高一数学正弦余弦定理1

合集下载

版高中数学 第一章 解三角形 1.1.1 正弦定理(一)课件 新人教B版必修5.pptx

版高中数学 第一章 解三角形 1.1.1 正弦定理(一)课件 新人教B版必修5.pptx
12
跟踪训练1 如图,锐角△ABC的外接圆O半径为R,角A,B,C所对的 边分别为a,b,c.求证:sina A =2R. 证明
13
类型二 用正弦定理解三角形
例2 已知△ABC,根据下列条件,解三角形:a=20,A=30°,C= 45°. 解答 ∵A=30°,C=45°,∴B=180°-(A+C)=105°, 由正弦定理得 b=assiinnAB=20ssiinn3100°5°=40sin(45°+60°)=10( 6+ 2), c=assiinnAC=20sisnin3405°°=20 2, ∴B=105°,b=10( 6+ 2),c=20 2.
A.直角三角形 C.锐角三角形
√B.等腰三角形
D.钝角三角形
由sin A=sin C,知a=c,∴△ABC为等腰三角形.
1 2 3 247
3.在△ABC中,已知BC= 5 ,sin C=2sin A,则AB=_2__5___.
答案 解析
由正弦定理,得 AB=ssiinn CABC=2BC=2 5.
18
命题角度2 运算求解问题
例4
在△ABC中,A=
π 3
,BC=3,求△ABC的周长的最大值.
解答
19
反思与感悟
利用sina A=sinb B=sinc C=2R 或正弦定理的变形公式 a=ksin A,b= ksin B,c=ksin C(k>0)能够使三角形边与角的关系相互转化.
22
跟 踪 训 练 3 在 △ABC 中 , 角 A 、 B 、 C 的 对 边 分 别 是 a 、 b 、 c , 若 A∶B∶C=1∶2∶3,求a∶b∶c的值. 解答
23
当堂训练
25
1. 在△ABC中,一定成立的等式是 答案 解析

余弦定理与正弦定理第1课时 高一下学期数学人教A版(2019)必修第二册

余弦定理与正弦定理第1课时 高一下学期数学人教A版(2019)必修第二册

归纳小结
问题3 本节课收获了哪些知识,请你从以下几方面总结:
(1)这节课我们发现了什么新知识?我们是如何研究它的?
(2)余弦定理的变式有哪些?三角形的面积公式是什么?
(1)我们发现了余弦定理,三角形面积公式的另一种表达形式;
2 + 2 − 2
2 + 2 − 2
2 + 2 − 2
(1)求cos C;
(2)求△ABC的面积.
解答: (1)由余弦定理a2=b2+c2-2bccos A得b2+25-5b=49,
解得b=-3(舍)或b=8.
(2)由(1)得: Δ
2 + 2 − 2 49 + 64 − 25 11
∴ cos =
=
=

2
2×7×8
14
1
1
= sin = × 8 × 5 sin 60° = 10 3.
2
2
2
a
b
h
A
c
B
初步应用
例1 如图,有两条直线AB和CD相交成80°角,交点为O.甲、乙两人同时从点O分别沿
OA,OC方向出发,速度分别为4 km/h,4.5 km/h.3 h后两人相距多远?(精确到0.1 km)
C
Q
80°
B
O
D
3 h后两人相距16.4 km.
(详解参考教材P109例1的解析.)
= ||2 − 2 ⋅ + ||2
b
c
=a2+b2-2ab cos C,
C
同理可证:
a
B
所以c2=a2+b2-2abcos C.
a2=b2+c2-2bccos A,

高中数学-余弦定理

高中数学-余弦定理

探要点、究所然
探究点一 :余弦定理的推导
问题 如果已知一个三角形的两条边及其所夹的角,根据三角形全等的判定方法,这 个三角形是大小、形状完全确定的三角形.如何利用已知的两边和夹角来解三角形 呢?
探要点、究所然
探究点一 :余弦定理的推导
思考 1 如何用数学符号来表达“已知三角形的两边及其夹角解三角形”? 答 已知△ABC,BC=a,AC=b 和角 C,求解 c,B,A.
探要点、究所然
探究点一 :余弦定理的推导
思考 2 我们可以先研究计算第三边长度的问题,联系已经学过的知识和方法,我们 又从哪些角度研究这个问题能得到一个关系式或计算公式呢? 答 由于涉及边长问题,从而可以考虑用向量的数量积,或用解析几何的两点间距 离公式来研究这个问题.
探要点、究所然
探究点一 :余弦定理的推导
探要点、究所然
探究点二 :余弦定理的应用
思考 2 根据余弦定理及其推论,你认为余弦定理及其推论的基本作用有哪些? 答 (1)已知三角形的任意两边及它们的夹角就可以求出第三边; (2)已知三角形的三条边就可以求出其它角.
探要点、究所然
探究点二 :余弦定理的应用
思考 3 勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了 一般三角形中三边平方之间的关系,如何看这两个定理之间的关系? 答 若△ABC 中,C=90°,则 cos C=0,将 cos C=0 代入余弦定理得 c2=a2+b2. 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.
探要点、究所然
探究点二 :余弦定理的应用
在△ABC 中,sin A∶sin B∶sin C=2∶4∶5,判断三角形的形状. 解 因为 a∶b∶c=sin A∶sin B∶sin C=2∶4∶5, 所以可令 a=2k,b=4k,c=5k(k>0). c 最大,cos C=2k22+×24kk×2-4k5k2<0, 所以 C 为钝角,从而三角形为钝角三角形.

6.4.3正弦定理余弦定理(第1课时)课件高一下学期数学人教A版

6.4.3正弦定理余弦定理(第1课时)课件高一下学期数学人教A版
a2 b2 c2 cos C
2ab
应用:已知三条边求角度.
变形二
a2 (b c)2 2bc(1 cos A)
b2 (a c)2 2a(c 1- cos B)
c2 (a b)2 2a(b 1- cos C)
应用:配方法的使用
想一想: 余弦定理在直角三角 形中是否
仍然成立?
cosC=
例 2 在△ABC 中,已知 a= 3,b= 2,B=45°,解此三角形.
解析 由余弦定理知 b2=a2+c2-2accos B.
∴2=3+c2-2 3·22c.即 c2- 6c+1=0.
6+ 2
6- 2
6+ 2
解得 c= 2 或 c= 2 ,当 c= 2 时,由余弦定理得
cos A=b2+2cb2c-a2=2+
一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.已知 三角形的几个元素求其他元素的过程叫做解三角形.
在 ABC中,三个内角A、B、C的对边长分别记作a,b,c
二、余弦定理
在三角形ABC中,三个角A,B,C所对的边分别
为a,b,c,怎样用a,b和C表示c?
如图,设CB a,CA b, AB c,那么
3 2.
2.解析 ∵a∶b∶c=2∶ 6∶( 3+1), 令 a=2k,b= 6k,c=( 3+1)k(k>0). 由余弦定理的变形得,
又∵0°<B<180°, ∴B=150°.
cos
b2+c2-a2 6k2+ 3+12k2-4k2 A= 2bc = 2× 6k× 3+1k =
22.
∴A=45°.
题型二 已知两边及一角解三角形
和减去这两边与它们夹角的余弦的积的两倍.

高一数学正弦余弦定理1-P

高一数学正弦余弦定理1-P
言论空泛,【参变量】cānbiànliànɡ名参数。【侧身】2cèshēn同“厕身”。【;seo学习网:/ ;】2chāoxí动(军队)绕道到敌 人侧面或后面袭击。【避孕套】bìyùntào名避孕工具,【产业】chǎnyè名①土地、房屋、工厂等财产(多指私有的)。②指计算机病读。~全都活了。② 名不公平的事:路见~, ③〈方〉动用鳔胶粘上。④(Cānɡ)名姓。【编号】biānhào①(-∥-)动按顺序编号数:新书尚待~|新买的图书编上号 以后才能上架出借。如:“差点儿摔倒了”和“差点儿没摔倒”都是指几乎摔倒但是没有摔倒。④动排遣。【笔底下】bǐdǐ?【潮信】cháoxìn名①指潮水 , ⑥〈书〉统辖;⑥(Cè)名姓。 【衬字】chènzì名曲子在曲律规定字以外,②筹划;【变压器】biànyāqì名利用电磁感应的原理来改变交流电压的装 置, 并用文字公布施行的法律(跟“不成文法”相对)。【孱】càn义同“孱”(chán),【擦】cā动①摩擦:~火柴|摩拳~掌|手~破了皮。【兵 家】bīnɡjiā名①古代研究军事理论、从事军事活动的学派。【不义之财】bùyìzhīcái不应该得到的或以不正当的手段获得的钱财。 【冰炭】bīnɡ tàn名比喻互相对立的两种事物:~不相容(比喻两种对立的事物不能并存)。 ②制造人力车或三轮车的工厂。如剥夺, 【璧谢】bìxiè〈书〉动敬辞,
即正弦定理,定理对任意三角形均成立.
利用向量如何在三角形的边长与三角函数建立联系?
5.9 正弦定理、余弦定理
向量的数量积 a b | a || b | cos , 为向量a 与b 的夹角.
如何构造向量及等式?
B
在锐角ABC 中,过A作单位向量j 垂直于 AC,
则有j 与AB的夹角为 90 A , j 与 CB 的夹角为 90 C . 等式 AC CB AB j

高考数学一轮复习---正弦定理和余弦定理(一)

高考数学一轮复习---正弦定理和余弦定理(一)

高考数学一轮复习---正弦定理和余弦定理(一)一、基础知识1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形:(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ;(4)a +b +c sin A +sin B +sin C =a sin A . 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C .3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高); (2)S △ABC =12ab sin C =12bc sin A =12ac sin B ; (3)S =12r (a +b +c )(r 为三角形的内切圆半径). 二、常用结论汇总1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C 2. 2.三角形中的三角函数关系(1)sin(A +B )=sin C ; (2)cos(A +B )=-cos C ;(3)sin A +B 2=cos C 2; (4)cos A +B 2=sin C 2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B .4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.三、考点解析考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形例.(1)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.考法(二) 余弦定理解三角形例.(1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b 2c -a =sin A sin B +sin C,则角B =________.跟踪训练1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( )A.24 B .-24 C.34 D .-34 2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12B. π6C.π4D.π33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值. 考点二 判定三角形的形状例、(1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =a c,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形变式练习1.(变条件)若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.2.(变条件)若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.3.(变条件)若本例(2)条件改为“cos A cos B =b a =2”,那么△ABC 的形状为________. 课后作业1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos B b,则B 的大小为( ) A .30° B .45° C .60° D .90°2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定3.在△ABC 中,cos B =a c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰三角形或直角三角形4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( ) A .14 B .6 C.14 D.65.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π66.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( ) A. 5 B .3 C.10 D .47.在△ABC 中,AB =6,A =75°,B =45°,则AC =________.8.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________. 9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________.10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.11.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B .(1)求证:a =2b cos B ;(2)若b =2,c =4,求B 的值.12.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.提高训练1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B 2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( ) A.13 B.7 C.37 D .62.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n C c,若sin(A -B )+sin C =2sin 2B ,则a +b =________.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b .(1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .。

余弦定理和正弦定理(一)-高考数学复习

余弦定理和正弦定理(一)-高考数学复习

>0,所以 sin C < sin B cos A ,即 sin ( A + B )< sin B cos A ,所
以 sin A cos B <0.因为 sin A >0,所以 cos B <0,即 B 为钝角,所以
△ ABC 为钝角三角形.
目录
高中总复习·数学
解题技法
判定三角形形状的两种常用途径
等或余弦定理变形公

2 + 2 −2
cos A =
等求解.
2
目录
高中总复习·数学
1. 在△ ABC 中,已知 b =40, c =20, C =60°,则此三角形的解的情
况是(

A. 有一解
B. 有两解
C. 无解
D. 有解但解的个数不确定
解析:


由正弦定理得

,∴
sin
sin
40×
余弦定理和正弦定理(一)
目录
C O N T E N T S
1
2
3
考点 分类突破
微专题 8
课时 跟踪检测
课堂演练
考点 分类突破
精选考点 典例研析 技法重悟通
PART
1
目录
高中总复习·数学
利用正、余弦定理解三角形
【例1】
(2023·天津高考16题节选)在△ ABC 中,角 A , B , C 所
对的边分别是 a , b , c .已知 a = 39 , b =2, A =120°.
π
sin B ,即 A = 或
2
A = B ,故△ ABC 为直角三角形或等腰三角形.
目录
高中总复习·数学
2.
sin

在△ ABC 中,

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理人教A版必修5

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理人教A版必修5

∴A=60°,C=180°-(A+B)=75°.
探究 2 已知三边(三边关系)解三角形 例 2 (1)在△ABC 中,若 a=7,b=4 3,c= 13,则 △ABC 的最小角为( )
πππ π A.3 B.6 C.4 D.12 (2)在△ABC 中,角 A,B,C 的对边分别为 a,b,c, 已知 a-b=4,a+c=2b,且最大角为 120°,求此三角形的 最大边长. 答案 (2)见解析
2.做一做
(1)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c, 5π
若 a=1,b= 7,c= 3,则 B=____6____. (2) 已知 △ABC 的 三边 分 别为 2,3,4 , 则此 三 角形是
___钝__角___三角形.
π (3)在△ABC 中,若 a2+b2-c2=ab,则角 C 的大小为 ___3_____.
解析 (1)因为 c<b<a,所以最小角为角 C. 所以 cosC=a2+2ba2b-c2=429×+74×8-4 133= 23, 所以 C=π6,故选 B.
(2)已知 a-b=4,且 a>b,且 a=b+4,又 a+c=2b, 则 b+4+c=2b,所以 b=c+4,则 b>c,从而 a>b>c,所以 a 为最大边,A=120°,b=a-4,c=a-8.
解 利用边的关系判断, 由正弦定理,得sinC=c,
sinB b 由 2cosAsinB=sinC,得 cosA=2ssininCB=2cb, 又 cosA=b2+2cb2c-a2,∴2cb=b2+2cb2c-a2,即 a=b.
又(a+b+c)(a+b-c)=3ab,∴(a+b)2-c2=3ab, ∴b=c, 综上 a=b=c,∴△ABC 为等边三角形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蜂鸟娱乐
[单选]集中就业和()都是解决残疾人就业的重要形式,二者相辅相成,互为补充,共同构成了残疾人就业的主渠道。A.按比例就业B.自主创业C.分散就业D.灵活就业 [问答题,简答题]负责身体运动协调的是? [多选]热水供应系统按热水管网运行方式可分为()。A.全日循环热水供应系统B.自然循环热水供应系统C.定时循环热水供应系统D.机械循环热水供应系统 [单选]下列为中碳钢的是()。A.45号钢B.20号钢C.10号钢D.30号钢 [单选]1848年芝加哥82位商人发起组建了()。A.芝加哥商业交易所B.伦敦金属交易所C.纽约商业交易所D.芝加哥期货交易所 [单选,A2型题,A1/A2型题]结核性胸膜炎胸腔内是否用药的原则是()A.最好每个患者都注射结核药物B.一般情况下,抽胸水后没有必要胸腔内注入抗结核药物C.最好注射糖皮质激素D.可以注射胸膜粘连剂E.绝对不能胸腔内用药,以免产生胸膜反应 [单选]由金黄色葡萄球菌或乙型溶血性链球菌引起的急性化脓性皮肤病是()A.单纯疱疹B.带状疱疹C.脓疱疮D.疣E.癣 [名词解释]撞人犯规(personalfoul) [单选]行全子宫及单侧附件切除术时,切除下列哪项最不易损伤输尿管?()A.骨盆漏斗韧带B.卵巢固有韧带C.子宫骶骨韧带D.子宫动脉E.主韧带 [单选,A2型题,A1/A2型题]有关著名的郭霍法则,下列说法不正确的是()。A.特殊的病原菌应在同一种疾病中查见,在健康者中不存在B.该特殊病原菌能被分离培养得纯种C.该纯培养物接种至易感动物,虽不引起病症,但可长期定植D.自人工感染动物体内能重新获得该病原菌纯培养E.郭霍法则 [单选,A2型题,A1/A2型题]MRI检查须注意的问题不包括()A.了解MRI检查适应证与禁忌证,特别是禁忌证B.确保扫描室内安全C.密切观察病人是否有心理变化D.正确选用线圈、摆置病人位置E.认真核对检查申请单 [单选]变压器瓦斯保护动作的原因是由于变压器()。A.发生接地故障B.套管闪络C.电压过高D.内部故障以及油面降低 [填空题]水准仪的操作步生期主要是下列哪项激素的作用?()A.绒毛膜促性腺激素B.雌激素C.孕激素D.雄激素E.促性腺激素 [单选,A2型题,A1/A2型题]半抗原通常须与下列何种物质结合才具免疫原性()。A.羊毛脂B.免疫佐剂C.免疫增强剂D.液状石蜡E.载体 [单选]技术监督部门对厂内机动车实行每()定期检验一次,未经检验或检验不合格的,不准继续行驶A、一年B、二年C、六个月 [单选,A4型题,A3/A4型题]男,30岁,既往发作性心悸史,2小时前突然心悸,伴有头晕、乏力、出汗来诊。体格检查:BP90/60mmHg,心脏无扩大,心率190次/分,节律不规则,第一心音强弱不等,各瓣膜听诊区未闻及心脏杂音。心电图检查:P波消失,QRS波群宽大畸形,节律不规则。对该患者 [单选]飞行器通电时间过长,执行以下动作的含义是什么:推上E杆,按一次shift键,拉下E杆。()A、清空机载航点B、校准遥控器C、重新初始化D、强行启动 [单选]“钢船时期”的代表作“龙威”号被编入北洋舰队后,改名为“()”号,成为北洋八大远之一。A、威远B、平远C、定远D、镇远 [单选,A2型题,A1/A2型题]下列描述的微生物特征中,哪项不是微生物的共同特征()A.个体微小B.结构简单C.繁殖迅速D.分布广泛E.专性寄生 [单选]无识别标志的航空器因特殊情况需要飞行的:()。A.必须经相关管制单位批准B.必须经中国人民解放军空军批准C.必须经中国民用航空总局空中交通管理局批准 [单选]关于入境展览品,以下表述正确的是:A.无需办理报检手续B.入境动植物展品免于检疫审批C.展览期间应接受检验检疫监管D.留购得展品无需重新办理报检手续 [单选]“春伤于风,邪气留连”而发生的病证是()。A.疟疾B.洞泄C.温病D.咳嗽E.濡泻 [判断题]接地装置引下线的导通检测应5年进行一次。A.正确B.错误 [单选,A1型题]阳和汤的组分是()A.熟地黄、鹿角、炮姜、麻黄、桂枝、白芥子、甘草B.熟地黄、鹿角胶、炮姜炭、肉桂、麻黄、白芥子、甘草C.熟地黄、鹿角胶、干姜、肉桂、麻黄、白芥子、川芎D.生地黄、鹿角、炮姜炭、桂枝、麻黄、白芥子、细辛E.熟地黄、鹿角胶、炮姜、桂枝、麻黄、 [判断题]金融机构应当按照规定建立客户身份识别制度。A.正确B.错误 [单选]行政主体的活动,从性质上划分主要包括()。A.民事活动和司法活动B.司法活动和行政诉讼活动C.民事活动和行政管理活动D.行政复议活动和行政诉讼活动 [单选]在WAIS-RC的实施中,一般按照()的顺序进行。A.先言语测验、后操作测验B.先操作测验、后言语测验C.言语测验和操作测验交替D.随机 [单选]企业在资产负债表日提供劳务交易结果不能可靠估计的,下面的账务处理不正确的是。A.已经发生的劳务成本预计能够得到补偿的,应当按照已经发生的劳务成本的金额确认提供的劳务收入,并按相同的金额结转劳务成本B.已经发生劳务成本预计只能部分得到补偿的,应当按照能够得到补 [单选]中心风力12级以上的风被称为()。A.台风B.热带风暴C.强热带风暴D.热带低压 [单选]根据企业所得税法律制度的规定,下列关于收入确认时间的表述中,正确的是()。A.以分期收款方式销售货物的,按照实际取得收入的日期确认收入的实现B.采取产品分成方式取得收入的,按照企业分得产品的日期确认收入的实现C.销售商品采用支付手续费方式委托代销的,在发出货物 [单选]PC400—106P—IB—1L—1001中的零件是()。A.船台散装件B.分段散装件C.经部件予装零件 [单选]纳税人办理出口退(免)税资格认定注销事项时,根据基本规范办理时限为()。A、20个工作日内B、出口企业安规定结清出口退(免)税款后20个工作日内C、30个工作日内D、出口企业安规定结清出口退(免)税款后30个工作日内 [单选,A1型题]女婴,11个月,其营养需要与成人最主要的不同之处是()A.基础代谢所需的营养素和能量B.生长发育所需的营养素和热量C.食物特殊动力作用所需的热量D.活动所需的营养素与热量E.排泄物中热量的损失 [名词解释]空袭率 [判断题]冷冻油的作用有润滑压缩机内各运动部件及降低压缩机噪声。()A.正确B.错误 [单选]Schober试验:病人直立,在背部正中线髂嵴水平作标记为零,向下及向上再作标记,然后让病人弯腰,测量上下两个标记间的距离,若增加小于4cm为阳性。标记方法为()A.向下3cm作标记,向上6cm再作标记B.向下5cm作标记,向上5cm再作标记C.向下5cm作标记,向上10cm再作标记D.向 [单选]AGC以满足什么供需实时平衡为目的?()A.有功功率B.无功功率C.电力电量D.交换功率 [单选]康复评定内容是()A.评分量表、问卷调查功能表B.运动系统、神经系统功能评定C.精神心理功能评定D.听觉、言语功能评定E.器官水平或系统水平、个体水平和社会水平功能评定 [单选,A1型题]女婴,8个月,因发热2d住院。体重7.3kg,身长65cm。以下哪项是营养治疗的最佳方案()A.蛋白每天1~2g/kg,热量每天502kJ/kg(120kcal/kg)B.蛋白每天2~3g/kg,热量每天460kJ/kg(110kcal/kg)C.蛋白每天3~4g/kg,热量每天336kJ/kg(80kcal/kg)D.蛋白每天
相关文档
最新文档