与解根据布儒斯特定律,当⼊射⾓为布儒斯特⾓时,反射光是线偏振光,相应的折射光为部分偏振光.此时,反射光与折射光垂直.因为⼊射⾓为60°,反射⾓也为60°,所以折射⾓为30°.故选(D ).14-8 在双缝⼲涉实验中,两缝间距为0.30 mm ,⽤单⾊光垂直照射双缝,在离缝1.20m 的屏上测得中央明纹⼀侧第5条暗纹与另⼀侧第5条暗纹间的距离为22.78 mm .问所⽤光的波长为多少,是什么颜⾊的光?分析与解在双缝⼲涉中,屏上暗纹位置由()212λ+'=k d d x 决定,式中d ′为双缝到屏的距离,d 为双缝间距.所谓第5条暗纹是指对应k =4 的那⼀级暗纹.由于条纹对称,该暗纹到中央明纹中⼼的距离mm 27822.=x ,那么由暗纹公式即可求得波长λ.此外,因双缝⼲涉是等间距的,故也可⽤条纹间距公式λdd x '=?求⼊射光波长.应注意两个第5 条暗纹之间所包含的相邻条纹间隔数为9(不是10,为什么),故mm 97822.=?x . 解1 屏上暗纹的位置()212λ+'=k d d x ,把m 102782243-?==.,x k 以及d 、d ′值代⼊,可得λ=632.8 nm ,为红光.解2 屏上相邻暗纹(或明纹)间距'd x d λ?=,把322.7810m 9x -?=?,以及d 、d ′值代⼊,可得λ=632.8 nm .14-9 在双缝⼲涉实验中,⽤波长λ=546.1 nm 的单⾊光照射,双缝与屏的距离d ′=300mm .测得中央明纹两侧的两个第五级明条纹的间距为12.2 mm ,求双缝间的距离.分析双缝⼲涉在屏上形成的条纹是上下对称且等间隔的.如果设两明纹间隔为Δx ,则由中央明纹两侧第五级明纹间距x 5 -x -5 =10Δx 可求出Δx .再由公式Δx =d ′λ/d 即可求出双缝间距d .解根据分析:Δx =(x 5 -x -5)/10 =1.22×10-3 m双缝间距: d =d ′λ/Δx =1.34 ×10-4 m14-10 ⼀个微波发射器置于岸上,离⽔⾯⾼度为d ,对岸在离⽔⾯h ⾼度处放置⼀接收器,⽔⾯宽度为D ,且,D d D h ,如图所⽰.发射器向对⾯发射波长为λ的微波,且λ>d ,求接收器测到极⼤值时,⾄少离地多⾼?分析由发射器直接发射的微波与经⽔⾯反射后的微波相遇可互相⼲涉,这种⼲涉与劳埃德镜实验完全相同.形成的⼲涉结果与缝距为2d ,缝屏间距为D 的双缝⼲涉相似,如图(b )所⽰,但要注意的是和劳埃德镜实验⼀样,由于从⽔⾯上反射的光存在半波损失,使得两束光在屏上相遇产⽣的光程差为2/sin 2λθd +,⽽不是θd sin 2.题14-10 图解由分析可知,接收到的信号为极⼤值时,应满⾜(),...2,12/sin 2==+k λk λθd ()d k D D D h 412sin tan -=≈≈λθθ取k =1 时,得d D h 4min λ=. 14-11 如图所⽰,将⼀折射率为1.58的云母⽚覆盖于杨⽒双缝上的⼀条缝上,使得屏上原中央极⼤的所在点O 改变为第五级明纹.假定λ=550 nm ,求:(1)条纹如何移动?(2)云母⽚的厚度t.题14-11图分析 (1)本题是⼲涉现象在⼯程测量中的⼀个具体应⽤,它可以⽤来测量透明介质薄⽚的微⼩厚度或折射率.在不加介质⽚之前,两相⼲光均在空⽓中传播,它们到达屏上任⼀点P 的光程差由其⼏何路程差决定,对于点O ,光程差Δ=0,故点O 处为中央明纹,其余条纹相对点O 对称分布.⽽在插⼊介质⽚后,虽然两相⼲光在两介质薄⽚中的⼏何路程相同,但光程却不同,对于点O ,Δ≠0,故点O 不再是中央明纹,整个条纹发⽣平移.原来中央明纹将出现在两束光到达屏上光程差Δ=0的位置.(2) ⼲涉条纹空间分布的变化完全取决于光程差的变化.因此,对于屏上某点P (明纹或暗纹位置),只要计算出插⼊介质⽚前后光程差的变化,即可知道其⼲涉条纹的变化情况.插⼊介质前的光程差Δ1 =r 1 -r 2 =k 1 λ(对应k 1 级明纹),插⼊介质后的光程差Δ2 =(n -1)d +r 1 -r 2 =k 1 λ(对应k 1 级明纹).光程差的变化量为Δ2 -Δ1 =(n -1)d =(k 2 -k 1 )λ式中(k 2 -k 1 )可以理解为移过点P 的条纹数(本题为5).因此,对于这类问题,求解光程差的变化量是解题的关键.解由上述分析可知,两介质⽚插⼊前后,对于原中央明纹所在点O ,有()λ51212=-=?-?d n将有关数据代⼊可得m 1074.4156-?=-=n d λ 14-12 ⽩光垂直照射到空⽓中⼀厚度为380 nm 的肥皂膜上.设肥皂的折射率为1.32.试问该膜的正⾯呈现什么颜⾊分析这是薄膜⼲涉问题,求正⾯呈现的颜⾊就是在反射光中求因⼲涉增强光的波长(在可见光范围).解根据分析对反射光加强,有(),...2,122==+k k ne λλ124-=k ne λ在可见光范围,k =2 时,nm 8668.=λ(红光)k =3 时,nm 3401.=λ(紫光)故正⾯呈红紫⾊.14-13 利⽤空⽓劈尖测细丝直径.如图所⽰,已知λ=589.3 nm ,L =2.888 ×10-2m ,测得30 条条纹的总宽度为4.259 ×10-3 m ,求细丝直径d .分析在应⽤劈尖⼲涉公式L nb d 2λ= 时,应注意相邻条纹的间距b 是N条条纹的宽度Δx 除以(N -1).对空⽓劈尖n =1.解由分析知,相邻条纹间距1-?=N x b ,则细丝直径为 ()m 107552125-?=?-==.xn N L nb d λλ题14-13 图14-14 集成光学中的楔形薄膜耦合器原理如图所⽰.沉积在玻璃衬底上的是氧化钽(52O Ta )薄膜,其楔形端从A 到B 厚度逐渐减⼩为零.为测定薄膜的厚度,⽤波长λ=632.8nm 的He Ne - 激光垂直照射,观察到薄膜楔形端共出现11 条暗纹,且A 处对应⼀条暗纹,试求氧化钽薄膜的厚度.(52O Ta 对632.8 nm 激光的折射率为2.21)题14-14 图分析置于玻璃上的薄膜AB 段形成劈尖,求薄膜厚度就是求该劈尖在A 点处的厚度.由于25Ta O 对激光的折射率⼤于玻璃,故从该劈尖上表⾯反射的光有半波损失,⽽下表⾯没有,因⽽两反射光光程差为Δ=2ne +λ/2.由反射光暗纹公式2ne k +λ/2=(2k +1)λ/2,k =0,1,2,3,…,可以求厚度e k .⼜因为AB 中共有11 条暗纹(因半波损失B 端也为暗纹),则k 取10即得薄膜厚度.解根据分析,有2ne k +2λ=(2k +1)λ/2 (k =0,1,2,3,…)取k =10,得薄膜厚度e 10 =n 210λ=1.4 ×10-6m . 14-15 折射率为1.60的两块标准平⾯玻璃板之间形成⼀个劈形膜(劈尖⾓θ很⼩).⽤波长λ=600 nm 的单⾊光垂直⼊射,产⽣等厚⼲涉条纹.假如在劈形膜内充满n =1.40 的液体时的相邻明纹间距⽐劈形膜内是空⽓时的间距缩⼩Δl =0.5 mm ,那么劈尖⾓θ应是多少?分析劈尖⼲涉中相邻条纹的间距l ≈θλn 2,其中θ为劈尖⾓,n 是劈尖内介质折射率.由于前后两次劈形膜内介质不同,因⽽l 不同.则利⽤l ≈θλn 2和题给条件可求出θ.解劈形膜内为空⽓时,θλ2=空l 劈形膜内为液体时,θλn l 2=液则由θλθλn l l l 22-=-=?液空,得 ()rad 107112114-?=?-=./l n λθ14-16 如图(a)所⽰的⼲涉膨胀仪,已知样品的平均⾼度为3.0 ×10-2m ,⽤λ=589.3 nm 的单⾊光垂直照射.当温度由17 ℃上升⾄30 ℃时,看到有20 条条纹移过,问样品的热膨胀系数为多少?题14-16 图分析温度升⾼ΔT =T 2 -T 1 后,样品因受热膨胀,其⾼度l 的增加量Δl =lαΔT .由于样品表⾯上移,使在倾⾓θ不变的情况下,样品与平板玻璃间的空⽓劈的整体厚度减⼩.根据等厚⼲涉原理,⼲涉条纹将整体向棱边平移,则原k 级条纹从a 移⾄a′处,如图(b )所⽰,移过某⼀固定观察点的条纹数⽬N 与Δl 的关系为2λN l =?,由上述关系可得出热膨胀系数α.解由题意知,移动的条纹数N =20,从分析可得T l N ?=αλ2则热膨胀系数 5105112-?=?=.Tl Nλα K 1-14-17 在利⽤⽜顿环测未知单⾊光波长的实验中,当⽤已知波长为589.3 nm 的钠黄光垂直照射时,测得第⼀和第四暗环的距离为Δr =4.00 ×10-3 m ;当⽤波长未知的单⾊光垂直照射时,测得第⼀和第四暗环的距离为Δr ′=3.85 ×10-3 m ,求该单⾊光的波长.分析⽜顿环装置产⽣的⼲涉暗环半径λkR r =,其中k =0,1,2…,k =0,对应⽜顿环中⼼的暗斑,k =1 和k =4 则对应第⼀和第四暗环,由它们之间的间距λR r r r =-=?14,可知λ∝?r ,据此可按题中的测量⽅法求出未知波长λ′.解根据分析有λλ'=?'?r r 故未知光波长λ′=546 nm14 -18 如图所⽰,折射率n 2 =1.2 的油滴落在n 3 =1.50 的平板玻璃上,形成⼀上表⾯近似于球⾯的油膜,测得油膜中⼼最⾼处的⾼度d m =1.1 µm ,⽤λ=600 nm 的单⾊光垂直照射油膜,求(1)油膜周边是暗环还是明环(2)整个油膜可看到⼏个完整的暗环题14-18 图分析本题也是⼀种⽜顿环⼲涉现象,由于n 1 <n 2 <n 3 ,故油膜上任⼀点处两反射相⼲光的光程差Δ=2n 2d .(1)令d =0,由⼲涉加强或减弱条件即可判断油膜周边是明环.(2)由2n 2d =(2k +1)λ/2,且令d =d m 可求得油膜上暗环的最⾼级次(取整),从⽽判断油膜上完整暗环的数⽬.解(1)根据分析,由12 22=+=k k k d n 暗条纹明条纹λλ油膜周边处d =0,即Δ=0 符合⼲涉加强条件,故油膜周边是明环.(2)油膜上任⼀暗环处满⾜()(),...,,/21021222=+==?k k d n λ令d =d m ,解得k =3.9,可知油膜上暗环的最⾼级次为3,故油膜上出现的完整暗环共有4 个,即k =0,1,2,3.14-19 把折射率n =1.40 的薄膜放⼊迈克⽿孙⼲涉仪的⼀臂,如果由此产⽣了7.0 条条纹的移动,求膜厚.设⼊射光的波长为589 nm .分析迈克⽿孙⼲涉仪中的⼲涉现象可以等效为薄膜⼲涉(两平⾯镜相互垂直)和劈尖⼲涉(两平⾯镜不垂直)两种情况,本题属于后⼀种情况.在⼲涉仪⼀臂中插⼊介质⽚后,两束相⼲光的光程差改变了,相当于在观察者视野内的空⽓劈尖的厚度改变了,从⽽引起⼲涉条纹的移动.解插⼊厚度为d 的介质⽚后,两相⼲光光程差的改变量为2(n -1)d ,从⽽引起N 条条纹的移动,根据劈尖⼲涉加强的条件,有2(n -1)d =Nλ,得()m 101545126-?=-=.n N d λ 14-20 如图所⽰,狭缝的宽度b =0.60 mm ,透镜焦距f =0.40m ,有⼀与狭缝平⾏的屏放置在透镜焦平⾯处.若以波长为600 nm 的单⾊平⾏光垂直照射狭缝,则在屏上离点O 为x =1.4 mm 处的点P 看到的是衍射明条纹.试求:(1)点P 条纹的级数;(2)从点P 看来对该光波⽽⾔,狭缝的波阵⾯可作半波带的数⽬.分析单缝衍射中的明纹条件为()212sin λ+±=k b ,在观察点P 位置确定(即衍射⾓φ确定)以及波长λ确定后,条纹的级数k 也就确定了.⽽狭缝处的波阵⾯对明条纹可以划分的半波带数⽬为(2k +1)条.解(1)设透镜到屏的距离为d ,由于d >>b ,对点P ⽽⾔,有dx =≈??tan sin .根据分析中的条纹公式,有 ()212λ+±=k d bx 将b 、d (d ≈f )、x , λ的值代⼊,可得k =3(2)由分析可知,半波带数⽬为7.题14-20 图14-21 ⼀单⾊平⾏光垂直照射于⼀单缝,若其第三条明纹位置正好和波长为600 nm 的单⾊光垂直⼊射时的第⼆级明纹的位置⼀样,求前⼀种单⾊光的波长.分析采⽤⽐较法来确定波长.对应于同⼀观察点,两次衍射的光程差相同,由于衍射明纹条件()212sin λ+=k b ,故有()()22111212λλ+=+k k ,在两明纹级次和其中⼀种波长已知的情况下,即可求出另⼀种未知波长.解根据分析,将32nm 600122===k k ,,λ代⼊()()22111212λλ+=+k k ,得 ()nm 642812121214-22 已知单缝宽度b =1.0 ×10-4 m ,透镜焦距f =0.50 m ,⽤λ1 =400 nm 和λ2 =760 nm 的单⾊平⾏光分别垂直照射,求这两种光的第⼀级明纹离屏中⼼的距离,以及这两条明纹之间的距离.若⽤每厘⽶刻有1000条刻线的光栅代替这个单缝,则这两种单⾊光的第⼀级明纹分别距屏中⼼多远这两条明纹之间的距离⼜是多少分析⽤含有两种不同波长的混合光照射单缝或光栅,每种波长可在屏上独⽴地产⽣⾃⼰的⼀组衍射条纹,屏上最终显⽰出两组衍射条纹的混合图样.因⽽本题可根据单缝(或光栅)衍射公式分别计算两种波长的k 级条纹的位置x 1和x 2 ,并算出其条纹间距Δx =x 2 -x 1 .通过计算可以发现,使⽤光栅后,条纹将远离屏中⼼,条纹间距也变⼤,这是光栅的特点之⼀.解(1)当光垂直照射单缝时,屏上第k 级明纹的位置()f b k x 212λ+=当λ1 =400 nm 和k =1 时, x 1 =3.0 ×10-3 m当λ2 =760 nm 和k =1 时, x 2 =5.7 ×10-3 m其条纹间距 Δx =x 2 -x 1 =2.7 ×10-3 m(2)当光垂直照射光栅时,屏上第k 级明纹的位置为f dk x λ=' ⽽光栅常数 m 10m 1010532--==d 当λ1 =400 nm 和k =1 时, x 1 =2.0 ×10-2 m当λ2 =760 nm 和k =1 时, x 2 =3.8 ×10-2 m其条纹间距 m 1081212-?='-'='?.x x x 14-23 ⽼鹰眼睛的瞳孔直径约为6 mm ,问其最多飞翔多⾼时可看清地⾯上⾝长为5cm 的⼩⿏设光在空⽓中的波长为600 nm .分析两物体能否被分辨,取决于两物对光学仪器通光孔(包括鹰眼)的张⾓θ和光学仪器的最⼩分辨⾓θ0 的关系.当θ≥θ0 时能分辨,其中θ=θ0 为恰能分辨.在本题中D λθ2210.=为⼀定值,这⾥D 是鹰的瞳孔直径.⽽h L /=θ,其中L 为⼩⿏的⾝长,h 为⽼鹰飞翔的⾼度.恰好看清时θ=θ0.解由分析可知 L /h =1.22λ/D ,得飞翔⾼度h =LD /(1.22λ)=409.8 m .14-24 ⼀束平⾏光垂直⼊射到某个光栅上,该光束中包含有两种波长的光:λ1 =440 nm 和λ2 =660 nm .实验发现,两种波长的谱线(不计中央明纹)第⼆次重合于衍射⾓φ=60°的⽅向上,求此光栅的光栅常数.分析根据光栅衍射⽅程λ?k d ±=sin ,两种不同波长的谱线,除k =0 中央明纹外,同级明纹在屏上位置是不同的,如果重合,应是它们对应不同级次的明纹在相同衍射⾓⽅向上重合.故由d sin φ=k λ=k ′λ2 可求解本题.解由分析可知21sin λλ?k k d '==,得得 2312///=='λλk k上式表明第⼀次重合是λ1 的第3 级明纹与λ2 的第2级明纹重合,第⼆次重合是λ1 的第6 级明纹与λ2 的第4级明纹重合.此时,k =6,k ′=4,φ=60°,则光栅常数µm 05.3m 1005.3/sin 61=?==-?λk d*14-25 波长为600 nm 的单⾊光垂直⼊射在⼀光栅上,其透光和不透光部分的宽度⽐为1:3,第⼆级主极⼤出现在200sin .=?处.试问(1)光栅上相邻两缝的间距是多少(2)光栅上狭缝的宽度有多⼤(3)在-90°<φ<90°范围内,呈现全部明条纹的级数为哪些.分析(1)利⽤光栅⽅程()λ??k b b d ±='+=sin sin ,即可由题给条件求出光栅常数b b d '+=(即两相邻缝的间距).这⾥b 和b '是光栅上相邻两缝透光(狭缝)和不透光部分的宽度,在已知两者之⽐时可求得狭缝的宽度(2)要求屏上呈现的全部级数,除了要求最⼤级次k 以外,还必须知道光栅缺级情况.光栅衍射是多缝⼲涉的结果,也同时可看成是光透过许多平⾏的单缝衍射的结果.缺级就是按光栅⽅程计算屏上某些应出现明纹的位置,按各个单缝衍射计算恰是出现暗纹的位置.因此可以利⽤光栅⽅程()λ??k b b d ='+=sin sin 和单缝衍射暗纹公式'sin b k ?λ=可以计算屏上缺级的情况,从⽽求出屏上条纹总数.解(1)光栅常数 µm 6m 106sin 6=?==-?k λd (2)由 ??='='+=31µm 6b b b b d得狭缝的宽度b =1.5 µm .(3)利⽤缺级条件()()()±=''=±=='+,...1,0sin ,...1,0sin k k b k k b b λ?λ? 则(b +b ′)/b =k /k ′=4,则在k =4k ′,即±4, ±8, ±12,…级缺级.⼜由光栅⽅程()λ?k b b ±='+sin ,可知屏上呈现条纹最⾼级次应满⾜()10='+<λ/b b k ,即k =9,考虑到缺级,实际屏上呈现的级数为:0, ±1, ±2, ±3,±5, ±6, ±7, ±9,共15 条.*14-26 以波长为0.11 nm 的X 射线照射岩盐晶体,实验测得X 射线与晶⾯夹⾓为11.5°时获得第⼀级反射极⼤.(1)岩盐晶体原⼦平⾯之间的间距d 为多⼤(2)如以另⼀束待测X 射线照射,测得X 射线与晶⾯夹⾓为17.5°时获得第⼀级反射光极⼤,求该X 射线的波长.分析 X 射线⼊射到晶体上时,⼲涉加强条件为2d sin θ=k λ(k =0,1,2,…)式中d 为晶格常数,即晶体内原⼦平⾯之间的间距(如图).解(1)由布拉格公式(),...,,210sin 2==k k d λθ第⼀级反射极⼤,即k =1.因此,得 nm 276.0sin 211==θλd(2)同理,由2d sin θ2 =kλ2 ,取k =1,得nm 166.0sin 222==θλd题14-26图14-27 测得⼀池静⽔的表⾯反射出来的太阳光是线偏振光,求此时太阳处在地平线的多⼤仰⾓处(⽔的折射率为1.33)题14-27 图分析设太阳光(⾃然光)以⼊射⾓i ⼊射到⽔⾯,则所求仰⾓i θ-=2π.当反射光起偏时,根据布儒斯特定律,有120arctan n n i i ==(其中n 1 为空⽓的折射率,n 2 为⽔的折射率).解根据以上分析,有120arctan 2πn n θi i =-== 则 o 129.36arctan 2π=-=n n θ。
光的干涉参考答案

光的干涉参考解答一 选择题1.如图示,折射率为n 2厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束之间的光程差是 (A )2n 2e (B )2n 2e -2λ (C )2n 2e -λ (D )2n 2e -22n λ[A ][参考解]:两束光都是在从光疏介质到光密介质的分界面上反射,都有半波损失存在,其光程差应为δ=(2n 2e +2λ)-2λ= 2n 2e 。
2.如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2,路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过一块厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径光的光程差等于 (A )(r 2+ n 2t 2)-(r 1+ n 1t 1)(B )[r 2+ (n 2-1)t 2] -[r 1+ (n 1-1)t 1] (C )(r 2-n 2t 2)-(r 1-n 1t 1) (D )n 2t 2-n 1t 1[ B ]3.如图,用单色光垂直照射在观察牛顿环的装置上,当平凸透镜垂直向上缓缓平移而离开平面玻璃板时,可以观察到环状干涉条纹 (A )向右移动 (B )向中心收缩 (C )向外扩张 (D )静止不动[ B ][参考解]:由牛顿环的干涉条件(k 级明纹)λλk ne k =+22 ⇒ nk e k 2)21(λ-= 可知。
4.在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传到B ,若A 、B 两点的相位差是3π,则此路径AB 的光程差是 (A )1.5λ (B )1.5n λ (C )3λ (D )1.5λ/n[ A ][参考解]:由相位差和光程差的关系λδπϕ2=∆可得。
3S 1PS 空气二 填空题1.如图所示,波长为λ的平行单色光斜入射到距离为d 的双缝上,入射角为θ,在图中的屏中央O 处(S 1O=S 2O ),两束相干光的相位差为λθπsin 2d 。
光的干涉(有答案)

光的⼲涉(有答案)光的⼲涉⼀、⼲涉的相关知识点1、双缝⼲涉:由同⼀光源发出的光经双缝后,在屏上出现明暗相间的条纹.⽩光的双缝⼲涉的条纹是中央为⽩⾊条纹,两边为彩⾊条纹,单⾊光的双缝⼲涉中相邻亮条纹间距离为Δx = Δx =l dλ 2、薄膜⼲涉:利⽤薄膜(如肥皂液薄膜) 前后两⾯反射的光相遇⽽形成的.图样中同⼀条亮(或暗)条纹上所对应的薄膜厚度相同⼆、双缝⼲涉1、⼀束⽩光在真空中通过双缝后在屏上观察到的⼲涉条纹,除中央⽩⾊亮纹外,两侧还有彩⾊条纹,其原因是 ( )A .各⾊光的波长不同,因⽽各⾊光分别产⽣的⼲涉条纹的间距不同B .各⾊光的速度不同,因⽽各⾊光分别产⽣的⼲涉条纹的间距不同C .各⾊光的强度不同,因⽽各⾊光分别产⽣的⼲涉条纹的间距不同D .上述说法都不正确答案 A解析⽩光包含各种颜⾊的光,它们的波长不同,在相同条件下做双缝⼲涉实验时,它们的⼲涉条纹间距不同,所以在中央亮条纹两侧出现彩⾊条纹,A 正确.2、 (2011·北京·14)如图所⽰的双缝⼲涉实验,⽤绿光照射单缝S 时,在光屏P 上观察到⼲涉条纹.要得到相邻条纹间距更⼤的⼲涉图样,可以 ( )A .增⼤S1与S 2的间距B .减⼩双缝屏到光屏的距离C .将绿光换为红光D .将绿光换为紫光答案 C解析在双缝⼲涉实验中,相邻两条亮纹(或暗纹)间的距离Δx =l dλ,要想增⼤条纹间距可以减⼩两缝间距d ,或者增⼤双缝屏到光屏的距离l ,或者换⽤波长更长的光做实验.由此可知,选项C 正确,选项A 、B 、D 错误.3、双缝⼲涉实验装置如图所⽰,绿光通过单缝S 后,投射到具有双缝的挡板上,双缝S 1和S 2与单缝的距离相等,光通过双缝后在与双缝平⾏的屏上形成⼲涉条纹.屏上O 点距双缝S 1和S 2的距离相等,P 点是距O 点最近的第⼀条亮条纹.如果将⼊射的单⾊光换成红光或蓝光,讨论屏上O 点及其上⽅的⼲涉条纹的情况是 ( )A.O点是红光的亮条纹B.O点不是蓝光的亮条纹C.红光的第⼀条亮条纹在P点的上⽅D.蓝光的第⼀条亮条纹在P点的上⽅答案AC解析O点处波程差为零,对于任何光都是振动加强点,均为亮条纹,故B错;红光的波长较长,蓝光的波长较短,根据Δx=ldλ可知,C正确.4、关于光的⼲涉现象,下列说法正确的是()A.在波峰与波峰叠加处,将出现亮条纹;在波⾕与波⾕叠加处,将出现暗条纹B.在双缝⼲涉实验中,光屏上距两狭缝的路程差为1个波长的某位置,将出现亮纹C.把⼊射光由黄光换成紫光,两相邻亮条纹间的距离变窄D.当薄膜⼲涉的条纹是等间距的平⾏线时,说明薄膜的厚度处处相等答案BC解析在波峰与波峰叠加处,或在波⾕与波⾕叠加处,都是振动加强区,将出现亮条纹,选项A错误;在双缝⼲涉实验中,出现亮纹的条件是光屏上某位置距两狭缝的路程差为波长的整数倍,出现暗纹的条件是光屏上某位置距两狭缝的路程差为半波长的奇数倍,选项B正确;条纹间距公式Δx=ldλ,λ黄>λ紫,选项C正确;薄膜⼲涉实验中的薄膜是“楔形”空⽓膜,选项D错误.5、关于光的⼲涉,下列说法中正确的是()A.在双缝⼲涉现象⾥,相邻两明条纹和相邻两暗条纹的间距是不等的B.在双缝⼲涉现象⾥,把⼊射光由红光换成紫光,相邻两个明条纹间距将变宽C.只有频率相同的两列光波才能产⽣⼲涉D.频率不同的两列光波也能产⽣⼲涉现象,只是不稳定答案 C解析在双缝⼲涉现象⾥,相邻两明条纹和相邻两暗条纹的间距是相等的,A错误;由条纹间距Δx=ldλ,⼊射光的波长越长,相邻两个明条纹间距越⼤,因此,把⼊射光由红光换成紫光,相邻两个明条纹间距将变窄,B错误;两列光波产⽣⼲涉时,频率必须相同,C正确,D错误.6、如图所⽰,⼀束复⾊光由真空射向半圆形玻璃砖的圆⼼,经玻璃砖后分为两束单⾊光a、b,则()A.玻璃中a光波长⼤于b光波长B.玻璃中a光折射率⼤于b光折射率C .逐渐增⼤⼊射⾓i ,a 光⽐b 光先发⽣全反射D .利⽤同⼀双缝⼲涉实验装置,a 光产⽣的⼲涉条纹间距⽐b 光⼤ad7、在双缝⼲涉实验中,双缝到光屏上P 点的距离之差Δr =0.6 µm ;分别⽤频率为f 1=5.×1014 Hz 和f 2=7.5×1014 Hz 的单⾊光垂直照射双缝,则P 点出现明、暗条纹的情况是A .⽤频率为f 1的单⾊光照射时,出现明条纹B .⽤频率为f 2的单⾊光照射时,出现明条纹C .⽤频率为f 1的单⾊光照射时,出现暗条纹D .⽤频率为f 2的单⾊光照射时,出现暗条纹答案 AD解析根据c =λf ,可得两种单⾊光波长分别为:λ1=c f 1=3×1085×1014m =0.6 µm λ2=c f 2=3×1087.5×1014m =0.4 µm 与题给条件(Δr =0.6 µm)⽐较可知Δr =λ1=32λ2,故⽤频率为f 1的光照射双缝时,P 点出现明条纹;⽤频率为f 2的光照射双缝时,P 点出现暗条纹.8、如图所⽰,在双缝⼲涉实验中,S 1和S 2为双缝,P 是光屏上的⼀点,已知P 点与S 1、S 2距离之差为2.1×10-6 m ,分别⽤A 、B 两种单⾊光在空⽓中做双缝⼲涉实验,问P 点是亮条纹还是暗条纹?(1)已知A 光在折射率为1.5的介质中波长为4×10-7 m ;(2)已知B 光在某种介质中波长为3.15×10-7 m ,当B 光从这种介质射向空⽓时,临界⾓为37°;(3)若让A 光照射S 1,B 光照射S 2,试分析光屏上能观察到的现象.解析 (1)设A 光在空⽓中波长为λ1,在介质中波长为λ2,由n =c v =λ1λ2,得λ1=nλ2=1.5×4×10-7 m =6×10-7 m 根据路程差Δr =2.1×10-6m ,所以N 1=Δr λ1=2.1×10-66×10-7=3.5 由此可知,从S 1和S 2到P 点的路程差是波长λ1的3.5倍,所以P 点为暗条纹.(2)根据临界⾓与折射率的关系sin C =1n 得n =1sin 37°=53由此可知,B 光在空⽓中波长λ3为:λ3=nλ介=53×3.15×10-7 m =5.25×10-7 m 路程差Δr 和波长λ3的关系为:N 2=Δr λ3=2.1×10-65.25×10-7=4 可见,⽤B 光做光源,P 点为亮条纹.(3)若让A 光和B 光分别照射S 1和S 2,这时既不能发⽣⼲涉,也不发⽣衍射,此时在光屏上只能观察到亮光.答案 (1)暗条纹 (2)亮条纹 (3)见解析9、如图所⽰,在双缝⼲涉实验中,已知SS 1=SS 2,且S 1、S 2到光屏上P 点的路程差Δr =1.5×10-6 m. (1)当S 为λ=0.6 µm 的单⾊光源时,在P 点处将形成______条纹.(2)当S 为λ=0.5 µm 的单⾊光源时,在P 点处将形成______条纹.(均选填“明”或“暗”)答案 (1)暗 (2)明解析 (1)当λ=0.6 µm =0.6×10-6 m 时, Δr =1.5×10-6 m =212λ.在P 点处将形成暗条纹. (2)当λ=0.5 µm =0.5×10-6 m 时,Δr =1.5×10-6 m =3λ,在P 点处将形成明条纹10、如图所⽰,a 、b 为两束不同频率的单⾊光,以45°的⼊射⾓射到玻璃砖的上表⾯,直线OO ′与玻璃砖垂直且与其上表⾯交于N 点,⼊射点A 、B 到N 点的距离相等,经玻璃砖上表⾯折射后两束光相交于图中的P 点,则下列说法正确的是 ( )A .在真空中,a 光的传播速度⼤于b 光的传播速度B .在玻璃中,a 光的传播速度⼩于b 光的传播速度C .同时增⼤⼊射⾓(⼊射⾓始终⼩于90°),则a 光在下表⾯先发⽣全反射D .对同⼀双缝⼲涉装置,a 光的⼲涉条纹⽐b 光的⼲涉条纹宽答案 D解析各种光在真空中的光速相同,选项A 错误;根据题图,⼊射⾓相同,a 光的折射⾓较⼤,所以a 光的折射率较⼩,由光在介质中的光速v =c n得,a 光在介质中的传播速度较⼤,选项B 错误;根据临界⾓公式C =arcsin 1n可知,a 光的临界⾓较⼤,b 光在下表⾯先发⽣全反射,选项C 错误;a 光的折射率较⼩,波长较长,根据公式Δx =l dλ可知,对同⼀双缝⼲涉装置,a 光的⼲涉条纹⽐b 光的⼲涉条纹宽,选项D 正确.三、薄膜⼲涉11、劈尖⼲涉是⼀种薄膜⼲涉,其装置如图7甲所⽰.将⼀块平板玻璃放置在另⼀平板玻璃之上,在⼀端夹⼊两张纸⽚,从⽽在两玻璃表⾯之间形成⼀个劈形空⽓薄膜.当光垂直⼊射后,从上往下看到的⼲涉条纹如图⼄所⽰,⼲涉条纹有如下两个特点:图7(1)任意⼀条明条纹或暗条纹所在位置下⾯的薄膜厚度相等;(2)任意相邻明条纹或暗条纹所对应的薄膜厚度差恒定.现若在图甲装置中抽去⼀张纸⽚,则当光垂直⼊射到新劈形空⽓薄膜后,从上往下观察到的⼲涉条纹将如何变化?答案见解析解析光线在空⽓膜的上下表⾯上反射,并发⽣⼲涉,形成⼲涉条纹,设空⽓膜顶⾓为θ,d 1、d 2处为两相邻明条纹,如图所⽰,则两处光的路程差分别为Δx 1=2d 1,Δx 2=2d 2,因为Δx 2-Δx 1=λ,所以d 2-d 1=12λ. 设条纹间距为Δl ,则由⼏何关系得d 2-d 1Δl =tan θ,即Δl =λ2tan θ.当抽去⼀张纸⽚时,θ减⼩,Δl 增⼤,即条纹变疏.12、甲所⽰,在⼀块平板玻璃上放置⼀平凸薄透镜,在两者之间形成厚度不均匀的空⽓膜,让⼀束单⼀波长的光垂直⼊射到该装置上,结果在上⽅观察到如图⼄所⽰的同⼼内疏外密的圆环状⼲涉条纹,称为⽜顿环,以下说法正确的是 ( )A .⼲涉现象是由于凸透镜下表⾯反射光和玻璃上表⾯反射光叠加形成的B .⼲涉现象是由于凸透镜上表⾯反射光和玻璃上表⾯反射光叠加形成的C .⼲涉条纹不等间距是因为空⽓膜厚度不是均匀变化的D .⼲涉条纹不等间距是因为空⽓膜厚度是均匀变化的答案 AC解析由于在凸透镜和平板玻璃之间的空⽓形成薄膜,所以形成相⼲光的反射⾯是凸透镜的下表⾯和平板玻璃的上表⾯,故A 正确,由于凸透镜的下表⾯是圆弧⾯,所以形成的薄膜厚度不是均匀变化的,形成不等间距的⼲涉条纹,故C 正确,D 错.。
光的干涉习题(附答案)

π
S1
S2
3λ 4
4. 用波长为 λ 的单色光垂直照射牛顿环装置,观察牛顿环,如图所示。若使凸 透镜慢慢向上垂直移动距离 d, 移过视场中某固定观察点的条纹数等于 2d/λ 。
5. 空气中两块玻璃形成的空气劈形膜, 一端厚度为零, 另一端厚度为 0.005 cm, 玻璃折射率为 1.5,空气折射率近似为 1。如图所示,现用波长为 600 nm 的 单色平行光, 沿入射角为 30°角的方向射到玻璃板的上表面, 则在劈形膜上形 成的干涉条纹数目为 144 。
6. 维纳光驻波实验装置示意如图。MM 为金属反射镜,NN 为涂有极薄感光层 的玻璃板。MM 与 NN 之间夹角 φ=3.0×10-4 rad,波长为 λ 的平面单色光通过 NN 板垂直入射到 MM 金属反射镜上,则反射光与入射光在相遇区域形成光 驻波, NN 板的感光层上形成对应于波腹波节的条纹。 实验测得两个相邻的驻 波波腹感光垫 A、B 的间距 1.0 mm,则入射光的波长为 6.0×10-4 mm 。
8. 如图所示,折射率为 n2,厚度为 e 的透明介质薄膜的上、下方透明介质的折 射率分别为 n1 和 n3,且 n1<n2<n3,若用波长为 λ 的单色平行光垂直入射到该 薄膜上,则从薄膜上下两表面反射的光束之间的光程差为 2长为 λ 的单色平行光垂直照射两个劈尖上,两劈尖角分别为 θ1 和 θ2,折射 率分别为 n1 和 n2, 若两者分别形成的干涉条纹的明条纹间距相等, 则 θ1, θ2, n1,n2 之间的关系为 n1θ1= n2θ2 。
2h c arcsin 0.1 5.7 o arcsin 2hf
11. 油船失事,把大量石油(n=1.2)泄漏在海面上,形成一个很大的油膜。试求: (1)如果你从飞机上竖直地向下看油膜厚度为 460nm 的区域,哪些波长的 可见光反射最强? (2 ) 如果你戴了水下呼吸器从水下竖直的向上看这油膜同 一区域,哪些波长的可见光透射最强?(水的折射率为 1.33) 答:因为在油膜上下表面反射光都有半波损失, (1)反射光干涉加强:2nd=k
大学物理答案第14章培训讲学

大学物理答案第14章第十四章波动光学14-1在双缝干涉实验中,若单色光源S到两缝S1、S2距离相等,则观察屏上中央明条纹位于图中O处,现将光源S向下移动到图中的S′位置,则()(A)中央明纹向上移动,且条纹间距增大(B)中央明纹向上移动,且条纹间距不变(C)中央明纹向下移动,且条纹间距增大(D)中央明纹向下移动,且条纹间距不变分析与解由S发出的光到达S1、S2的光程相同,它们传到屏上中央O 处,光程差Δ=0,形成明纹.当光源由S移到S′时,由S′到达狭缝S1和S2 的两束光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O′处.使得由S′沿S1、S2狭缝传到O′处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.故选(B).题14-1 图14-2如图所示,折射率为n2,厚度为e的透明介质薄膜的上方和下方的透明介质的折射率分别为n1和n3,且n1<n2,n2>n3,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束的光程差是( )()()()()2222222D 2C 22B 2A n e n e n e n e n λλλ---题14-2 图分析与解 由于n 1 <n 2 ,n 2 >n 3 ,因此在上表面的反射光有半波损失,下表面的反射光没有半波损失,故它们的光程差222λ±=∆e n ,这里λ是光在真空中的波长.因此正确答案为(B ).14-3 如图(a )所示,两个直径有微小差别的彼此平行的滚柱之间的距离为L ,夹在两块平面晶体的中间,形成空气劈形膜,当单色光垂直入射时,产生等厚干涉条纹,如果滚柱之间的距离L 变小,则在L 范围内干涉条纹的( )(A ) 数目减小,间距变大 (B ) 数目减小,间距不变(C ) 数目不变,间距变小 (D ) 数目增加,间距变小题14-3图分析与解 图(a )装置形成的劈尖等效图如图(b )所示.图中 d 为两滚柱的直径差,b 为两相邻明(或暗)条纹间距.因为d 不变,当L 变小时,θ 变大,L ′、b 均变小.由图可得L d b n '==//2sin λθ,因此条纹总数n d b L N λ//2='=,因为d 和λn 不变,所以N 不变.正确答案为(C )14-4 用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射.若屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为( )(A ) 3 个 (B ) 4 个 (C ) 5 个 (D ) 6 个分析与解 根据单缝衍射公式()()(),...2,1 212 22sin =⎪⎪⎩⎪⎪⎨⎧+±±=k λk λk θb 明条纹暗条纹 因此第k 级暗纹对应的单缝处波阵面被分成2k 个半波带,第k 级明纹对应的单缝波阵面被分成2k +1 个半波带.则对应第二级暗纹,单缝处波阵面被分成4个半波带.故选(B ).14-5 波长λ=550 nm 的单色光垂直入射于光栅常数d =='+b b 1.0 ×10-4 cm 的光栅上,可能观察到的光谱线的最大级次为( )(A ) 4 (B ) 3 (C ) 2 (D ) 1分析与解 由光栅方程(),...1,0dsin =±=k k λθ,可能观察到的最大级次为()82.1/2dsin max =≤λπk 即只能看到第1 级明纹,正确答案为(D ).14-6 三个偏振片P 1 、P 2 与P 3 堆叠在一起,P 1 与P 3的偏振化方向相互垂直,P 2与P 1 的偏振化方向间的夹角为30°,强度为I 0 的自然光入射于偏振片P 1 ,并依次透过偏振片P 1 、P 2与P 3 ,则通过三个偏振片后的光强为( )(A ) 3I 0/16 (B ) 3I 0/8 (C ) 3I 0/32 (D ) 0分析与解 自然光透过偏振片后光强为I 1 =I 0/2.由于P 1 和P 2 的偏振化方向成30°,所以偏振光透过P 2 后光强由马吕斯定律得8/330cos 0o 212I I I ==.而P 2和P 3 的偏振化方向也成60°,则透过P 3 后光强变为32/360cos 0o 223I I I ==.故答案为(C ).14-7 自然光以60°的入射角照射到两介质交界面时,反射光为完全线偏振光,则折射光为( )(A ) 完全线偏振光,且折射角是30°(B ) 部分偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30°(C ) 部分偏振光,但须知两种介质的折射率才能确定折射角(D ) 部分偏振光且折射角是30°分析与解 根据布儒斯特定律,当入射角为布儒斯特角时,反射光是线偏振光,相应的折射光为部分偏振光.此时,反射光与折射光垂直.因为入射角为60°,反射角也为60°,所以折射角为30°.故选(D ).14-8 在双缝干涉实验中,两缝间距为0.30 mm ,用单色光垂直照射双缝,在离缝1.20m 的屏上测得中央明纹一侧第5条暗纹与另一侧第5条暗纹间的距离为22.78 mm .问所用光的波长为多少,是什么颜色的光?分析与解 在双缝干涉中,屏上暗纹位置由()212λ+'=k d d x 决定,式中d ′为双缝到屏的距离,d 为双缝间距.所谓第5条暗纹是指对应k =4 的那一级暗纹.由于条纹对称,该暗纹到中央明纹中心的距离mm 27822.=x ,那么由暗纹公式即可求得波长λ.此外,因双缝干涉是等间距的,故也可用条纹间距公式λdd x '=∆求入射光波长.应注意两个第5 条暗纹之间所包含的相邻条纹间隔数为9(不是10,为什么?),故mm 97822.=∆x . 解1 屏上暗纹的位置()212λ+'=k d d x ,把m 102782243-⨯==.,x k 以及d 、d ′值代入,可得λ=632.8 nm ,为红光.解2 屏上相邻暗纹(或明纹)间距'd x d λ∆=,把322.7810m 9x -∆=⨯,以及d 、d ′值代入,可得λ=632.8 nm .14-9 在双缝干涉实验中,用波长λ=546.1 nm 的单色光照射,双缝与屏的距离d ′=300mm .测得中央明纹两侧的两个第五级明条纹的间距为12.2 mm ,求双缝间的距离.分析 双缝干涉在屏上形成的条纹是上下对称且等间隔的.如果设两明纹间隔为Δx ,则由中央明纹两侧第五级明纹间距x 5 -x -5 =10Δx 可求出Δx .再由公式Δx =d ′λ/d 即可求出双缝间距d .解 根据分析:Δx =(x 5 -x -5)/10 =1.22×10-3 m双缝间距: d =d ′λ/Δx =1.34 ×10-4 m14-10 一个微波发射器置于岸上,离水面高度为d ,对岸在离水面h 高度处放置一接收器,水面宽度为D ,且,D d D h ,如图所示.发射器向对面发射波长为λ的微波,且λ>d ,求接收器测到极大值时,至少离地多高?分析 由发射器直接发射的微波与经水面反射后的微波相遇可互相干涉,这种干涉与劳埃德镜实验完全相同.形成的干涉结果与缝距为2d ,缝屏间距为D 的双缝干涉相似,如图(b )所示,但要注意的是和劳埃德镜实验一样,由于从水面上反射的光存在半波损失,使得两束光在屏上相遇产生的光程差为2/sin 2λθd +,而不是θd sin 2.题14-10 图解 由分析可知,接收到的信号为极大值时,应满足(),...2,12/sin 2==+k λk λθd()d k D D D h 412sin tan -=≈≈λθθ 取k =1 时,得d D h 4min λ=. 14-11 如图所示,将一折射率为1.58的云母片覆盖于杨氏双缝上的一条缝上,使得屏上原中央极大的所在点O 改变为第五级明纹.假定λ=550 nm ,求:(1)条纹如何移动?(2) 云母片的厚度t.题14-11图分析 (1)本题是干涉现象在工程测量中的一个具体应用,它可以用来测量透明介质薄片的微小厚度或折射率.在不加介质片之前,两相干光均在空气中传播,它们到达屏上任一点P 的光程差由其几何路程差决定,对于点O ,光程差Δ=0,故点O 处为中央明纹,其余条纹相对点O 对称分布.而在插入介质片后,虽然两相干光在两介质薄片中的几何路程相同,但光程却不同,对于点O ,Δ≠0,故点O 不再是中央明纹,整个条纹发生平移.原来中央明纹将出现在两束光到达屏上光程差Δ=0的位置.(2) 干涉条纹空间分布的变化完全取决于光程差的变化.因此,对于屏上某点P (明纹或暗纹位置),只要计算出插入介质片前后光程差的变化,即可知道其干涉条纹的变化情况.插入介质前的光程差Δ1 =r 1 -r 2 =k 1 λ(对应k 1 级明纹),插入介质后的光程差Δ2 =(n -1)d +r 1 -r 2 =k 1 λ(对应k 1 级明纹).光程差的变化量为Δ2 -Δ1 =(n -1)d =(k 2 -k 1 )λ式中(k 2 -k 1 )可以理解为移过点P 的条纹数(本题为5).因此,对于这类问题,求解光程差的变化量是解题的关键.解 由上述分析可知,两介质片插入前后,对于原中央明纹所在点O ,有()λ51212=-=∆-∆d n将有关数据代入可得m 1074.4156-⨯=-=n d λ 14-12 白光垂直照射到空气中一厚度为380 nm 的肥皂膜上.设肥皂的折射率为1.32.试问该膜的正面呈现什么颜色?分析 这是薄膜干涉问题,求正面呈现的颜色就是在反射光中求因干涉增强光的波长(在可见光范围).解 根据分析对反射光加强,有(),...2,122==+k k ne λλ124-=k ne λ 在可见光范围,k =2 时,nm 8668.=λ(红光)k =3 时,nm 3401.=λ(紫光)故正面呈红紫色.14-13 利用空气劈尖测细丝直径.如图所示,已知λ=589.3 nm ,L =2.888 ×10-2m ,测得30 条条纹的总宽度为4.259 ×10-3 m ,求细丝直径d .分析 在应用劈尖干涉公式L nb d 2λ= 时,应注意相邻条纹的间距b 是N条条纹的宽度Δx 除以(N -1).对空气劈尖n =1.解 由分析知,相邻条纹间距1-∆=N x b ,则细丝直径为 ()m 107552125-⨯=∆-==.xn N L nb d λλ题14-13 图14-14 集成光学中的楔形薄膜耦合器原理如图所示.沉积在玻璃衬底上的是氧化钽(52O Ta )薄膜,其楔形端从A 到B 厚度逐渐减小为零.为测定薄膜的厚度,用波长λ=632.8nm 的He Ne - 激光垂直照射,观察到薄膜楔形端共出现11 条暗纹,且A 处对应一条暗纹,试求氧化钽薄膜的厚度.(52O Ta 对632.8 nm 激光的折射率为2.21)题14-14 图分析 置于玻璃上的薄膜AB 段形成劈尖,求薄膜厚度就是求该劈尖在A 点处的厚度.由于25Ta O 对激光的折射率大于玻璃,故从该劈尖上表面反射的光有半波损失,而下表面没有,因而两反射光光程差为Δ=2ne +λ/2.由反射光暗纹公式2ne k +λ/2 =(2k +1)λ/2,k =0,1,2,3,…,可以求厚度e k .又因为AB 中共有11 条暗纹(因半波损失B 端也为暗纹),则k 取10即得薄膜厚度.解 根据分析,有2ne k +2λ=(2k +1)λ/2 (k =0,1,2,3,…) 取k =10,得薄膜厚度e 10 =n 210λ=1.4 ×10-6m . 14-15 折射率为1.60的两块标准平面玻璃板之间形成一个劈形膜(劈尖角θ 很小).用波长λ=600 nm 的单色光垂直入射,产生等厚干涉条纹.假如在劈形膜内充满n =1.40 的液体时的相邻明纹间距比劈形膜内是空气时的间距缩小Δl =0.5 mm ,那么劈尖角θ 应是多少?分析 劈尖干涉中相邻条纹的间距l ≈θλn 2,其中θ 为劈尖角,n 是劈尖内介质折射率.由于前后两次劈形膜内介质不同,因而l 不同.则利用l ≈θλn 2和题给条件可求出θ.解 劈形膜内为空气时,θλ2=空l 劈形膜内为液体时,θλn l 2=液则由θλθλnlll22-=-=∆液空,得()rad107112114-⨯=∆-=./lnλθ14-16如图(a)所示的干涉膨胀仪,已知样品的平均高度为3.0 ×10-2m,用λ=589.3 nm的单色光垂直照射.当温度由17 ℃上升至30 ℃时,看到有20 条条纹移过,问样品的热膨胀系数为多少?题14-16 图分析温度升高ΔT=T2-T1后,样品因受热膨胀,其高度l的增加量Δl =lαΔT.由于样品表面上移,使在倾角θ不变的情况下,样品与平板玻璃间的空气劈的整体厚度减小.根据等厚干涉原理,干涉条纹将整体向棱边平移,则原k级条纹从a 移至a′处,如图(b)所示,移过某一固定观察点的条纹数目N与Δl的关系为2λNl=∆,由上述关系可得出热膨胀系数α.解由题意知,移动的条纹数N=20,从分析可得TlN∆=αλ2则热膨胀系数5105112-⨯=∆=.TlNλα K1-14-17在利用牛顿环测未知单色光波长的实验中,当用已知波长为589.3 nm的钠黄光垂直照射时,测得第一和第四暗环的距离为Δr=4.00 ×10-3 m;当用波长未知的单色光垂直照射时,测得第一和第四暗环的距离为Δr ′=3.85 ×10-3 m ,求该单色光的波长.分析 牛顿环装置产生的干涉暗环半径λkR r =,其中k =0,1,2…,k =0,对应牛顿环中心的暗斑,k =1 和k =4 则对应第一和第四暗环,由它们之间的间距λR r r r =-=∆14,可知λ∝∆r ,据此可按题中的测量方法求出未知波长λ′.解 根据分析有λλ'=∆'∆r r 故未知光波长 λ′=546 nm14 -18 如图所示,折射率n 2 =1.2 的油滴落在n 3 =1.50 的平板玻璃上,形成一上表面近似于球面的油膜,测得油膜中心最高处的高度d m =1.1 μm ,用λ=600 nm 的单色光垂直照射油膜,求(1) 油膜周边是暗环还是明环? (2) 整个油膜可看到几个完整的暗环?题14-18 图分析 本题也是一种牛顿环干涉现象,由于n 1 <n 2 <n 3 ,故油膜上任一点处两反射相干光的光程差Δ=2n 2d .(1) 令d =0,由干涉加强或减弱条件即可判断油膜周边是明环.(2) 由2n 2d =(2k +1)λ/2,且令d =d m 可求得油膜上暗环的最高级次(取整),从而判断油膜上完整暗环的数目.解 (1) 根据分析,由()()(),...2,1,0 212 22=⎪⎩⎪⎨⎧+=k k k d n 暗条纹明条纹λλ 油膜周边处d =0,即Δ=0 符合干涉加强条件,故油膜周边是明环.(2) 油膜上任一暗环处满足()(),...,,/21021222=+==∆k k d n λ令d =d m ,解得k =3.9,可知油膜上暗环的最高级次为3,故油膜上出现的完整暗环共有4 个,即k =0,1,2,3.14-19 把折射率n =1.40 的薄膜放入迈克耳孙干涉仪的一臂,如果由此产生了7.0 条条纹的移动,求膜厚.设入射光的波长为589 nm .分析 迈克耳孙干涉仪中的干涉现象可以等效为薄膜干涉(两平面镜相互垂直)和劈尖干涉(两平面镜不垂直)两种情况,本题属于后一种情况.在干涉仪一臂中插入介质片后,两束相干光的光程差改变了,相当于在观察者视野内的空气劈尖的厚度改变了,从而引起干涉条纹的移动.解 插入厚度为d 的介质片后,两相干光光程差的改变量为2(n -1)d ,从而引起N 条条纹的移动,根据劈尖干涉加强的条件,有2(n -1)d =Nλ,得()m 101545126-⨯=-=.n N d λ 14-20 如图所示,狭缝的宽度b =0.60 mm ,透镜焦距f =0.40m ,有一与狭缝平行的屏放置在透镜焦平面处.若以波长为600 nm 的单色平行光垂直照射狭缝,则在屏上离点O 为x =1.4 mm 处的点P 看到的是衍射明条纹.试求:(1) 点P 条纹的级数;(2) 从点P 看来对该光波而言,狭缝的波阵面可作半波带的数目.分析 单缝衍射中的明纹条件为()212sin λϕ+±=k b ,在观察点P 位置确定(即衍射角φ确定)以及波长λ确定后,条纹的级数k 也就确定了.而狭缝处的波阵面对明条纹可以划分的半波带数目为(2k +1)条.解 (1) 设透镜到屏的距离为d ,由于d >>b ,对点P 而言,有dx =≈ϕϕtan sin .根据分析中的条纹公式,有 ()212λ+±=k d bx 将b 、d (d ≈f )、x , λ的值代入,可得k =3(2) 由分析可知,半波带数目为7.题14-20 图14-21 一单色平行光垂直照射于一单缝,若其第三条明纹位置正好和波长为600 nm 的单色光垂直入射时的第二级明纹的位置一样,求前一种单色光的波长.分析 采用比较法来确定波长.对应于同一观察点,两次衍射的光程差相同,由于衍射明纹条件()212sin λϕ+=k b ,故有()()22111212λλ+=+k k ,在两明纹级次和其中一种波长已知的情况下,即可求出另一种未知波长.解 根据分析,将32nm 600122===k k ,,λ代入()()22111212λλ+=+k k ,得()nm 642812121221.=++=k k λλ14-22 已知单缝宽度b =1.0 ×10-4 m ,透镜焦距f =0.50 m ,用λ1 =400 nm 和λ2 =760 nm 的单色平行光分别垂直照射,求这两种光的第一级明纹离屏中心的距离,以及这两条明纹之间的距离.若用每厘米刻有1000条刻线的光栅代替这个单缝,则这两种单色光的第一级明纹分别距屏中心多远? 这两条明纹之间的距离又是多少?分析 用含有两种不同波长的混合光照射单缝或光栅,每种波长可在屏上独立地产生自己的一组衍射条纹,屏上最终显示出两组衍射条纹的混合图样.因而本题可根据单缝(或光栅)衍射公式分别计算两种波长的k 级条纹的位置x 1和x 2 ,并算出其条纹间距Δx =x 2 -x 1 .通过计算可以发现,使用光栅后,条纹将远离屏中心,条纹间距也变大,这是光栅的特点之一.解 (1) 当光垂直照射单缝时,屏上第k 级明纹的位置()f b k x 212λ+=当λ1 =400 nm 和k =1 时, x 1 =3.0 ×10-3 m当λ2 =760 nm 和k =1 时, x 2 =5.7 ×10-3 m其条纹间距 Δx =x 2 -x 1 =2.7 ×10-3 m(2) 当光垂直照射光栅时,屏上第k 级明纹的位置为f dk x λ=' 而光栅常数 m 10m 1010532--==d 当λ1 =400 nm 和k =1 时, x 1 =2.0 ×10-2 m当λ2 =760 nm 和k =1 时, x 2 =3.8 ×10-2 m其条纹间距 m 1081212-⨯='-'='∆.x x x 14-23 老鹰眼睛的瞳孔直径约为6 mm ,问其最多飞翔多高时可看清地面上身长为5cm 的小鼠? 设光在空气中的波长为600 nm .分析 两物体能否被分辨,取决于两物对光学仪器通光孔(包括鹰眼)的张角θ 和光学仪器的最小分辨角θ0 的关系.当θ≥θ0 时能分辨,其中θ=θ0 为恰能分辨.在本题中D λθ2210.=为一定值,这里D 是鹰的瞳孔直径.而h L /=θ,其中L 为小鼠的身长,h 为老鹰飞翔的高度.恰好看清时θ=θ0.解 由分析可知 L /h =1.22λ/D ,得飞翔高度h =LD /(1.22λ) =409.8 m .14-24 一束平行光垂直入射到某个光栅上,该光束中包含有两种波长的光:λ1 =440 nm 和λ2 =660 nm .实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角φ=60°的方向上,求此光栅的光栅常数.分析 根据光栅衍射方程λϕk d ±=sin ,两种不同波长的谱线,除k =0 中央明纹外,同级明纹在屏上位置是不同的,如果重合,应是它们对应不同级次的明纹在相同衍射角方向上重合.故由d sin φ=k λ1 =k ′λ2 可求解本题.解 由分析可知21sin λλϕk k d '==, 得得 2312///=='λλk k上式表明第一次重合是λ1 的第3 级明纹与λ2 的第2级明纹重合,第二次重合是λ1 的第6 级明纹与λ2 的第4级明纹重合.此时,k =6,k ′=4,φ=60°,则光栅常数μm 05.3m 1005.3/sin 61=⨯==-ϕλk d*14-25 波长为600 nm 的单色光垂直入射在一光栅上,其透光和不透光部分的宽度比为1:3,第二级主极大出现在200sin .=ϕ处.试问(1) 光栅上相邻两缝的间距是多少?(2) 光栅上狭缝的宽度有多大? (3) 在-90°<φ<90°范围内,呈现全部明条纹的级数为哪些.分析 (1) 利用光栅方程()λϕϕk b b d ±='+=sin sin ,即可由题给条件求出光栅常数b b d '+=(即两相邻缝的间距).这里b 和b '是光栅上相邻两缝透光(狭缝)和不透光部分的宽度,在已知两者之比时可求得狭缝的宽度(2) 要求屏上呈现的全部级数,除了要求最大级次k 以外,还必须知道光栅缺级情况.光栅衍射是多缝干涉的结果,也同时可看成是光透过许多平行的单缝衍射的结果.缺级就是按光栅方程计算屏上某些应出现明纹的位置,按各个单缝衍射计算恰是出现暗纹的位置.因此可以利用光栅方程()λϕϕk b b d ='+=sin sin 和单缝衍射暗纹公式'sin b k ϕλ=可以计算屏上缺级的情况,从而求出屏上条纹总数.解 (1)光栅常数 μm 6m 106sin 6=⨯==-ϕk λd (2) 由 ⎪⎩⎪⎨⎧='='+=31μm 6b b b b d 得狭缝的宽度b =1.5 μm .(3) 利用缺级条件()()()⎩⎨⎧±=''=±=='+,...1,0sin ,...1,0sin k k b k k b b λϕλϕ 则(b +b ′)/b =k /k ′=4,则在k =4k ′,即±4, ±8, ±12,…级缺级.又由光栅方程()λϕk b b ±='+sin ,可知屏上呈现条纹最高级次应满足()10='+<λ/b b k ,即k =9,考虑到缺级,实际屏上呈现的级数为:0, ±1, ±2, ±3,±5, ±6, ±7, ±9,共15 条.*14-26 以波长为0.11 nm 的X 射线照射岩盐晶体,实验测得X 射线与晶面夹角为11.5°时获得第一级反射极大.(1) 岩盐晶体原子平面之间的间距d 为多大? (2) 如以另一束待测X 射线照射,测得X 射线与晶面夹角为17.5°时获得第一级反射光极大,求该X 射线的波长.分析 X 射线入射到晶体上时,干涉加强条件为2d sin θ =k λ(k =0,1,2,…)式中d 为晶格常数,即晶体内原子平面之间的间距(如图).解 (1) 由布拉格公式(),...,,210sin 2==k k d λθ第一级反射极大,即k =1.因此,得 nm 276.0sin 211==θλd(2) 同理,由2d sin θ2 =kλ2 ,取k =1,得nm 166.0sin 222==θλd题14-26图14-27 测得一池静水的表面反射出来的太阳光是线偏振光,求此时太阳处在地平线的多大仰角处? (水的折射率为1.33)题14-27 图分析 设太阳光(自然光)以入射角i 入射到水面,则所求仰角i θ-=2π.当反射光起偏时,根据布儒斯特定律,有120arctan n n i i ==(其中n 1 为空气的折射率,n 2 为水的折射率).解 根据以上分析,有120arctan 2πn n θi i =-== 则 o 129.36arctan 2π=-=n n θ 14-28 一束光是自然光和线偏振光的混合,当它通过一偏振片时,发现透射光的强度取决于偏振片的取向,其强度可以变化5 倍,求入射光中两种光的强度各占总入射光强度的几分之几.分析 偏振片的旋转,仅对入射的混合光中的线偏振光部分有影响,在偏振片旋转一周的过程中,当偏振光的振动方向平行于偏振片的偏振化方向时,透射光强最大;而相互垂直时,透射光强最小.分别计算最大透射光强I max 和最小透射光强I min ,按题意用相比的方法即能求解.解 设入射混合光强为I ,其中线偏振光强为xI ,自然光强为(1-x )I .按题意旋转偏振片,则有最大透射光强 ()I x x I ⎥⎦⎤⎢⎣⎡+-=121max 最小透射光强 ()I x I ⎥⎦⎤⎢⎣⎡-=121min按题意5min max =I I /,则有()()x x x -⨯=+-1215121 解得 x =2/3即线偏振光占总入射光强的2/3,自然光占1/3.。
《大学物理学》光的干涉练习题马解答
《大学物理学》光的干涉学习材料(解答)一、选择题:11-1.在双缝干涉实验中,若单色光源S 到两缝1S 、2S 距离相等,则观察屏上中央明纹中心位于图中O 处,现将光源S 向下移动到示意图中的S '位置,则( D ) (A )中央明条纹向下移动,且条纹间距不变; (B )中央明条纹向上移动,且条纹间距增大; (C )中央明条纹向下移动,且条纹间距增大; (D )中央明条纹向上移动,且条纹间距不变。
【提示:画出光路,找出'S 到光屏的光路相等位置】11-2.如图所示,折射率为2n ,厚度为e 的透明介质薄膜的上方和下方的透明介质折射率分别为1n 和3n ,且12n n <,23n n >,若波长为λ的平行单色光垂直入射在薄膜上,则上下两个表面反射的两束光的光程差为( B )(A )22n e ; (B )22/2n e λ-; (C )22n e λ-; (D )222/2n e λn -。
【提示:上表面反射有半波损失,下表面反射没有半波损失】11-3.两个直径相差甚微的圆柱体夹在两块平板玻璃之间构成空气劈尖, 如图所示,单色光垂直照射,可看到等厚干涉条纹,如果将两个圆柱 之间的距离L 拉大,则L 范围内的干涉条纹( C ) (A )数目增加,间距不变; (B )数目增加,间距变小; (C )数目不变,间距变大; (D )数目减小,间距变大。
【提示:两个圆柱之间的距离拉大,空气劈尖夹角减小,条纹变疏,但同时距离L 也变大,考虑到两圆柱的高度差不变,所以条纹数目不变】4.用白光光源进行双缝试验,如果用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则:( D )(A )干涉条纹的宽度将发生改变; (B )产生红光和蓝光两套彩色干涉条纹; (C )干涉条纹的亮度将发生改变; (D )不产生干涉条纹。
【提示:不满足干涉条件,红光和蓝光不相干】5.如图所示,用波长600λ=nm 的单色光做杨氏双缝实验,在光屏P 处产生第五级明纹极大,现将折射率n =1.5的薄透明玻璃片盖在其中一条缝上,此时P 处变成中央明纹极大的位置,则此玻璃片厚度为( B )(A )5.0×10-4cm ; (B )6.0×10-4cm ; (C )7.0×10-4cm ; (D )8.0×10-4cm 。
光的干涉习题答案
学号 班级 姓名 成绩第十六章 光的干涉(一)一、选择题1、波长mm 4108.4-⨯=λ的单色平行光垂直照射在相距mm a 4.02=的双缝上,缝后m D 1=的幕上出现干涉条纹。
则幕上相邻明纹间距离是[ B ]。
A .0.6mm ;B .1.2 mm ;C .1.8 mm ;D . 2.4 mm 。
2、在杨氏双缝实验中,若用一片透明云母片将双缝装置中上面一条缝挡住,干涉条纹发生的变化是[ C ]。
A .条纹的间距变大;B .明纹宽度减小;C .整个条纹向上移动;D .整个条纹向下移动。
3、双缝干涉实验中,入射光波长为λ,用玻璃薄片遮住其中一条缝,已知薄片中光程比相同厚度的空气大2.5λ,则屏上原0级明纹处[ B ]。
A .仍为明条纹;B .变为暗条纹;C .形成彩色条纹;D .无法确定。
4、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是[ B ]。
A .使屏靠近双缝; B .使两缝的间距变小; C .把两个缝的宽度稍微调窄; D .改用波长较小的单色光源。
5、在双缝干涉实验中,单色光源S 到两缝S 1、S 2距离相等,则中央明纹位于图中O 处,现将光源S 向下移动到S ’的位置,则[ B ]。
A .中央明纹向下移动,条纹间距不变;B .中央明纹向上移动,条纹间距不变;C .中央明纹向下移动,条纹间距增大;D .中央明纹向上移动,条纹间距增大。
二、填空题1、某种波长为λ的单色光在折射率为n 的媒质中由A 点传到B 点,相位改变为π,问光程改变了2λ , 光从A 点到B 点的几何路程是 2nλ 。
2、从两相干光源s 1和s 2发出的相干光,在与s 1和s 2等距离d 的P 点相遇。
若s 2位于真空中,s 1位于折射率为n 的介质中,P 点位于界面上,计算s 1和s 2到P 点的光程差 d-nd 。
3、光强均为I 0的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是04I ;最小光强是 0 。
大学物理第十四章波动光学习题+答案
D k 0,1, 2 明纹中心位置
暗纹中心位置
k 1, 2,3
D 相邻两明纹(或暗纹)中心间距离: Δx d
3、薄膜等厚干涉 劈尖干涉
垂直入射: 2ne
2
相邻明纹(暗纹)间的厚度差: e
C R
2n 相邻明纹(暗纹)中心间距离: l 2n
牛顿环
r 2Re
(2) 屏幕上主极大位置由光栅公式决定
(a b)sin k
(3) 缺级现象 (a b)sin k
k 0,1, 2, 3 ——主极大
k 1, 2, 3
k 1, 2, 3
干涉明纹 衍射暗纹
a sin k
ab k k k 1, 2, 3 a (4) 重级现象 k11 k2 2
波 动 光 学 习 题 课
一、基本概念
1、相干光的获得 把由光源上同一点发出的光设法分成两部分,再叠 加起来。
分波阵面法
分振幅法
2、光程与光程差
n2 r2 n1r1
3、半波损失
2 2 (n2 r2 n1r1 )
当光从光疏媒质射向光密媒质时,反射光有位相 的突变,相当于 的附加光程差,叫半波损失。
x tan 5 103 f
a sin 0.2 5 10 mm 1000 nm 4 2
3
a
x
f
暗纹,4个半波带
4-5 某元素的特征光谱中含有波长分别为1=450nm 和2=750nm的光谱线。在光栅光谱中,这两种波长的 谱线有重叠现象,重叠处2的谱线的级数将是 (A) 2,3,4,5…… (C) 2,4,6,8……
光的干涉(解析版)
第3节光的干涉一、光的双缝干涉1.如图所示是研究光的双缝干涉的示意图,挡板上有两条狭缝S1、S2,由S1和S2发出的两列波到达屏上时会产生干涉条纹。
已知入射激光的波长为λ,屏上的P点到两缝S1和S2的距离相等,如果把P处的亮条纹记作第0号亮条纹,由P向上数,与0号亮条纹相邻的亮条纹为1号亮条纹,与1号亮条纹相邻的亮条纹为2号亮条纹,则P1处的亮条纹恰好是10号亮条纹.设直线S1P1的长度为r1,S2P1的长度为r2,则r2-r1等于()A.9.5λB.10λC.10.5λD.20λ【答案】B【详解】由题设可知,从中央亮条纹P算起,P1点处是第10号亮条纹的位置,表明缝S1、S2到P1处的距离差r2-r1为波长的整数倍,且刚好是10个波长,B正确。
故选B。
2.双缝干涉实验装置如图所示,双缝间距离为d,双缝到光屏的距离为L,调整实验装置使光屏上见到清晰的干涉条纹。
关于该干涉条纹及改变条件后其变化情况,下列叙述中正确的是()A.屏上所有暗线都是从双缝中出来的两列光波的波谷与波谷叠加形成的B.若将光屏向右平移一小段距离,屏上仍有清晰的干涉条纹C.若只减小双缝间距d,屏上两相邻明条纹间距离变小D.若只改用频率较大的单色光,屏上两相邻明条纹间距离变大【答案】B【详解】A.从双缝中出来的两列光波的波谷与波峰叠加形成暗线,故A错误;B.根据双缝干涉条纹的间距公式Lxd λ∆=可知将光屏向右平移一小段距离,屏上仍有清晰的干涉条纹,故B 正确;C.根据双缝干涉条纹的间距公式Lxd λ∆=可知,若只减小双缝间距d,屏上两相邻明条纹间距离变大,故C 错误;D.频率变大,波长变短,根据间距公式可知条纹间距变短,故D错误;故选B。
二、薄膜干涉3.关于光在竖直的肥皂液薄膜上产生的干涉条纹,下列说法正确的是()A.干涉条纹是光在薄膜前、后两个表面反射,形成的两列光波叠加的结果B.若明暗相间的条纹相互平行,说明薄膜的厚度是均匀的C.用紫光照射薄膜产生的干涉条纹间距比红光照射时的间距大D.薄膜上的干涉条纹基本上是竖直的【答案】A【详解】A.干涉条纹是光在薄膜前、后两个表面反射,形成的两列光波叠加的结果,故A正确;B.若明暗相间的条纹相互平行,说明肥皂液薄膜的厚度变化是均匀的,故B错误;C.由于紫光的波长比红光的小,故用紫光照射薄膜产生的干涉条纹间距比红光照射时的间距小,故C错误;D.薄膜上的干涉条纹基本上是水平的,故D错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.有一凸起的埂,深入 / D4 . 有一凸起的埂,深入
天道酬勤
4
6.一束白光以30度的入射角照射平静的湖水(水的折射 率为4/3)表面的一层透明液体(折射率为 10)2 的薄膜, 若反射光中波长为600nm的光显得特别明亮,则该透 明液体薄膜的最小厚度为( )
r1' r1 x sin
r2 r2' x sin
x
sin sin
天道酬勤
10
2.在1题基础上,考虑使用激光测速仪测量微粒运动速度 问题。在激光测速仪里两列交叉的相干激光束照射运 动微粒,…求微粒运动速度大小。
解:利用1题结论,粒子走过的路程
为λ/(sinθ+sinφ),其中θ、φ分
别为30度。
距D=1.0m,若第二级明条纹离屏中心的距离为
6.0mm,此单色6光00的n波长 相邻两明条纹间的3距m离
为.
m
m
10.在不同的均匀媒质中,若单色光通过的光程相等时,
其几何路程
同不,其所需时间
相同。
11.两光相干除了满足干涉的三个必要条件,即频率相同、 振动方向相同、相位相等或相位差恒定之外,还必须满足 两个附加条件 两相干光的振幅不可相差太大 , 两 相干光的光程差不能太大 。
6
二、填空题
1.真空中的波长为 的单色光在折射率为n的媒质中由
A点传到B点时,周相改变量为3,则光程的改变量
为 3λ/,2 光从A传到B所走过的几何路程为 3。λ/2n
2.如图所示,在杨氏双缝实验中,若用红光做实验,则 相邻干涉条纹间距比用紫光做实验时相邻干涉条纹间
距 ,大若在光源S2右侧光路上放置一薄玻璃片,则中
天道酬勤
9
三、计算题
1.波长为λ的两束相干的单色平行光分别以图所示的入射角 θ、φ入射在屏幕面MN上。求屏幕上干涉条纹的间隔。
解:考虑相邻两明条纹,条纹 中心为A、B,级次分别为k、 k+1,并设AB两点间距为x。
r1 r2 k
r1' r2' (k 1)
r1' r2' (r1 r2 ) (r1' r1 ) (r2 r2' )
A. e kB.
2n2
eC. k
2n1
eD. (2k 1) 4n1
e (2k 1) 4n2
天道酬勤
2
3.双缝干涉实验中,入射光波长为,用玻璃纸遮住其中 一缝,若玻璃纸中光程比相同厚度的空气大2.5,则屏 上原0级明纹处( )
A.仍为明条纹 B.变为暗条纹 C.非明非暗 D.无法确定是明纹还是暗纹
ν
粒子走过的路程为一个λ,需要的时 间为1个T,所以微粒运动速度大小为 λ/T=λν
=0.63×10-6×320×103 =0.2 m/s
天道酬勤
θ
11
3.双缝干涉实验装置如图所示,双缝与屏之间的距离 D=120cm,两缝之间的距离d=0.50mm ,用波长 =500nm的单色光垂直照射双缝。
(1)求原点O(零级明条纹所在处)上方的第五级明条纹 的坐标x;
第十四章 光的干涉
天道酬勤
1
一、选择题
1.当光从光疏媒质射向光密媒质时( ) A.反射光有半波损失 B.透射光有半波损失 C.入射光有半波损失D.入射、反射、透射光均无半波损 失
2.若在一折射率为n1的光学元件表面镀一层折射率为n2 (n2<n1)的增透膜,为使波长为的入射光透射最多,
其厚度应为( )
薄膜上,膜的上、下表面分别是折射率为n1和n3的介质,
且n1<n2<n3,则反射光干涉减弱的公式为( )
AC22..nn22ee2k(2k
1)
2
B. D.
2n2e 2n2e
(2k 1)
k
2
2
9.最早验证光的波动性质的典型实验是 ( )
A.杨氏双缝实验 C.劳埃镜实验
B.单缝衍射 D.x射线衍射
波长为5000Å的单色光垂直入射时,为实现小的反射,
此薄膜的厚度至少应为 λ/4n=9.05。*10-8 m
天道酬勤
8
8.借助于滤光片从白光中取得蓝绿光作为杨氏干涉装置的
光源,其波长范围 10,0n平m均波长 ,其49杨0n氏m干
涉条纹大约从第 开始将变5得模糊不清。
9 在杨氏双缝实验中,双缝间距 a=0.20mm,缝屏间
央明纹将向 移动下。
3.波长为 的平行单色光垂直地照射到劈尖薄膜上,劈
尖薄膜的折射率为n,第二级明纹与第五条明纹所对应
的薄膜厚度之差 3λ。/2n
天道酬勤
7
4.光强均为I0的两束相干光相遇而发生干涉时,在相遇
区域内有可能出现的最大光强是 4I0。
5.以单色光垂直照射空气劈尖,观察反射光的干涉,则
棱边处是
A.100nm B.200nm C603.00 nm D1.23000 nm
7.在双缝干涉实验中,为使屏上的干涉条纹间距变大。 可以采取的办法是( )
A.使屏靠近双缝 B.使两缝的间距变小 C.把两缝的宽度稍微调窄。 D..改有波长小的单色光源。
天道酬勤
5
8.波长为 的单色光垂直照射到折射率为n2,厚度为e的
4.两块平板玻璃构成空气劈尖,左边为棱边,用单色平 行光垂直入射,若上面的平板玻璃以棱边为轴,沿逆时 针方向作微小转动,则干涉条纹的 ( )
A.间隔变小,并向棱边方向平移
B.间隔变大,并向远离棱边方向平移
C.间隔不变,向棱边方向平移
D.间隔变小,并向远离棱边方向平移
天道酬勤
3
5.用劈尖干涉检测工件的表面,当波长为的单色光垂直 入射时,观察到干涉条纹如图。图中每一条纹弯曲部分 的顶点恰与左边相邻的直线部分的连线相切。由图中可 见工件表面:( )
10.在双缝装置中,若两缝分别被厚度相等折射率为 n1=1.4,n2=1.7的两薄玻璃片覆盖,则玻璃片覆盖前的 第5级亮纹恰好移到屏幕中央原零级明条纹的位置,如果 入射光的波长为4.8*10-7m,则玻璃片的厚度为 ( )
A.2*10-6 m B.8*10-6 m
C.6*10-6 m
D. 4天*道1酬0勤-6 m
暗纹,照射置于空气中的玻璃劈尖时,
棱边处是
纹。暗
6.用波长为 的单色光垂直照射到空气劈尖上,从反射
光中观察干涉条纹,距顶点为L处是暗条纹,使劈尖角
连续变大,直到该点处再次出现暗条纹为止,劈尖角的
改变量 是 λ/。2L
7.借助玻璃表面上涂以折射率n=1.38的MgF2透明薄
膜,可以减少折射率为n’=1.60的玻璃表面的反射,若