液晶材料的特性及应用

合集下载

液晶材料的特性与应用研究

液晶材料的特性与应用研究

液晶材料的特性与应用研究液晶材料是一种非晶态固体,其具有独特的物理性质,可以在外界电场或光场作用下呈现出特定的取向和排列状态。

因此,液晶材料在现代电子技术和光电工业中得到了广泛的应用。

本文将从液晶材料的基本特性、现有液晶材料的分类和应用研究三个方面分析液晶材料的特性与应用研究。

一、液晶材料的基本特性液晶材料是介于液态和固态之间的物质,通常由长链有机分子组成,其分子呈现出一定的有序排列。

液晶材料的重要特性是其分子具有定向性,这种定向性可以受到外部电场、磁场、光场等物理场的影响而产生变化。

液晶分子的取向状态决定了液晶分子之间的相互作用力,从而影响其凝聚态和物理性质。

在液晶材料中,分子被分为向列型和圆柱型两类。

向列型液晶是最常见的液晶材料,它的分子呈现出沿一定方向排列的定向性。

而圆柱型液晶则是由离子或离子配合物构成的液晶,其分子形状类似于圆柱,呈现出垂直于长轴方向的有序排列。

二、现有液晶材料的分类根据其分子结构和液晶相孕育方式,现有的液晶材料可以分为多种类型。

其中较为普遍的分别是双折射液晶、超顺磁液晶、非对称液晶、主向型液晶和聚合液晶等。

1.双折射液晶双折射液晶,简称为双向性液晶,具有类似于晶体的性质,即其分子结构呈现出不同的双折射性。

由于不同的入射角和不同取向的双折射液晶之间存在干涉现象,在红外测温、光学陀螺、防伪技术中被广泛应用。

2.超顺磁液晶超顺磁液晶属于具有泡状相的物质,其分子中包含多种不易破坏的稀土元素离子,具有较高的耐久性和高速响应性,被广泛应用于高精度的光学传感器、工业控制系统、微机电系统等。

3.非对称液晶非对称液晶主要包括电光、压光和热光非对称液晶。

它们在受到相应的输入信号后,可以使分子取向发生改变,从而实现快速响应和指定输出。

这类液晶材料广泛应用于平板显示器、光学调节、模拟模拟等领域。

4.主向型液晶主向型液晶指平行排列的液晶分子,其排列方向决定了液晶的取向状态和运动性质。

主向型液晶材料由于具有较高的透明度、低的电压响应时间和较高的色彩饱和度等优异的性能,成为液晶显示器各不同应用领域的主要材料。

液晶材料与应用

液晶材料与应用

液晶材料与应用液晶材料是一种特殊的材料,具有独特的物理性质和广泛的应用领域。

本文将深入探讨液晶材料的特性、分类和常见的应用。

一、液晶材料的特性液晶材料是介于液体和固体之间的物质,具有以下几个显著的特性:1. 各向同性和各向异性:液晶材料在不同方向上的性质不同,呈现各向异性的特点。

2. 可逆性:液晶材料能够在外界刺激下改变其分子排列,并在刺激消失后恢复原来的状态。

3. 电光效应:液晶材料在电场的作用下,能够改变其透明度和折射率,实现电光调制。

二、液晶材料的分类根据液晶材料的分子结构和性质,液晶材料可以分为以下几类:1. 双折射液晶:这种液晶材料具有双折射性,适用于制造宽视角显示器。

2. 同性液晶:同性液晶材料具有相同的折射率,常用于制作电光开关和光调制器。

3. 程序液晶:程序液晶材料是一种可以通过改变驱动电压来控制透光度的材料,广泛应用于液晶显示屏等领域。

4. 胆甾类液晶:胆甾类液晶材料具有良好的生物相容性,可用于制备生物传感器和药物传递系统。

5. 高分子液晶:高分子液晶材料是由具有液晶性能的高分子构成,可用于制备高强度和高导电性的材料。

三、液晶材料的应用液晶材料在各个领域有着广泛的应用,下面列举几个常见的应用领域:1. 液晶显示技术:液晶显示器以其优秀的图像质量、低功耗和薄型化等特点,成为目前最主流的显示技术。

液晶显示器被广泛应用于电视、电脑显示器、智能手机和平板电脑等电子产品中。

2. 光电子技术:液晶材料具有优异的光学性能和电光调制特性,被广泛应用于光电开关、光调制器、光学传感器等领域。

3. 生物医学领域:液晶材料的各向异性和生物相容性使其成为制备仿生材料和生物传感器的理想选择。

4. 光学信息存储技术:液晶材料的各向异性和可逆性使其被用于光学信息存储和光学记忆技术中。

5. 光学元件制造:液晶材料可以制备各种光学元件,如偏光镜、偏光片、液晶滤光器等。

总结:液晶材料作为一种特殊的材料,具有独特的物理性质和广泛的应用领域。

液晶材料的研究及其应用探讨

液晶材料的研究及其应用探讨

液晶材料的研究及其应用探讨近年来,随着电子产品的广泛应用,液晶技术也愈发成熟,成为了显示技术领域的主流技术之一。

而液晶材料作为液晶技术中重要组成部分之一,也日益受到人们的关注。

在本文中,我们将深入探讨液晶材料的研究以及其在各个领域的应用。

一、液晶材料的分类和特点液晶材料可以分为低分子液晶材料(Low Molecular Weight Liquid Crystals,LMWLCs)和高分子液晶材料(Polymer Liquid Crystals,PLCs)两大类。

其中,低分子液晶材料是指分子量较小的液晶材料,如液晶显示器中使用的普通液晶分子;而高分子液晶材料则是指分子量较大的液晶材料,如某些聚合物化合物。

无论是低分子液晶材料还是高分子液晶材料,它们都具有以下特点:1. 可控制的光学性能。

液晶分子的取向可以通过外加电场等手段进行调控,从而使得液晶材料具有可调控的光学性能,如透过率、反射率等。

2. 高对比度。

液晶材料是通过取向调控来实现像素点的显示和隐藏的。

而在相邻两个像素点之间,由于液晶分子的不同取向,就会产生明暗对比度。

3. 可扩展性。

液晶材料可以通过掺杂其他分子或加入其他功能材料来实现更多的性能,从而应用范围更广。

二、液晶材料的研究液晶材料的研究可以分为原料选择、性能优化、制备工艺等多个阶段。

1. 原料选择液晶材料的性能受到其化学结构的影响,因此原料的选择至关重要。

在选择原料时,人们通常会从以下几个方面进行考虑:(1)结构稳定性。

由于液晶材料需要在未加电场的情况下保持稳定,在加电场时才变化,因此对原料的结构稳定性要求较高。

(2)易获取性。

由于液晶材料的应用范围广泛,而各种应用场合的液晶材料性能和结构各不相同,因此易获取性也是选择原料的重要考虑因素之一。

(3)可调控性。

液晶材料的调控是其应用的关键,因此对原料的可调控性要求较高,这也是液晶材料的制备过程中需要进行优化的一个环节。

2. 性能优化在制备液晶材料时,人们会从现有的液晶分子出发,通过改变其化学结构或掺杂其他物质,来优化其光学性能和电学性能。

液晶材料的原理及应用

液晶材料的原理及应用

液晶材料的原理及应用1. 液晶材料的概述液晶材料是一种特殊的状态,介于液态和固态之间,能够在外加电场或磁场的作用下改变自身光学性质的材料。

液晶材料具有高度有序的分子排列方式,可根据不同的排列方式展现出不同的光学特性。

液晶材料主要分为两种类型:向列型液晶和向列型液晶。

通过调节液晶分子排列的方式,可以实现液晶的控制和调制,广泛应用于液晶显示、液晶电视、液晶屏等领域。

2. 液晶材料的原理液晶材料的原理基于液晶分子的有序排列以及外加电场或磁场的作用下产生的分子的取向变化。

液晶分子是长而细长的有机分子,通常由两个平面性的苯环、苯环之间的键以及两个侧基构成。

液晶分子具有两个主要的取向方向:平行于液晶层面(homogeneous)和垂直于液晶层面(homeotropic)。

当没有外加电场或磁场时,液晶分子会以一种特定的方式排列,形成所谓的液晶相。

液晶分子在不同的取向方式下,具有不同的光学性质。

3. 液晶材料的应用液晶材料在电子显示领域有广泛的应用,特别是在液晶显示器、液晶电视以及其他液晶屏幕中。

以下是液晶材料的一些主要应用:3.1 液晶显示器液晶显示器(LCD)是一种电子显示设备,利用液晶材料的特殊光学性质来显示图像。

液晶显示器具有低功耗、薄型化、高对比度和广视角等优点,因此在计算机显示器、智能手机、平板电脑等电子设备中得到广泛应用。

液晶显示器的工作原理是利用液晶材料的光学特性和电学特性,通过改变电场的作用方式来控制液晶中液晶分子的排列,从而控制光的透射和反射。

通过在液晶屏上加上适当的后光源和色彩滤光片,可以显示出彩色图像。

3.2 液晶电视液晶电视是利用液晶显示器技术制造的电视机。

与传统的显像管电视相比,液晶电视具有更薄、更轻、更省电的特点,并且可以产生更清晰且更高对比度的图像。

液晶电视通过将液晶显示器与电视机结合,可以通过电视信号输入显示高质量的图像。

液晶电视通过控制液晶层中的液晶分子的排列,来实现对图像的控制和显示。

液晶材料的应用

液晶材料的应用

液晶材料是一种具有特殊物理性质的有机分子或高分子化合物,其分子结构呈现液晶相,介于液体和固体之间。

液晶材料广泛应用于各种现代科技和电子设备中,以下是液晶材料的一些主要应用领域:液晶显示屏:液晶电视:大尺寸、高分辨率的液晶面板广泛用于电视。

计算机显示器:液晶技术在笔记本电脑、桌面显示器等方面得到了广泛应用。

智能手机和平板电脑:液晶屏是移动设备主流显示技术之一。

投影仪:液晶投影仪利用液晶面板调控光的透过与阻挡,实现图像的投影。

数码相机取景器:液晶显示屏用于数码相机的取景器,提供实时显示和拍摄信息。

手持设备:液晶技术在手持设备如数字相框、手持游戏机等中得到应用。

医学影像显示:医用液晶显示屏用于显示X光片、CT扫描、核磁共振图像等医学影像。

汽车仪表盘和导航系统:汽车中的液晶显示屏用于车辆信息、导航、娱乐系统等。

军事和航空领域:液晶显示技术被广泛用于军事飞行器、雷达系统和其他军事应用中。

电子书阅读器:液晶屏广泛用于电子书阅读器,提供高分辨率和易读性。

工业控制面板:液晶显示屏在工业领域中用于监视和控制设备,如工控系统、仪表等。

广告显示屏:大型户外和室内广告牌中的液晶显示屏用于展示动态广告内容。

3D技术:液晶技术可用于创建具有立体感的3D显示,例如3D电影和游戏。

光学调制器:液晶材料用于光学调制器,可以调控光的相位和振幅,应用于激光显示、光波导器件等领域。

这些应用领域显示了液晶材料在信息技术、医学、工业、军事等多个领域中的重要性。

随着技术的发展,液晶技术仍然在不断创新和拓展新的应用领域。

液晶材料的性质及其应用

液晶材料的性质及其应用

液晶材料的性质及其应用液晶是一种特殊的物质形态,它既表现出固体的有序性质,同时又具有液态的流动性。

液晶作为现代化学和材料科学中的重要研究对象,因其独特的性质,已被广泛应用于电子显示、光电子、传感器等领域。

1. 液晶材料的基本性质液晶材料的特殊性质是由其分子结构所决定的。

液晶分子通常具有线性、扭曲、杯形等不同的结构形态。

由于液晶分子自身具有偶极性,使得分子在外部场的作用下呈现出与其它物质不同的取向和排列规律,从而显示出其独特的物理性质。

液晶材料具有重要的光学性质,如自然双折射等。

当液晶分子在外部场作用下发生旋转时,其两个折射率也会发生变化。

利用这种特性,可以制成各种光学器件,如偏振器、光阀、液晶电视等。

液晶材料还具有电学和机械性能。

在外施电场的作用下,液晶分子能够发生取向改变,从而导致电光效应、电热效应、电流效应等现象的产生。

液晶材料的机械性质也是研究的重点之一,如液晶弹性、液晶稳定性、液晶流动性等。

2. 液晶材料的应用现代信息技术的快速发展使得液晶材料的应用得到了广泛的关注。

液晶电视、电脑液晶显示器、液晶手表等产品已经成为人们生活中不可或缺的一部分。

此外,液晶材料还被应用于太阳能电池板的制造、生物传感、光谱分析和二维码等领域。

(1)液晶显示技术液晶显示技术是液晶材料最广泛应用的领域之一。

液晶显示器利用外施电场改变液晶分子的取向来控制光的透过和阻挡,从而实现图像的变化。

与传统的阴极射线管相比,液晶显示器有体积小、重量轻、功耗低、易于携带等优势特点。

液晶显示技术不仅仅在消费电子领域得到广泛应用,也在医学显示、航空航天、军事卫星等领域发挥重要作用。

随着科技的发展,液晶显示技术也在不断创新,如曲面屏、可卷曲显示器等。

(2)光电子与传感器液晶材料的特殊光学性质使得其在光电子领域的应用也日益广泛。

液晶光电效应可以用于制造压电光学器件、光纤光栅等,这些器件被广泛用于通信、调制与成像等领域。

另外,液晶材料还被用于生物传感,可以制作出高灵敏度、高选择性、重复使用的生物传感器。

液晶材料的种类特性及其应用

液晶材料的种类特性及其应用

液晶材料的种类特性及其应用液晶材料是一类特殊的有机分子化合物或无机化合物,其具有一定的结晶性和流动性,可在一定的温度范围内异向地流动,同时具有电光性和热致性等特殊性质。

液晶材料广泛应用于液晶显示器、液晶电视、液晶电子墨水、液晶投影等领域。

根据液晶材料的分子排列方式,液晶材料可分为向列型(nematic)、粒晶型(smectic)、柱状型(columnar)和螺旋型(cholesteric)等不同种类。

1.向列型液晶材料:向列型液晶材料的分子排列呈现出一定的有序性,并且分子长轴大致保持垂直于液晶层面的状态。

向列型液晶材料具有快速的响应速度和良好的透明度,广泛应用于各种液晶显示器。

2.粒晶型液晶材料:粒晶型液晶材料的分子排列呈现出更有序的结构,形成层状结构。

粒晶型液晶材料具有机械强度高、导热性好、观察视角宽等特点,广泛用于液晶电子墨水和生物传感器等领域。

3.柱状型液晶材料:柱状型液晶材料的分子排列呈现出柱状的结构,分子间形成长程有序的堆积。

柱状型液晶材料具有高导电性和较好的电子输运性能,广泛用于有机太阳能电池和有机场效晶体管等领域。

4.螺旋型液晶材料:螺旋型液晶材料的分子排列呈现出一定的螺旋结构,形成螺旋向列型的液晶相。

螺旋型液晶材料具有结构色、光子晶体和布里渊散射等特性,广泛应用于光纤传感器和光学滤波器等领域。

液晶材料在液晶显示器和其他液晶设备中有广泛的应用。

液晶显示器是液晶材料最常见的应用之一,以便捷而高效的方式在屏幕上产生图像。

液晶电视、电脑显示器和手机屏幕都是以液晶材料为基础制造的。

液晶电子墨水则在电子书和电子纸等领域得到了广泛应用,具有较高的可读性和低功耗的优势。

液晶投影机则可以将图像以高清晰度投射到屏幕上。

此外,液晶材料还广泛用于光学信息存储、光学滤波器、光纤传感器、光学测量仪器和光子晶体等领域。

液晶材料还可以制成电子调制器件、电子窗帘和可变透明材料等,具有使窗户自动调节透光度和保护隐私的功能。

液晶材料的性能研究

液晶材料的性能研究

液晶材料的性能研究液晶材料,作为当前最为热门的材料之一,受到了广泛的关注。

在现代科技的发展过程中,液晶材料发挥着重要的作用。

液晶材料具有高精度、高速度、高性能等特点,被广泛应用于液晶显示、光储存、光通信、液晶电视等领域。

那么,液晶材料的性能研究又是怎样的一个过程呢?一、液晶的性质液晶材料,最主要的特征就是具有分子有序、局部有序的特点。

在液晶状态下,分子的取向方向可以呈现有序排列,且排列方向之间具有巨大的差异性。

同时,液晶还表现出了流动性,使其具有更好的适应性和可塑性。

液晶的性质,一方面与其分子的取向、排列有关,同时也与其材料的物理化学性质、表面性质、分子结构有关。

液晶材料表现出了极高的化学稳定性、力学强度和机械性能,适用于各类复杂的工业应用。

二、液晶的研究工作液晶材料的研究工作分为制备与性能表征两个部分。

制备主要包括液晶材料的纯化、合成、表面修饰、掺杂等过程。

而性能表征则是在制备的基础上对其进行各类性质的测试,进一步了解其结构、特性及其液晶态表现的应用。

在液晶材料的制备过程中,需要注意的是控制其形貌与大小,以及控制其晶相的可控性。

即使是最小的偏差也会影响到后续的性质检测。

同时,在各种实验条件下沉积样品,以及在适当的温度下研究样品的液晶相行为,也是实验工作的关键。

在性能表征方面,主要包括光学性质、热力学性质、电学性质、机械性能等。

通过这些测试,可以更好地了解液晶材料的性质与特性,为后续应用提供理论基础。

三、应用前景液晶材料的研究,主要是为了更好地运用其长处,在各个领域中起到更大的作用。

其中,液晶显示则是其中相当重要的一个。

液晶显示器具有分辨率高、反应速度快、节能环保、体积小、重量轻、成本低等优势。

其用途非常广泛,包括电视、电脑、智能手机、平板电脑、车载导航、广告牌等等。

当然,液晶显示器不仅仅局限于娱乐领域,更包括了工业领域、医疗领域、农业领域、交通领域等等。

液晶材料作为重要的基础材料,为各类研究发展提供了坚实的支撑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 绪论近年来液晶材料得到了飞速发展,液晶现在已经走进了人们的日常生活,应用广泛也是人们所共知的,它正在不断地改变着人们的日常生活,我们生活中的许多电器都带有液晶器件如空调、冰箱、微波炉等,液晶电子表、液晶显示器、液晶传感器也是我们所熟悉的产品。

液晶材料被广泛地用到了显示方面,通过近几年的发展,我国在液晶显示面板的生产技术上有了明显的提升,但上游配套产品却一直限制着产业的发展,在液晶材料市场中外资占有较大的比例,从中受益远比我国多。

近年来,国家有关部门联合发布了有关新型液晶平板研发及产业化的有关通知,我国在液晶材料的发展中大概面临两方面困难:一方面,液晶厂商存在较高的技术壁垒,我国企业技术水平没有那么先进;另一方面,德国默克(Merck)、智索(Chisso)和DIC等企业建立了有关技术的专利阵营,使中国液晶技术的发展变得相对困难。

液晶材料也在其他方面得到了应用,如应用于制备航天飞行器的外壳、用作润滑剂、也可用于医学诊断和药物的生产,现在有科学家正在研究将液晶材料用于人工智能、形状记忆、信息储存等新兴方面,可见液晶材料在未来的应用将会更加广泛。

本文通过对有关液晶的书籍、文献等材料的研究,总结出了液晶材料的特性和应用情况,并对一些应用给出了相关理论解释,最后对液晶材料的发展做出展望。

1.1液晶的发现液晶的最早发现是在1888年,它由奥地利植物学家莱尼茨尔通过加热胆甾醇苯甲酸酯出现结晶发现的[1]。

次年,德国的物理家莱曼用偏光显微镜发现这种结晶材料有双折射现象,后来他提出用“液晶”来命名这种材料,这两位科学家被人们认为是液晶领域的创始人。

但在发现后的几十年间,液晶的研究并不被人看好,因为它长期以来没给人们带来太多的好处,直到上世纪60年代美国的Heilmeler[2]发现液晶动态散射效应,当他利用此效应研制出了第一台液晶显示器时,液晶的研究得到了人们的重视,这启发我们具体的应用能有力地推动基础研究的发展。

11.2液晶的定义物质的相态可划分为固态、液态和气态,晶态和非晶态是固态的两种划分。

物质可随着外界条件的变化在这三种相态之间发生变化,称为相变。

通常境况下,物质在这三种相态之间转变不会发生中间态,也就是不存在中间过渡的状态,例如液态在零度受冷变为固态冰,在液态时物质是无序列的,而变换成冰时就变的有序了。

但是有些物质在某种条件下融化后,它的外观会像液态一样具有流动性,但却保留了熔融前物质的有序排列并能呈现出各向异性,我们把这种既有晶体又有液体性质的中间态叫做液晶态,在这种状态下的物质我们叫做液晶。

高分子液晶是将过渡相态的分子连接组成大分子,或者把它连接到聚合物框架上,但其仍保持液晶的性质。

高分子液晶的结构由刚性和柔性部分组成,刚性部分一般会由两个苯环、脂肪环或者芳香杂环组成,这些环会由刚性连接单元连接,连接单元的一个作用是防止两个环的转动,刚性部分的外部则可以为其它柔软、易弯曲的极性或者非极性基团。

液晶分子的结构举例:图1-1液晶分子结构刚性连接单元为-N=N- 烃基-R为非极性基团,腈基-CN为极性基团。

1.3液晶的分类由液晶形成条件的不同,可一般将其分为溶致型液晶、热致性液晶[3]。

溶致型液晶是在一定的温度和浓度下,极性物质与某些溶剂在溶解的过程中,当其分子达到一定的浓度时,这些分子的序列变成有序随后成为了一个稳定的系统,这一系列的变化呈现出了一个过程即从结晶到液晶再到胶束液体然后再到溶液,溶致液晶是一个复杂的系统,在不同区域有不同的性质,显然这类晶体并不存在于纯物质中。

热致性液晶一般由一种或少数化合物混合均匀形成,在一定的温度范围内才呈现出液晶相的性质。

23 由刚性部分在液晶分子中的位置不同,连接次序也不同,可将液晶分子分为主链型和侧链型两种形态。

主链型液晶的刚性部分在聚合物主链上,侧链型液晶的刚性部分由柔性链与聚合物相连组成,形状成梳状,可将侧链型液晶分为非双亲侧链液晶高分子和双亲侧链液晶高分子,主链型液晶和侧链型液晶在物理化学性质上有相当大的差异。

根据刚性分子堆积方式不同可将其分成向列型液晶、胆甾型液晶和近晶型液晶三种结构,如图1-2所示。

向列型液晶的特点是液晶分子沿长轴方向保持平行排列,但分子轴的指向不一定一致,可能上下交错,总体上向上的分子和向下的分子数目大致相同,分子有很大的流动性,呈现出一维有序,重心位置无序。

这种结构特点可导致当液晶分子在电场、磁场影响下,分子朝相同的方向运动,表现为取向有序,这点和单轴晶体相似。

因为分子的重心排列是无规则的,分子能在三维空间运动,分子运动方向不完全一致,取向规则程度用参数S 表示,则)1cos 3(212-><=θs θ为分子长轴和n 方向的夹角,< >表示取平均值,当S 取1时表示所有分子长轴都平行于n 方向,当31cos 2>=<θ时,S =0表示为无序态,若添加一些手性分子到此类分子中,在一定条件下可形成螺旋状液晶,向列型液晶在当今应用较广泛。

胆甾型液晶具有独特的光学性质,是向列型的一种特殊情况。

分子排成一层一层,层内的分子和向列型分子特点相同,分子的长轴平行层的平面,但层与层的长轴有规律偏转呈现出螺旋状。

正是由于螺旋状的作用,它可以选择反射某些波长的图1-2 液晶的三种结构光,这取决于光的入射角、反射角。

近晶型液晶和相列型不一样,它的特点是分子排列成层状,层内分子的长轴都相互平行且垂直于层平面,从外观上看,它和油脂状相似,具有较大的粘性。

分子只能在层内滑动,而不能上下滑动,呈现出二维有序,这种类型的液晶具有较多的结构。

2液晶材料的特性液晶相不同于固体相和液体相,它是液相和固相的一个中间相,这样的相态也促使它有许多优异的特性,例如液晶材料具有高强度、高模量、良好的阻燃性和耐热性以及电光效应、热光效应、各向异性等,正是由于液晶材料有这么多优异的特性才使它应用非常广泛。

2.1液晶材料具有高拉伸强度和高模量热致性主链液晶有一个突出的特点就是容易在外力场中出现分子链取向的现象,在取向方向上拉伸强度和模量会有较大的提高[4],这个特性使它非常适合做高性能的工程材料。

例如,用聚对苯二甲酸对苯二胺和浓硫酸溶液作用后,可得到有名的kelvar纤维[5],Kevlar纤维可用于飞机、火箭外壳、防弹衣等材料,其强度和模量比钢还要好10倍,而且密度也比钢丝小的多。

2.2液晶材料具有良好的耐热性和阻燃性液晶的刚性部分通常是由芳环构成,所以相对来说其耐热性比较好。

例如,Xydar的熔点高达四百多度,在空气中的分解温度也高达五百多度,明显比其它多数塑料耐热性要好。

另外,大量的芳香环也使其有较好的阻燃性,被广泛用在电路板、接线板、传感器护套等。

2.3液晶材料具有良好的电性能和加工成型性高分子液晶有较高的绝缘强度、较低的介电常数和膨胀因子,受温度的影响较小,也有较低的导热和导电性。

由于分子中有柔性部分,其易发生滑动,压力也较4低,因此其加工成型较容易而且由于液晶膨胀因子较小也不容易收缩,容易达到理想的模型,当然液晶也存在价格较高、接缝强度低等缺点。

2.4液晶材料具有电光效应由于液晶分子含有极性基团,当在电场作用下偶极子会按电场方向转动,液晶分子原有的排列方式就会改变,液晶的光学性质也会随之改变,这种现象叫做液晶的电光效应。

电光效应中的动态散射是将两个特定的电极之间放入向列型液晶,电极间的距离10微米左右,逐渐增加电极间的电压,当电压为1V左右,液晶对光只进行镜面反射,继续增加电压到5V左右,液晶会出现明暗相间的条纹,再继续增加到某一值,液晶对光会发生漫反射,根据液晶的电光效应可制成显示器件。

2.5液晶材料具有热色效应液晶的热色效应一般由胆甾相液晶引起,它的机理可由Fergason的反射模型证明。

当可见光波长满足布拉格反射条件时[6],人们会看到相应波长颜色的变化,这种变化的原因是随着温度的变化,液晶的螺距随之变化,从而产生色彩的变化,形成液晶的热色效应,有热色效应的液晶称为热色液晶[7]。

液晶的热色效应可被用于温度传感器、热色成像、温度场的分布等方面。

2.6 液晶材料具有各向异性液晶的条状分子结构和其分子方向次序决定了液晶具有折射率各向异性,由于入射光电场的作用导致液晶分子的电子云发生变化,这种变化导致了偶极矩也发生了变化,从而产生了第二次光与入射光相互重叠,显示光的速度好象慢下来一样。

液晶分子中的长轴方向和短轴方向对其电子云的反应程度不一样导致了液晶具有各向异性,由于液晶折射率各向异性的作用,入射光波的方向偏向了液晶分子的长轴,使偏振光的状态发生了改变,这种光学特性是液晶器件显示的理论基础。

如图2-1所示,在折射率椭圆体中,控制器n的方向决定了折射率椭圆体的主轴,与控制器n平行方向上的折射率为n e 而与其垂直方向的折射率为n0,则折射率各向异性n可表示为下式。

(2-1)5∆n n n=-e o图2-1折射率椭圆体3液晶材料的应用3.1液晶材料用于显示器件液晶现在已经被广泛地应用到计算机、笔记本电脑的显示屏,液晶电视等。

用液晶做显示材料的基本原理是:随着电场强度的变化液晶分子会做有规律的90度旋转,从而改变了透光度,液晶会从无序透明变为有序非透明,会产生明暗的变化,可以依据此原理控制图像上每个像素的明暗,从而构成所需的图像,例如最简单的一种是7段数字显示,在7段中的每一段是被独立控制的,通过控制每一段光的显示,可以实现对0到9每个不同数字的显示。

对于高一点的14段显示则可以显示数字和字母。

但是不论显示器多么的复杂,它们的工作原理都是一样的,即控制不同区域的光,只不过有的区域是主动发光显示的,有的区域是是被动通过反射过来的光显示的。

液晶的显示方式并不相同,大概可分为薄膜晶体管液晶显示(TFT-LCD)、胆甾向列相变液晶显示(CH-N)、超扭曲向列液晶显示(STN-LCD)、宾主型液晶显示(GH-LCD)、扭曲向列液晶显示(TN-LCD)、聚合物散射型液晶显示(PDLC)、铁电液晶显示(FLCD)[8]。

如果单单用TN型液晶,则显示器只有黑白两种颜色,STN显示器主要是以橘黄色和淡绿色为主,为此需要给它加一层带有彩色的滤光片,当通过67 滤光片时会显示出三原色,三原色经过一定的比例显示就能显示出彩色图像。

TFT 则在其背部设置了光管,这个光管的作用是控制屏幕上各个独立的像素,这种控制会显著提高图像显示的流畅度,对比度也会更加的明显同时因为它具备较高的电压保持率、低双折射率、低黏度等特征,即使在光线较强的条件下依然显示清晰,通常称为真彩色,所以TFT-LCD 是市场上常见的显示器。

2009年,由詹姆斯·卡梅隆导演的《阿凡达》电影让人们感受到了3D 技术的神奇,从此3D 影片逐渐被大家喜爱,也由此带动了3D 电视的销售,3D 电视市场蓬勃发展。

相关文档
最新文档