等价替换公式
18个等价无穷小替换公式

18个等价无穷小替换公式(1)x~sinx~tanx~arcsinx~arctanx~ln(x+1)~e^x-1~ln(x+根号(1+x^2))~(a^x-1)/lna~[(1+x)^a-1]/a; (共10个等阶无穷小量)(2)x^2~2-2cosx~2根号(1+x^2)-2;(共3个等阶无穷小量);(3)x^3~6x-6sinx~3tanx-3x~6arcsinx-6x~2tanx-2sinx.(共5等阶无穷小量).不难发现,每一组等阶无穷小量都有一个关于x的等项式与之对应。
可以说,第一组是一阶无穷小量,第二组是二阶无穷小量,而第三组是三阶无穷小量。
这里的"阶"指的是关于x的单项式中,x的指数。
所谓等阶无穷小,指的是两个无穷小量的商的极限等于1. 比如最常见的是第一个重要极限lim(x->0)sinx/x=1. 事实上,这个极限的倒数形式lim(x->0)x/sinx=1也是成立的。
三组等阶无穷小量,一共18个无穷小量其实不止组成类似于第一个重要极限这样的等阶无穷小公式。
其实第一组等阶无穷小量可以组成55个类似的公式;第二组等阶无穷小量可以组成6个类似的公式;第三组等阶无穷小量可以组成15个类似的公式。
这里无法一一累述,希望你可以自己动手试一试,以加强对它们的理解和记忆。
等阶无穷小最主要的用途,当然就是应用在求极限时的等阶无穷小替换了。
下面举几个运用等阶无穷小替换求极限的例子:利用等阶无穷小量替换求极限:(1)lim(x->0)arctanx/sin(4x);(2)lim(x->0)(tanx-sinx)/sinx^3;(3)lim(x->无穷大)(xarctan(1/x))/(x-cosx);(4)lim(x->0)(根号(1+x^2)-1)/(1-cosx).解:(1)因为arctanx~x, sin4x~4x,所以原极限=lim(x->0)x/(4x)=1/4.(2)因为tanx-sinx=sinx(1-cosx)/cosx,又sinx~x, 1-cosx~x^2/2,sinx^3~x^3,lim(x->0)cosx=1,所以原极限=lim(x->0)(x^3/2)/x^3=1/2.(3)因为arctan(1/x)~1/x, 且cosx有界,所以原极限=lim(x->无穷大)1/(x-cosx)=0.(4)因为根号(1+x^2)-1~x^2/2, 1-cosx~x^2/2, 即根号(1+x^2)-1~1-cosx,所以原极限=1.怎么样,等阶无穷小替换运用起来是不是很简单啊?一切都建立在对等阶无穷小的理解以及上面三组等阶无穷小量的记忆的基础上。
高数等价替换公式

高数等价替换公式正如学生们所知,高数使用等价替换公式是一个能够替换另一个数学公式的有效的方法,这种替换可以有助于更容易理解和求解数学问题。
本文将主要介绍高数等价替换公式,以及等价替换如何来帮助学生解决复杂的数学问题。
首先,让我们来看看什么是等价替换公式。
等价替换公式实际上是把一个数学公式拆分成另一个具有相同性质和结果的数学公式,这样拆分出来的公式就是我们所说的等价替换公式。
举个例子,如果你要处理方程式:P(x)= ax2+bx+c你可以把它拆分成等价的替换公式:P(x)=a(x+b/2a)2+(c-b2/4a)可以看到,经过等价替换,原来复杂的方程式变得非常简单,易于理解和求解。
当然,不只有方程式可以拆分,函数也可以,比如有一个函数: f(x)=x3+bx2+cx也可以拆分成:f(x)=x2(x+b/2)+cx可以看到,经过等价替换,这个函数的计算也变得更加容易了。
接下来,让我们来说说等价替换公式会给学生带来什么好处。
首先,等价替换公式可以帮助学生更加容易理解复杂的数学公式。
拆分出来的公式总是比原来的要简单一些,这样学生们就可以更容易理解了。
其次,等价替换公式也可以帮助学生更高效地求解数学问题。
掌握等价替换技巧,可以让学生避免花费大量时间处理复杂的公式,而是用简单的公式解决复杂的问题,这将大大提高学生的效率。
最后,等价替换公式还能让学生更好地记忆数学公式。
由于拆分后的公式较为简单,学生可以更容易记住它。
这样,学生就可以在解决其他类似问题时,利用这些公式,从而避免重复计算,从而节约时间和精力。
从以上可以看出,等价替换公式是一种有效的数学工具。
它在数学计算中可以发挥重要作用,可以帮助学生更容易理解和求解复杂的数学问题,从而极大地提高学生的效率和学习成绩。
因此,学生应该熟悉等价替换技巧,以便在学习和解决数学问题时发挥它的优势。
最新高等数学等价替换公式

高等数学等价替换公式当x→0时,sinx~xtanx~xarcsinx~xarctanx~x1-cosx~(1/2)*(x^2)~secx-1(a^x)-1~x*lna ((a^x-1)/x~lna)(e^x)-1~xln(1+x)~x(1+Bx)^a-1~aBx[(1+x)^1/n]-1~(1/n)*xloga(1+x)~x/lna(1+x)^a-1~ax(a≠0)值得注意的是,等价无穷小一般只能在乘除中替换,在加减中替换有时会出错(加减时可以整体代换,不能单独代换或分别代换)XXX工程项目部质量月活动总结根据公司《关于开展2011年质量月活动的通知》,积极响应以“建设质量强国共创美好生活”为主题的质量月活动,公用工程项目部组织开展了一系列“抓质量,促和谐”活动,在项目部领导的高度重视、精心组织、严格要求下,质量管理水平取得了显著的提高,现将活动有关情况总结如下:项目部领导十分重视本次质量月活动,9月2日,在公用工程项目部现场会议室召集项目部管理人员和施工队伍主要负责人召开了质量月活动动员大会,制定了本次质量月活动的目标、计划以及任务部署,并提出了四点要求:一是进一步提高员工的质量意识,时刻牢记施工人员和管理人员的质量责任;二是深化我们的质量安全文化,确立良好的工作方法,减少质量问题,尤其是低级错误、重复质量问题,防止重大质量事故的发生;三是通过“质量月”活动的有效开展,促进项目部“大干70天”生产目标的完成;四是借“质量月”活动开展的契机,有效地把活动主题贯穿于我们的施工生产之中,技术不断创新、管理不断完善、工程质量不断提高。
1、活动主题:恪守质量诚信,践行社会责任。
2、活动目标:大力实施质量兴企战略,全力打造“中化二建集团”品牌,为社会奉献“质量一流,用户满意”的优质产品。
高等数学等价替换公式泰勒公式

应用高等数学等价替换公式1、无穷小量:设0)x (g lim )x (f lim 0x x x x ==→→*1)若0)x (g )x (f limx x =→,f (x )是g (x )的 高阶 无穷小*2)若∞=→)x (g )x (f limx x ,f (x )是g (x )的 低阶 无穷小*3)若c )x (g )x (f limx x =→,f (x )是g (x )的 同阶 无穷小*4)若1)x (g )x (f limx x =→,f (x )是g (x )的 等价 无穷小*5)若0)x (g )x (f limkx x 0=→,f (x )是g (x )的 k 阶 无穷小 2、等价替换:若x →x 0,f (x )~ f 1(x ),g (x )~ g 1(x )则=→)x (g )x (f limx x )x (g )x (f lim 11x x 0→6、常用等价形式: 当f (x )→0时*1)sinf (x )~ f (x ) *2)arc sinf (x )~ f (x ) *3)tanf (x )~ f (x )*4)arc tanf (x )~ f (x ) *5)In (1+f (x ))~ f (x ) *6)e f (x )-1~ f (x )*7)1-cosf (x )~ 2)x (f 2*8)(1+f (x ))α-1~ αf (x ) 二、函数的连续: 1、间断点:*1)第一类间断点:f -(x 0)、f +(x 0)均 存在的 间断点 ⑴跳跃间断点: f -(x 0)≠f +(x 0) ⑵可去间断点: f -(x 0)=f +(x 0)*2)第二类间断点:f -(x 0)、f +(x 0)至少有一个 不存在的 间断点 ⑴无穷间断点: f -(x 0)、f +(x 0)中至少有一个为 ∞ ⑵振荡间断点: f -(x 0)、f +(x 0)中至少有一个 振荡不存在 三、导数:1、定义:)x (f '= x△)x (f -)x △x (f lim000x △+→2、导数的常见形式:*1) 00x x 0x -x )x (f -)x (f lim)x (f 0→='*2) h )x (f -)h x (f lim)x (f 000h +='→*3) h)h x (f -)x (f lim)x (f 000h -='→3、切线方程:若曲线y=f (x )在点P (x 0,f (x 0)), 则 y-y 0=)x (f 0'(x-x 0) 注:*1)如果)x (f 0'=∞,则 x=x 0 *2)如果)x (f 0'=0,则 y=y 0 4、法线方程:若直线过点P (x 0,f (x 0)),则 y-y 0=)x (f 10'-(x-x 0)5、基本公式:*1)=')C ( 0 *2)1-a a ax )x (=' *3)Ina a )a (x x =' *4)x x e )e (='*5)xIna 1)x log (a ='*6)x 1 )Inx (='*7)cosx )sinx (=' *8)sinx - )cosx (=' *9)x sec )tanx (2=' *10)x csc - )cotx (2=' *11)tanx secx )secx (⋅=' *12)cotx cscx - )cscx (⋅=' *13)2x -11 )sinx arc (=' *14)2x -11-)cosx arc (='*15)2x 11)tanx arc (+='*16)2x11- )cotx arc (+=' 6、四则运算:νμ和都有导数*1)νμνμ'±'='± )(*2)μμ'='c )c ( *3)νμνμνμ'+'='⋅ )( *4))0( )(2≠'-'='νννμνμνμ 推论:*1)μμ'='c )c ( *2)w w w w '+'+'='μννμνμμν )( *3)s w s w ws ws ws '+'+'+'='μνμννμνμμν )( 7、反函数求导法则:设y=f (x )与x=ϕ(y )(ϕ'(y )≠0)则)y (1 )x (f ϕ'=' 或xy '= y x 1' 8、n 次导的常见公式:*1))n ()sinx (= )2nx (sin π+*2))2nx (cos )cosx ()n (π+=*3)()()n [In 1x ]+= n1-n )x 1(!)1-n ()1-(+ 9、参数方程求导:设函数)t (y ),t (x ),且b t a ()t (y )t (x ψϕψϕ==≤≤⎩⎨⎧==都可导,其中x=)t (ϕ'≠0,则函数的导数)t ()t (dtdx dt dydx dy ϕψ''== 10、复合函数求导:若y=f (u ),u=ϕ(x ),且f (u )及ϕ(x )都可导,则复合函数y=f[ϕ(x )]的导数)x ()x (f dxdyϕ'⋅'= 11、隐函数求导:*1)方程F (x ,y )=0两边求导,解出y 或dx dy'*2)公式法:由F (x ,y )=0,则yxF F dx dy''-=*3)利用微分形式的不变性,方程两边求微分,然后解出dxdy注:y 是x 的函数 12、对数求导:将函数关系式两边取自然对数(成为隐函数形式),化简,然后两边两边求导,最后两边乘以y (x )注:适用于多个因式的乘、除、乘幂构成或幂指函数(y=u (x )v (x )) 13、高阶导数:*1)二阶导数:x △)x (f -)x △x (f lim)x (f 0x △'+'=''→*2)三阶导数:x △)x (f -)x △x (f lim)x (f 0x △''+''='''→*4)n 阶导数:x△)x (f -)x △x (f lim)x (f)1-n ()1-n (0x △)1-n (+=→ 14、中值定理:*1)拉格朗日定理:若函数f (x )在闭区间[a ,b]上连续,在开区间(a ,b )内可导,则在(a ,b )内至少存在一点ξ,使得a-b )a (f -)b (f)(f ='ξ推论1:如果函数f (x )在区间(a ,b )内任意一点的导数)x (f '都等于零,你们函数f (x )在(a ,b )内是一个常数推论2:如果函数f (x )与g (x )在区间(a ,b )内每一点的导数)x (f '与)x (g '都相等,则这两个函数在区间(a ,b )内至多相差一个常数,即:f (x )= g (x )+C ,x ∈(a ,b )*2)罗尔定理:若函数f (x )在闭区间[a ,b]上连续,在开区间(a ,b )内可导,且f (a )=f (b ),则在(a ,b )内至少存在一点ξ,使得=')(f ξ 0 *3)柯西定理:若函数f (x )在闭区间[a ,b]上连续,在开区间(a ,b )内可导,且0)x (g ≠',则在(a ,b )内至少存在一点ξ,使得)a (g -)b (g )a (f -)b (f = )(g )(f ξξ''15、洛必达法则:*1)0型:设函数f (x )、g (x )满足: ⑴==→→)x (g lim )x (f lim 0x x x x 0⑵在点x 0的某去心邻域内)x (g )与x (f '' 都存在 ,且≠')x (g 0⑶)x (g )x (f limx x ''→ 存在或为无穷 有:)x (g )x (f limx x →= )x (g )x (f lim0x x ''→*2)∞∞型: 设函数f (x )、g (x )满足: ⑴∞==→→ )x (g lim )x (f lim 0x x x x⑵在点x 0=的某去心邻域内)x (g )与x (f '' 都存在 ,且≠')x (g 0⑶)x (g )x (f limx x ''→ 存在或为无穷 有:)x (g )x (f lim 0x x →= )x (g )x (f lim0x x ''→ *3)其他未定型:⑴0·∞型:f (x )·g(x )转化成)x (f 1)x (g 或 )x (g 1)x (f ,一般将In 、arc 留在分子上⑵∞-∞型:通过通分、分子有理化、倒数代换或代数、三角恒等变形化为0型或∞∞型⑶0、0、1∞∞∞型:f (x )g (x )= e g (x )Inf (x ) = )x (g 1)x (Inf e16、函数单调性判定:设函数y=f (x )在开区间(a ,b )内可导*1)如果函数y=f (x )在(a ,b )内,0)x (f >',则函数y=f (x )在(a ,b )内单调递 增 ;*2)如果函数y=f (x )在(a ,b )内,0)x (f <',则函数y=f (x )在(a ,b )内单调递 减 ; 17、函数的极值:*1)如果函数y=f (x )在点x 0及其左右近旁有定义,且对于x 0近旁的任何一点x (x ≠x 0)的函数值f (x )均有:⑴f (x )<f (x 0),则f (x 0)称为函数y=f (x )的 极大值 ,点x 0称为函数y=f (x )的 极大值点⑵f (x )>f (x 0),则f (x 0)称为函数y=f (x )的 极小值 ,点x 0称为函数y=f (x )的 极小值点 *2)驻点:=')x (f 0 0 的点 *3)极值第一充分条件:设点x 0是f (x )可能的极值点(0)x (f 0='或)x (f 0'不存在)⑴当0 )x (f )时,x ,-x (x 00>'∈δ;0 )x (f )时,x ,x (x 00<'+∈δ,则x 0为极大值点⑵当0 )x (f )时,x ,-x (x 00<'∈δ;0 )x (f )时,x ,x (x 00>'+∈δ,则x 0为极小值点⑶当⋃∈)x ,-x (x 00δ)x ,x (00δ+,)x (f ' 同号 ,则x 0不是极值点 *4)极值的第二充分条件:设y=f (x )在点x 0处有一、二阶导数,且)x (f 0'= 0⑴如果)x (f 0'' > 0,则函数y=f (x )在点x 0处取得最小值f (x 0) ⑵如果)x (f 0'' < 0,则函数y=f (x )在点x 0处取得最大值f (x 0) 18、曲线凹凸性:*1)若对于x ∈(a ,b )时,0)x (f >'',则曲线在(a ,b )上为 凹 ,用符号“ ⋂ ” 表示*2)若对于x ∈(a ,b )时,0)x (f <'',则曲线在(a ,b )上为 凸 ,用符号“ ⋃ ” 表示 6、曲线拐点:设f (x )在x 0的某个邻域内二阶可导,且='')x (f 0 0 ,若x 0两侧)x (f 0'' 改变 符号,则 (x 0,f (x 0)) 为曲线的拐点 19、曲线的渐近线:*1)水平渐近线:如果函数y=f (x )的定义域是无穷区间,且b )x (f lim x =∞→,则y= b*2)垂直渐近线:如果函数y=f (x )在x=x 0处间断,且∞=→)x (f lim 0x x ,则x=x 0*3)斜渐近线:如果函数y=f (x )定义在无穷区间,且a x)x (f limx =∞→,b ax]-)x ([f lim x =∞→,则y= ax+b20、经济学与导数:*1)利润:L (Q )= R (Q )-C(Q) *2)边际利润:)Q (C -)Q (R Q)(L ''='*3)函数弹性:)x (f )x (f xEx Ey '=*4)需求弹性(供给函数):)p (Q )Q(p p)p (0000'=η 注:⑴当|η| < 1时,为低弹性,此时需求变动幅度 小于 价格变动幅度。
高等数学中的等价替换公式

当x→0时,
sinx~x
tanx~x
arcsinx~x
arctanx~x
cosx~(1/2)*(x^2)~secx-1
(a^x)-1~x*lna ((a^x-1)/x~lna)
(e^x)-1~x
ln(1+x)~x
(1+Bx)^a-1~aBx
[(1+x)^1/n]-1~(1/n)*x
lax(a≠0)
值得注意的是,等价无穷小一般只能在乘除中替换,
在加减中替换有时会出错(加减时可以整体代换,不能单独代换或分别代换)
高等数学中的等价替换公式sinxxtanxxarcsinxxarctanxxcosx12x2secx1ax1xlnaax1xlnaex1xln1xx1bxa1abxloga1xxlna1xa1axa0值得注意的是等价无穷小一般只能在乘除中替换在加减中替换有时会出错加减时可以整体代换不能单独代换或分别代换本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注我们将会做得更好精选范本供参考
微积分等价替换公式

微积分等价替换公式
微积分中的等价替换公式是指一些常见的数学式子,通过代入不同的变量或者进行变形等操作,可以得到等价的表达式,这些式子可以帮助我们快速推导出复杂的微积分公式。
下面是一些常见的微积分等价替换公式:
1. 导数的链式法则公式:如果 u(x) 和 v(x) 都是可导函数,则 (u(v(x)))' = u'(v(x)) * v'(x)。
这个公式可以帮助我们求出复合函数的导数。
2. 积分的换元法公式:如果 f(x) 是一个可积函数,u 是一个可导函数,则∫f(u(x)) * u'(x)dx = ∫f(u)du。
这个公式可以帮助我们进行积分的简化。
3. 微分的牛顿-莱布尼茨公式:如果 F(x) 是一个连续可导函数,f(x) 是其导函数,则∫f(x)dx = F(x) + C,其中 C 是任意常数。
这个公式可以帮助我们求出原函数。
4. 高斯积分公式:∫e^{-x^2}dx = sqrt{pi}。
这个公式在处理概率密度函数和正态分布等问题时非常有用。
5. 声明微积分基本定理的公式:如果 f(x) 是一个连续可导函数,则 frac{d}{dx}int_a^x f(t)dt = f(x),其中 a 是常数。
这个公式可以帮助我们求出反常积分和定积分等问题。
这些微积分等价替换公式是学习微积分的基础,掌握它们可以帮助我们更好地理解微积分的概念和应用。
- 1 -。