Propagation of hollow Gaussian beams through

合集下载

艾里光束

艾里光束
光束构建自会聚光束,因此着重 关注它的自弯曲传输特性,以期望艾里光 束在自弯曲的过程中实现能量的自会聚
• The equivalent envelope Gaussian beam (EEGB) defined as the Gaussian beam with full-width at half maximum (FWHM) equal to the diameter of the ring-Airy beam and the equivalent peak contrast Gaussian beam (ECGB), which, in the linear regime, reaches the same peak intensity contrast value at the focus
原理以及计算方法
• 理论: 在量子力学框架下,描述微观粒子运动的 自由空间薛定谔方程的一维形式是 • • 其中m是粒子的质量,当初始条件输入艾里光波, 在演化过程中可以得到一个不扩展并且能够横向 自加速的波包解。这是1979年由Berry和Balazs首 次在理论上提出的,他们还解释了理论上得到的 弯曲轨迹实际上是初始时刻处于不同位置粒子做 直线运动得到的轨迹形成的包络,每一点的强度 是相应粒子波包在此位置的相干叠加。
Figure 6 | Comparative plot of intensity distributions. Radial intensity distribution of the ring-Airy, EEGB and ECGB used in the simulations.
Figure 1 | Focus shift in the non-linear regime. Focus position as a function of the input power for the ring-Airy beam (black squares) and the two Gaussian beams with equivalent contrast (red dots) and equivalent envelope (blue triangles).

The Gaussian beam models laser beams - index 高斯光束模式,激光束-指数

The Gaussian beam models laser beams - index 高斯光束模式,激光束-指数
When B = 0, all rays from a point xin arrive at a point xout, independent of angle.
xout = A xin
The Lens Law
From the object to the image, we have:
1) A distance d0 2) A lens of focal length f 3) A distance di
Gaussian Beam Math
The expression for a real laser beam's electric field is given by:
y where: E % (x ,y ,z ) e x p i w k z (z )i(z )e x p x w 2 2 (z y ) 2 i x R 2 (z y )2
Collimation Distance
2zR 2w02/
_s_iz_e__w_0_________=__1_0_.6__µ_m_________=_0_._6_3_3_µ_m_______
w(z) is the spot size vs. distance from the waist, R(z) is the beam radius of curvature, and y(z) is a phase shift.
This equation is the solution to the wave equation when we require that the beam be well localized at some point (i.e., its waist).

矩形光阑限制下高斯光束的衍射特性分析

矩形光阑限制下高斯光束的衍射特性分析

矩形光阑限制下高斯光束的衍射特性分析唐晓珊;郭福源;李连煌;高瑞;彭玉家【摘要】为了研究矩形光阑边长与透镜像方焦面处光束光斑尺寸以及光斑内所包含功率的关系,根据高斯光束经矩形光阑和透镜变换后在透镜像方焦面的衍射场分布表达式,采用MATLAB进行数值计算的方法,进行了理论分析.结果表明,当光阑对光束的衍射影响明显时,光束衍射场的中央亮条纹的宽度随着光阑边长的增大而减小:当光阑对光束的衍射影响极小时,中央亮条纹的宽度随着光阑边长的增加而阶跃变化,中央亮条纹强度的半最大值宽度随着光阑边长的增大而减小:当光阑对光束衍射影响极小时,中央亮条纹半最大值宽度趋近于一定值.给出的中央亮条纹强度半最大值宽度与矩形光阑边长关系的拟合表达式,可为激光应用装置的设计提供理论支持.【期刊名称】《激光技术》【年(卷),期】2010(034)001【总页数】5页(P124-127,131)【关键词】激光光学;高斯光束;矩形光阑;中央亮条纹;半峰全宽;桶中功率【作者】唐晓珊;郭福源;李连煌;高瑞;彭玉家【作者单位】福建师范大学,激光与光电子技术研究所,光子技术福建省重点实验室,福州,350007;福建师范大学,激光与光电子技术研究所,光子技术福建省重点实验室,福州,350007;福建师范大学,激光与光电子技术研究所,光子技术福建省重点实验室,福州,350007;福建师范大学,激光与光电子技术研究所,光子技术福建省重点实验室,福州,350007;福建师范大学,激光与光电子技术研究所,光子技术福建省重点实验室,福州,350007【正文语种】中文【中图分类】O436.1引言在许多实际应用中激光束传输受到矩形光阑的限制,如在激光扫描系统中的振镜或多面镜对光束的传输影响均可以等效为矩形光阑对光束的限制影响[1-2]。

激光束通常以高斯光束的形式在空间传播,因此,研究在矩形光阑限制下的高斯光束的衍射特性具有实际应用意义。

目前许多学者对矩形光阑限制下高斯光束的传输变化进行了探讨[3-5],对有关矩形光阑限制下光束经过透镜变化后的光斑尺寸的详细分析较少[4],受限后光束场分布不再为高斯形式,以光强降至中心光强1/e2处距中心的距离作为光斑半径定义[6]分析光斑的传输变化不再适宜。

《激光原理与技术》课程教学大纲

《激光原理与技术》课程教学大纲

《激光原理与技术》课程教学大纲课程名称:激光原理与技术英文名称:Principles and Technology of Lasers学分:3 总学时:48 理论学时:48 实验(上机)学时:0适用专业:光信息科学与技术专业一、课程的性质、目的本课程是光信息科学专业的重要基础课,激光物理与激光技术基础已经成为现代科学研究、工业、农业、军事。

尤其是光信息应用技术部门的重要内容,是新技术应用的重要基础。

因此,掌握激光原理与激光技术是为从事现代科学研究,开拓新的光信息科学内容打下基础。

二、教学基本要求通过教学过程的实施使学生基本掌握激光形成原理,掌握激光器件的各部件的工作原理,掌握主要的激光技术的基本原理和实施方法。

了解各种激光器件和技术的新进展,培养学生利用专业知识分析问题和解决实际问题的能力,教给学生自己不断获取新知识的方法。

三、课程教学基本内容1.Introductory concepts(本章要求掌握)51.1. Spontaneous and Stimulated Emission, Absorption1.2. The Laser Idea1.3. Pumping Schemes1.4. Properties of Laser Beams1.5. Laser Types2.Interaction of radiation with atoms and ions(本章前三节要求掌握)42.3. Spontaneous Emission2.4. Absorption and Stimulated Emission2.5. Line-Broadening Mechanisms2.6. Nonradiative Decay and Energy Transfer3.Energy levels, radiative, and nonradiative transitions in molecules and semiconductors (本章要求理解)63.1. Molecules3.2. Bulk Semiconductors3.3. Semiconductor Quantum Wells3.4. Quantum Wires and Quantum Dots4.Ray and wave propagation through optical media(本章要求熟练掌握)64.2. Matrix Formulation of Geometric Optics4.5. Fabry-Perot Interferometer4.7. Gaussian Beams5.Passive optical resonators(本章前四节要求掌握)65.2. Eigenmodes and Eigenvalues5.3. Photon Lifetime and Cavity Q5.4. Stability Condition5.5. Stable Resonators5.6. Unstable Resonators7. Continuous wave laser behavior(本章第8节要求掌握其他理解)67.2. Rate Equations7.6. Laser Tuning7.7. Reasons for Multimode Oscillation7.8. Single-Mode Selection7.9. Frequency Pulling and Limit to Monochromaticity7.10. Laser Frequency Fluctuations and Frequency Stabilization8.Transient laser behavior(本章第4、5、6节要求掌握)68.2. Relaxation Oscillations8.4. Q-Switching8.5. Gain Switching8.6. Mode Locking9.Solid-state, dye and semiconductor lasers(本章要求了解)39.2. Solid-State Lasers9.3. Dye Lasers9.4. Semiconductor Lasers10.Gas, chemical, free-electron, and X-ray lasers(本章要求了解)310.2.Gas Lasers11.Applications of Lasers(附加内容,要求了解)3四、课程考核方式本课程为考试课。

拉盖尔-高斯涡旋光束传播中的相位变化分析

拉盖尔-高斯涡旋光束传播中的相位变化分析

拉盖尔-高斯涡旋光束传播中的相位变化分析魏勇;朱艳英【摘要】为了研究拉盖尔-高斯涡旋光束在传播过程中的相位特性,采用螺旋相位板法获取涡旋光束,从菲涅耳衍射积分出发,对光束在传输过程中的相位变化以及整数阶与分数阶涡旋光束相位奇点的稳定性进行了理论推导和数值模拟。

当光束传输一段距离后,光场在观察平面上的等相位线由发散的射线变成了花瓣状的弧线。

结果表明,拓扑荷为整数阶的涡旋光束在传输过程中,相位奇点具有稳定性,而分数阶光束的相位奇点不再保持稳定性,其观察平面的光强分布不对称,且涡旋光束中心为暗核的特点消失。

该结论对光学微操纵和光信息编码技术的实现具有理论指导意义。

%In order to study the phase characteristics of Laguerre-Gaussian vortex beam during propagation , the vortex beam was obtained by means of spiral phase plates .Based on Fresnel diffraction integral formula , the phase change of the beam in the propagation process and the stability of vortex beam phase singularities at integer order and fractional order were studied by theoretical derivation and numerical simulation .When the beam was transmitted a certain distance , phase contours of the light field on the observation plane became from diverging rays into petal-shaped arcs .The results show that if topological charge of the vortex beam is integer order , the phase singularity of the beam assumes stability in the propagation process .The phase singularity of fractional order is unstable , intensity distribution on the observation plane is obvious asymmetric and the central darkness gradually disappears .The research results supplytheoretical foundation and practical guidance for the application of optical micro manipulation and information coding techniques .【期刊名称】《激光技术》【年(卷),期】2015(000)005【总页数】4页(P723-726)【关键词】物理光学;涡旋光束;相位分布;拓扑荷【作者】魏勇;朱艳英【作者单位】燕山大学理学院,秦皇岛066004; 燕山大学里仁学院,秦皇岛066004;燕山大学理学院,秦皇岛066004【正文语种】中文【中图分类】O436;TN241引言涡旋光束又称作暗中空光束或空心光束,即在传播方向上其中心的光强保持为0[1]。

贝塞尔-高斯光束通过圆孔与圆环光阑的衍射

贝塞尔-高斯光束通过圆孔与圆环光阑的衍射

贝塞尔-高斯光束通过圆孔与圆环光阑的衍射屈军;孟凯;汪六三;丁培宏;崔执凤【摘要】为了研究贝塞尔-高斯光束通过圆孔硬边光阑和圆环光阑的衍射特性,从Collins公式出发,采用数值模拟的方法模拟出光强分布.模拟结果表明,贝塞尔-高斯光束经圆孔光阑衍射后轴上光强随菲涅耳数F呈周期振荡;贝塞尔-高斯光束经圆环光阑后轴上光强随F呈振动衰减.在F相同时,贝塞尔-高斯光束经圆孔光阑衍射后横向光强分布比经圆环光阑衍射后横向光强分布平滑,孔径越小,光强调制越明显;当孔径与束腰相等时候,横向光强分布与菲涅耳数没有关系.【期刊名称】《激光技术》【年(卷),期】2008(032)004【总页数】3页(P393-395)【关键词】激光光学;贝塞尔高斯光束;衍射;圆孔光阑;圆环光阑【作者】屈军;孟凯;汪六三;丁培宏;崔执凤【作者单位】安徽师范大学,物理与电子信息学院,芜湖,241008;安徽师范大学,物理与电子信息学院,芜湖,241008;中国科学院,安徽光学精密机械研究所,合肥,230031;安徽师范大学,物理与电子信息学院,芜湖,241008;安徽师范大学,物理与电子信息学院,芜湖,241008【正文语种】中文【中图分类】O435引言贝塞尔-高斯光束是一种有应用前景的光束,它在一定条件下呈现“无衍射”特性,对这种光束的研究引起人们的极大关注[1-10]。

LIU等人对贝塞尔光束及贝塞尔-高斯光束的传输和聚焦特性已做了详细的计算分析和实验研究进行了比较[5];PAMELA,OVERFELT等人对贝塞尔-高斯光束经不同几何构形光阑的衍射作了比较研究[6-7];JIANG等人计算了加光阑贝塞尔光束的空间频谱[8]。

作者就贝塞尔-高斯光束经圆孔光阑和圆环光阑衍射后光强分布随菲涅耳数F的变化作了研究,并对F相同时的横向光强分布,以及当孔径与束腰相等时的横向光强分布与菲涅耳数的关系作了比较,对进一步研究贝塞尔-高斯光束有理论和现实意义。

Gaussian beam

Gaussian beam

Experiment prove: a=1.5w is the low limit of reliable aperture eg. w=0.38mm a(min.)=0.6 12 IL=0.05dB
Rayleigh Range of Gaussian Beam
πw0 2 z = ±b0 = ± , then.w( z ) = 2 w0 λ
Amplitude factor振幅 振幅 因子 Longtitudinal phase Radial phase
ω0 λz r2 kr 2 ϕ ( x, y , z ) = { exp[− 2 } × {exp[− j (kz − ar tan( )]}× {exp[− j ]} 2 ω ( z) ω ( z) 2 R( z ) πω 0 z λz 2 2 ) ] = ω 0 [1 + ( ) 2 ] ω 2 ( z ) = ω 0 2 [1 + ( z0 πω 0 2
z0 2 2 ) ] = z[1 + ( ) ] R( z ) = z[1 + ( z z
πω 0 2
2
πω 0 2 z0 = λ
r = x2 + y2 q = z + jb
7
Facula光斑 of Gaussian Beam 光斑
ω0 r2 exp[− 2 ] Amplitude A = ω ( z) ω ( z)
19
Ray Tracing and ABCD Matrix
A ray’s information can be described by its position and slope
20
ABCD Matrices
21
Gaussian Beam in High Material

随机电磁高阶Bessel-Gaussian光束在海洋湍流中的传输特性

随机电磁高阶Bessel-Gaussian光束在海洋湍流中的传输特性

随机电磁高阶Bessel-Gaussian光束在海洋湍流中的传输特性刘永欣;陈子阳;蒲继雄【摘要】Recently, the laser beam propagation in the oceanic turbulence has become a hot research topic. In addition to the characteristics of free diffraction and self-reconstruction, the high-order Bessel-Gaussian beam is a kind of typical vortex beam because of the existence of a spiral phase factor with orbital angular momentum. Researchers have investigated the self-reconstruction property of the high-order Bessel-Gaussian beams in the free space, also carried out intensive researches on the transmission characteristics of high-order Bessel-Gaussian beam in the ABCD optical system and in the atmospheric turbulence. However, to the best of our knowledge, to date there has been no investigation on the propagation of this laser beam in the oceanic turbulence. In this paper, we will study the propagation characteristics of the random electromagnetic high-order Bessel-Gaussian beams in the oceanic turbulence, and discuss the variation of the normalized spectrum intensity, the spectral degree of polarization, and the spectral degree of coherence. By using the extended Huygens-Fresnel diffraction integral formula, the general expression for the cross spectral density matrix of the stochastic electromagnetic high-order Bessel-Gaussian beams propagating in the oceanic turbulence is obtained, and the statistical properties of the random electromagnetic high-order Bessel-Gaussian beams propagating in the seawater are investigated bynumerical calculation. The numerical results show that the oceanic turbulence can affect the normalized spectral intensity distribution of the random electromagnetic beam. With the increase of the transmission distance, the center of the zero-order Bessel-Gaussian beam becomes depressed, and the center of the higher-order Bessel-Gaussian beam will become flat and then depressed. As the transmission distance increases far enough, regardless of the zero-order or higher-order, the intensity distribution will eventually evolve into the quasi Gaussian shaped distribution. The variation of the degree of polarization of each point on the x axis is related to the coherence length (δxx, δyy) and the oceanic turbulence parameters. The spectral coherence of the origin and any point on the x axis also changes with the increase of x, and the rate of dissipation of mean-square temperature χT has influence on the spectral coherence. This research is of great value for applying the high-order Bessel-Gaussian beam to the optical communication, optical imaging and underwater exploration in the ocean.%利用广义惠更斯-菲涅耳衍射积分公式得到了随机电磁高阶Bessel-Gaussian光束在海洋湍流中传输的交叉谱密度矩阵的一般表达式,通过数值计算主要研究了随机电磁高阶Bessel-Gaussian光束在海洋湍流中传输时其在远场输出面的统计特性的变化,包括归一化光谱强度、光谱偏振度、两点的光谱相干度等.数值模拟结果显示海洋湍流能够对随机电磁高阶Bessel-Gaussian光束的归一化光谱强度分布产生影响,随着传输距离的增加,零阶Bessel-Gaussian光束中心出现凹陷,高阶Bessel-Gaussian光束中心会变平坦继而又凹陷下去,不管零阶还是高阶,当传输距离增加到足够远,光强分布都会演变成最终的类高斯分布.x轴上各点的偏振度改变与相干长度δxx,δyy以及海洋湍流参数有关.x轴上任意一点和原点这两点的光谱相干度也随x的增加而呈振荡变化,并且海洋的均方温度耗散率χT对光谱相干度有影响.【期刊名称】《物理学报》【年(卷),期】2017(066)012【总页数】8页(P173-180)【关键词】海洋湍流;随机电磁光束;高阶Bessel-Gaussian光束;传输【作者】刘永欣;陈子阳;蒲继雄【作者单位】华侨大学信息科学与工程学院, 福建省光传输与变换重点实验室, 厦门 361021;华侨大学信息科学与工程学院, 福建省光传输与变换重点实验室, 厦门361021;华侨大学信息科学与工程学院, 福建省光传输与变换重点实验室, 厦门361021【正文语种】中文利用广义惠更斯-菲涅耳衍射积分公式得到了随机电磁高阶Bessel-Gaussian光束在海洋湍流中传输的交叉谱密度矩阵的一般表达式,通过数值计算主要研究了随机电磁高阶Bessel-Gaussian光束在海洋湍流中传输时其在远场输出面的统计特性的变化,包括归一化光谱强度、光谱偏振度、两点的光谱相干度等.数值模拟结果显示海洋湍流能够对随机电磁高阶Bessel-Gaussian光束的归一化光谱强度分布产生影响,随着传输距离的增加,零阶Bessel-Gaussian光束中心出现凹陷,高阶Bessel-Gaussian光束中心会变平坦继而又凹陷下去,不管零阶还是高阶,当传输距离增加到足够远,光强分布都会演变成最终的类高斯分布.x轴上各点的偏振度改变与相干长度δxx,δyy以及海洋湍流参数有关.x轴上任意一点和原点这两点的光谱相干度也随x的增加而呈振荡变化,并且海洋的均方温度耗散率χT对光谱相干度有影响.最近,随着海洋探测和光通信技术的发展,光在海洋中的传输、成像引起了人们的兴趣,人们逐渐认识到研究激光束受到海洋湍流影响的必要性.2011年,Korotkova研究小组[1−3]采用一种由温度和盐度共同组成的综合模型的能谱先后研究了海洋湍流对高斯-谢尔模型电磁光束的偏振度和光谱的影响,以及高斯光束在海洋湍流传输中光强以及相干特性的变化.随后,激光束在海洋湍流中的传输也激发了国内各研究者的研究热情[4−16].Fu等[4,5]研究了部分相干径向偏振空心光束和多高斯-谢尔模型光束经过海洋湍流的传输特性;浙江大学赵道木等先后研究了电磁涡旋光束和电磁非均匀相干光束经过海洋湍流的传输[7−9],以及随机各向异性电磁光束在海洋湍流中的光谱变化[10];四川师范大学季小玲等[11,12]研究了海洋湍流对高斯阵列光束以及部分相干环状偏心光束的传输特性的影响;四川大学Huang等[13]研究了海洋湍流和阵列光束参数对光束质量的影响;Liu等[14−16]研究了海洋湍流对啁啾高斯脉冲光束光谱特性的影响以及平顶涡旋空心光束经海洋湍流传播的光强特性等.可见,激光束在海洋湍流中的传输研究是一个研究热点.而高阶Bessel-Gaussian光束除了具有无衍射和自重建特性以外,还因为螺旋相位因子的存在而具有轨道角动量,是一类典型的涡旋光束.人们对高阶Bessel-Gaussian光束在自由空间中的自重建特性以及在ABCD光学系统和大气湍流中的传输特性都进行了深入研究[17−21],但在海洋湍流中的研究未见有报道.另外,利用轨道角动量可以对信息进行编码与传输,从而应用于光通信等领域,可见该光束还在光通信领域具有巨大的潜在应用价值.基于以上几点有必要对高阶Bessel-Gaussian光束在海洋湍流中的传输特性进行研究.本文主要研究随机电磁高阶Bessel-Gaussian光束在海洋湍流中的传输特性,讨论其归一化光谱强度、光谱偏振度、光谱相干度的变化规律.考虑随机电磁高阶Bessel-Gaussian光束在海洋湍流中沿着Z轴传输,在Z=0平面(即源平面)该光束的二阶相干和偏振特性可以由一个2×2的交叉谱密度矩阵来描述式中,r1,r2是Z=0平面上两点的位矢,ω是角频率,星号表示复共轭,尖括号表示系综平均.为简便起见,假设在源平面的光束的交叉谱密度矩阵的非对角元素为零,即Wxy(r1,r2,0,ω)=Wyx(r1,r2,0,ω)=0,则源平面的交叉谱密度矩阵可简化为对于高阶Bessel-Gaussian光束其矩阵元可表示为式中,Ii=E2i0;r1,r2是位矢r1,r2的模;Jn表示贝塞尔函数;n表示拓扑荷数;w0是束腰宽度;δii是ii方向的相干长度.当此光束在海洋中传输时,根据广义的惠更斯-菲涅耳原理,利用源平面的交叉谱密度矩阵元可得到在海洋湍流中传输到Z=z平面的交叉谱密度矩阵元为式中,k=2π/λ是波数,其中λ是波长;ρ1,ρ2是Z=z平面上两点的位矢;ρ0是球面波在海洋湍流介质中传播后的相干长度,表示为关于海水折射率波动的空间能谱模型可以从文献[1,22]中得到,这个模型是由温度波动和盐度波动组成的二元线性多项式.当海洋湍流是各向同性和均匀的时,这个模型是成立的,那么经过特殊化考虑之后的一维谱可写成式中,ε是单位质量液体中的湍流动能的耗散率,取值可以从10−4m2/s3到10−10m2/s3;η =10−3m是Kolmogorov微尺度(内尺度);f(κ,w,χT)可以表示为其中,χT是均方温度耗散率,AT=1.863×10−2,AS=1.9× 10−4,ATS=9.41×10−3,δ=8.284(κη)4/3+12.978(κη)2,w是温度和盐度波动的相对强度,海洋当中的取值是−5到0,取−5时说明由盐度引起的湍流占主导,取0时说明由温度引起的湍流占主导[1].将(3)式代入(4)式后经过繁琐的积分计算,最后化简可得到随机电磁高阶Bessel-Gaussian光束在海洋中传输一段距离后的交叉谱密度矩阵元为令(8)式中ρ1= ρ2= ρ,φ1= φ2= φ可得到在z平面任意点(ρ,z)的光谱强度和光谱偏振度分别为式中,Det,Tr分别表示的是矩阵的行列式和迹的值.因为Wxy(ρ1,ρ2,z,ω)=Wyx(ρ1,ρ2,z,ω)=0,则(10)式化简为另外,在z平面上任意两点的光谱相干度根据其定义式可表示为令ρ1=x,φ1=0,ρ2=0,φ2=0,即x轴上任意一点和原点这两点的光谱相干度,则(12)式表示为利用数学软件Mathematica对(8)—(13)式进行编程,计算并模拟得到归一化光谱强度(I(ρ,z,ω)/I(ρ,z,ω)max) 以及光谱偏振度、光谱相干度的变化规律,如图1—5所示.另外,若无特殊说明,计算参数一般为λ=632.8 nm,α =500,w0=0.02 m, δxx= δyy=0.01 m,Ix=Iy=1,η =10−3m,ε=10−7m2/s3,w= −2.5,χT=10−10K2/s.图1是不同拓扑荷数的随机电磁Bessel-Gaussian光束在海洋中传输到不同距离处的归一化光强分布.由图1(a)可知,对于拓扑荷数n=0的零阶Bessel-Gaussian 光束其归一化光强分布具有高斯型分布,而对于n̸=0的高阶Bessel-Gaussian光束,其光斑的中心是一个暗核,且拓扑荷数n越大,中间的凹陷越深,暗核也越大.但随着传输距离的增加,由于海洋湍流的影响,零阶Bessel-Gaussian光束中心也出现凹陷,高阶Bessel-Gaussian光束中心会变平坦继而又凹陷下去,整体而言光斑会逐渐展开变大,到一定传输距离,各阶Bessel-Gaussian光束的归一化光强近似分布一致,再经过足够长的传输距离,中心凹陷性光强曲线最终都会演化为类高斯曲线,如图1(d)所示.图2是拓扑荷数n=1的随机电磁高阶Bessel-Gaussian光束在不同海洋湍流中传输z=100 m处归一化光强分布.由图2(a)可知,随着海洋的均方温度耗散率χT的增加,一阶Bessel-Gaussian光束中心的凹陷越小,而当χT6 10−10时,χT对光强分布的影响已不再明显.图2(b)是在不同ε(单位质量液体中的湍流动能的耗散率)的海洋湍流中的归一化光强分布,随着ε的变大,Bessel-Gaussian光束中心的凹陷越深,但ε>10−7时,ε对光强分布的影响变化已很小.图2(c)是在不同w(温度和盐度波动的相对强度)的海洋湍流中的归一化光强分布,随着w的变大,Bessel-Gaussian光束中心的凹陷越小,但w 6−2.5时,w对光强分布的影响变化也很小.总之,随机电磁高阶Bessel-Gaussian光束在海洋湍流中传输时,海洋湍流参数的强弱对光强分布会产生影响,但影响都是有界限的.图3是拓扑荷数n=1的随机电磁高阶Bessel-Gaussian光束在海洋湍流中传输z=1 km处x轴上各点的偏振度的变化,其中δxx=0.02 m,Ix=1,Iy=0.5,其他参数不变.由图3可知,当δxx= δyy=0.02 m时,偏振度随着x的增加将保持不变且与源平面的值(0.33)相等,这是因为当δxx= δyy时,对于任意一点,(8)式的交叉谱密度矩阵元除了Ii这个系数不同,其他参数都相同, 可得Wyy(ρ,ρ,z)=0.5Wxx(ρ,ρ,z), 再代入(11)式计算可得P(ρ,z,ω)=1/3. 而当δx x̸= δyy时,偏振度随着x的增加而发生变化,但变化规律与δyy的大小有密切关系,当δxx< δyy时,随着x的增加偏振度先减小再增大;而当δxx>δyy时,随着x的增加偏振度变化规律更复杂,如图3(b)所示. 图4是拓扑荷数n=1的随机电磁高阶Bessel-Gaussian光束在不同海洋湍流中传输z=1 km处x轴上各点的偏振度的变化,其中δxx=0.02 m,δyy=0.03m,Ix=1,Iy=0.5,其他参数不变. 由图4可知,随着海洋的均方温度耗散率χT的增加或者w(温度和盐度波动的相对强度)的增加,x轴上各点的偏振度改变幅度减小直至均趋于0.33(源平面的值)附近.图5是拓扑荷数n=1的随机电磁高阶Bessel-Gaussian光束在不同海洋湍流传输到z处x轴上任意一点和原点这两点的光谱相干度的变化.由图可见,随着x远离原点,两点的光谱相干度呈振荡变化,并且随着海洋的均方温度耗散率χT的增加,振荡变化的幅度稍加剧烈.比较图5(a)与图5(b)可知,当海洋的均方温度耗散率χT不变时,随着传输距离的增加,光束光斑展开变大,光谱相干度也随着逐渐展开.利用广义惠更斯-菲涅耳衍射积分公式得到了随机电磁高阶Bessel-Gaussian光束在海洋湍流中传输的交叉谱密度矩阵的一般表达式,并在此基础上主要研究了随机电磁高阶Bessel-Gaussian光束在海洋湍流中传输时其在远场输出面的统计特性的变化,包括归一化光谱强度、光谱偏振度、两点的光谱相干度等.数值模拟结果显示海洋湍流能够对随机电磁高阶Bessel-Gaussian光束的归一化光谱强度分布产生影响.在海洋传输中,零阶Bessel-Gaussian光束中心也出现凹陷,高阶Bessel-Gaussian光束中心会变平坦继而又凹陷下去,整体而言光斑会逐渐展开变大,到一定传输距离,各阶Bessel-Gaussian光束的归一化光强近似分布一致,再经过足够长的传输距离,不管零阶还是高阶,光强分布都会演变成最终的类高斯分布.x轴上各点的偏振度改变与δxx,δyy有关.当δxx=δyy=0.02 m时,偏振度随着x的增加将保持不变且与源平面的值相等;当δx x̸=δyy时,偏振度随着径向距离的变化而改变.x 轴上任意一点和原点这两点的光谱相干度也随x的增加而呈振荡变化,并且海洋的均方温度耗散率χT对光谱相干度有影响.该研究内容对高阶Bessel-Gaussian光束在海洋中的光通信、光成像以及海底探测等领域的应用具有潜在价值.[1]Korotkova O,Farwell N 2011 mun.284 1740[2]Shchepakina E,Farwell N,Korotkova O 2011 Appl.Phys.B 105 415[3]Farwell N,Korotkova O 2012 mun.285 872[4]Fu W Y,Zhang H M 2013 mun.304 11[5]Fu W Y,Zhang H M,Zheng X R 2015 sers 42 s113002(in Chinese)[付文羽,张汉谋,郑兴荣2015中国激光42 s113002][6]Tang M M,Zhao D M 2013 Appl.Phys.B 111 665[7]Xu J,Tang M M,Zhao D M 2014 mun.331 1[8]Xu J,Zhao D M 2014 ser Technol.57 189[9]Tang M M,Zhao D M 2014 mun.312 89[10]Zhu W T,Tang M M,Zhao D M 2016 Optik 127 3775[11]Lu L,Ji X L,Li X Q,Deng J P,Chen H,Yang T 2014 Optik 125 7154[12]Yang T,Ji X L,Li X Q 2015 Acta Phys.Sin.64 024206(in Chinese)[杨婷,季小玲,李晓庆 2015物理学报 64 024206][13]Huang Y P,Huang P,Wang F,Zhao G,Zeng A 2015 mun.336 146[14]Liu D J,Wang Y C,Wang G Q,Yin H M,Wang J R 2016 ser Technol.82 76[15]Liu D J,Chen L,Wang Y C,Wang G Q,Yin H M 2016 Optik 127 6961[16]Liu D J,Wang Y R,Yin H M 2015 Appl.Opt.54 10510[17]Zhang Q A,Wu F T,Zheng W T,Pu J X 2011 Sci.Sin.:Phys.Mech.Astron.41 1131(in Chinese)[张前安,吴逢铁,郑维涛,蒲继雄 2011中国科学:物理学力学天文学41 1131][18]Chen B S,Chen Z Y,Pu J X 2008 ser Technol.40 820[19]Chen Z Y,Cui S W,Zhang L,Sun C Z,Xiong M S,Pu J X 2014 Opt.Express 22 18278[20]Zhao C L,Wang L G,Lu X H,Chen H 2007 ser Technol.39 1199[21]Eyyuboglu H T 2007 Appl.Phys.B 88 259[22]Nikishov V V,Nikishov V I 2000 Int.J.Fluid Mech.Res.27 82PACS:42.68.Xy,42.25.–p,42.25.Kb,42.30.Lr DOI:10.7498/aps.66.124205 Recently,the laser beam propagation in the oceanic turbulence has become a hot research topic.In addition to the characteristics of free di ff raction and self-reconstruction,the high-order Bessel-Gaussian beam is a kind of typical vortex beam because of the existence of a spiral phase factor with orbital angular momentum.Researchers have investigated theself-reconstruction property of the high-order Bessel-Gaussian beams in the free space,also carried out intensive researches on the transmission characteristics of high-order Bessel-Gaussian beam in the ABCD optical system and in the atmospheric turbulence.However,to the best of our knowledge,to date there has been no investigation on the propagation of this laser beam in the oceanic turbulence.In this paper,we will study the propagation characteristics of the random electromagnetic high-order Bessel-Gaussian beams in the oceanic turbulence,and discuss the variation of the normalized spectrum intensity,the spectral degree of polarization,and the spectral degree of coherence.By using the extended Huygens-Fresnel di ff raction integral formula,the general expression for the cross spectral density matrix of the stochastic electromagnetic high-order Bessel-Gaussian beams propagating in the oceanic turbulence is obtained,and the statistical properties of the random electromagnetic high-order Bessel-Gaussian beams propagating in the seawater are investigated by numerical calculation.The numerical results show that the oceanic turbulence can a ff ect the normalized spectral intensity distribution of the random electromagnetic beam.With the increase of the transmission distance,the center of the zero-order Bessel-Gaussian beam becomes depressed,and the center of the higher-order Bessel-Gaussian beam will become fl at and then depressed.As the transmission distance increases far enough,regardless of the zeroorder or higher-order,the intensity distribution will eventually evolve into the quasi Gaussian shaped distribution.The variation of the degree of polarization of each point onthe x axis is related to the coherence length(δxx,δyy)and the oceanic turbulence parameters.The spectral coherence of the origin and any point on the x axis also changes with the increase of x,and the rate of dissipation of mean-square temperature χThas in fl uence on the spectral coherence.This research is of great value for applying the high-order Bessel-Gaussian beam to the optical communication,optical imaging and underwater exploration in the ocean.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(here L␯n denotes the Laguerre polynomial), we obtain the following expression after some tedious but straightforward integration:
introduced a new mathematical model called the hollow
Gaussian beam (HGB) to describe DHBs of circular symmetry15 and introduced the hollow elliptical Gaussian
guiding of atoms by a HGB and a HEGB have also been studied.17,18 In the present paper, by expanding the hard-
aperture function into a finite sum of complex Gaussian functions,19,20 we derive approximate analytical formulas
form in a cylindrical coordinate system:
͵ ͵ ͭ i
2␲ a1
ik
E͑r,z͒ = ␭B exp͓− ikl0͑z͔͒ 0 0 E0͑r1,0͒exp − 2B ͓Ar12
ͮ − 2r1r cos͑␪ − ␪1͒ + Dr2͔ r1dr1d␪1,
͑2͒
where r1 , ␪1 and r , ␪ are the radial and the azimuth angle coordinates in the input and output planes, respectively, l0͑z͒ is the optical length along the propagation axis z (for simplicity we will not show its z dependence in some equations below), k = 2␲ / ␭ is the wavenumber; and ␭ is the wavelength. A , B , C , D are the elements of the trans-
Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, East Building No. 5, Zijingang Campus, Zhejiang University, Hangzhou, 310027, China, and Division of Electromagnetic Theory, Alfvén Laboratory, Royal Institute of Technology, SE-10044 Stockholm, Sweden
beam (HEGB) to describe DHBs of noncircular symmetry.16 Propagation and transformation of a HGB
and a HEGB through an unapertured paraxial general
optical system have been studied in detail. Trapping and
the following sum (finite terms) of complex Gaussian functions19,20:
͚ ͩ ͪ M
H͑r͒ = Am exp
m=1

Bm a12
r2
,
͑6͒
where Am and Bm are the expansion and Gaussian coefficients, which can be obtained by numerical optimization directly.19,20 The numerical result shows that the simulation accuracy improves as M increases.
1410 J. Opt. Soc. Am. A / Vol. 23, No. 6 / June 2006
Y. Cai and S. He
Propagation of hollow Gaussian beams through apertured paraxial optical systems
Yangjian Cai and Sailing He
Received August 26, 2005; revised November 29, 2005; accepted November 29, 2005; posted November 30, 2005 (Doc. ID 64402)
On the basis of the generalized Collins formula and the expansion of the hard-aperture function into a finite sum of complex Gaussian functions, an approximate analytical formula for a hollow Gaussian beam propagating through an apertured paraxial stigmatic (ST) ABCD optical system is derived. Some numerical examples are given. Furthermore, by using a tensor method, we derive approximate analytical formulas for a hollow elliptical Gaussian beam propagating through an apertured paraxial general astigmatic ABCD optical system and an apertured paraxial misaligned ST ABCD optical system. Our results provide a convenient way for studying the propagation and transformation of a hollow Gaussian beam and a hollow elliptical Gaussian beam through an apertured general optical system. © 2006 Optical Society of America
ቤተ መጻሕፍቲ ባይዱ
͑3͒
and applying the integral formula22
͵1 2␲
J0͑x͒ = 2␲ 0 exp͑ix cos ␪͒d␪,
͑4͒
we find that Eq. (2) becomes
1084-7529/06/061410-9/$15.00 © 2006 Optical Society of America
for a HGB and a HEGB propagating through an aper-
tured paraxial general optical system, and some numeri-
cal examples are given.
2. PROPAGATION OF A HOLLOW
Within the framework of the paraxial approximation,
the propagation of a HGB through an apertured paraxial
stigmatic (ST) ABCD optical system can be treated by the generalized Collins formula,21 which takes the following
GAUSSIAN BEAM THROUGH AN
APERTURED PARAXIAL STIGMATIC ABCD
OPTICAL SYSTEM
The electric field of a HGB at z = 0 is defined as follows15:
ͩ ͪ ͩ ͪ r2 n
r2
En͑r,0͒ = G0 w02 exp − w02 ,
fer matrix of the paraxial ST optical system, and a1 denotes the radius of the aperture.
By introducing the hard-aperture function
ͭ ͮ 1, ͉r1͉ ഛ a1
H͑r1͒ = 0, ͉r1͉ Ͼ a1
Y. Cai and S. He
ͩ ͪ͵ 2␲i
ikDr2
E͑r,z͒ = ␭B exp͑− ikl0͒exp − 2B
ϱ
En͑r1, 0͒H͑r1͒
0
ͩ ͪ ͩ ͪ ikAr12
krr1
ϫexp − 2B
J0
B
r1dr1.
͑5͒
The hard-edged-aperture function can be expanded as
Substituting Eqs. (1) and (6) into Eq. (5) and applying the integral formula22
͵ϱ exp͑− pt͒tv/2+nJv͑2␣1/2t1/2͒dt 0
相关文档
最新文档