关于电场的典型例题大题
电场强度典型例题

电场强度典型例题例1关于电场线,下述说法中正确的是:A.电场线是客观存在的B.电场线与电荷运动的轨迹是一致的.C.电场线上某点的切线方向与与电荷在该点受力方向可以不同.D.沿电场线方向,场强一定越来越大.解析:电场线不是客观存在的,是为了形象描述电场的假想线,A选项是错的.B选项也是错的,静止开始运动的电荷所受电场力方向应是该点切线方向,下一时刻位置应沿切线方向上,可能在电场线上,也可能不在电场线上,轨迹可能与电场线不一致.何况电荷可以有初速度,运动轨迹与初速度大小方向有关,可能轨迹很多,而电场线是一定的.正电荷在电场中受的电场力方向与该点切线方向相同,而负电荷所受电场力与该点切线方向相反,选项C是正确的.场强大小与场强的方向无关,与电场线方向无关,D选项是错的.本题答案应是:C.例2正电荷q在电场力作用下由向Q做加速运动,而且加速度越来越大,那么可以断定,它所在的电场是下图中的哪一个:( )解析:带电体在电场中做加速运动,其电场力方向与加速度方向相同,加速度越来越大电荷所受电场力应越来越大,电量不变,电场力,应是E越来越大.电场线描述电场强度分布的方法是,电场线密度越大,表示场强越大,沿PQ方向.电场线密度增大的情况才符合题的条件,应选D.例3用细线将一质量为m,电荷量为q的小球悬挂在天花板的下面,没空气中存在有沿水平方向的匀强电场,当小球静止时把细线烧断,小球将做()A.自由落体运动B.曲线运动C.沿悬线的延长线的匀加速运动D.变加速直线运动【解析】烧断细线前,小球受竖直向下的重力G,水平方向的电场力F和悬线的拉力T,并处于平衡状态,现烧断细线,拉力T消失,而重力G和电场力F 都没有变化,G和F的合力为恒力,方向沿悬线的延长线方向,所以小球做初速为零的匀加速直线运动.带电小球的匀强电场中所受的电场力在运动过程中保持不变,初速为零的物体开始运动的方向必沿合外力方向.正确选项为C.例4质量为m,电荷量为+q的小球,用一根绝缘细线悬于O点.开始时,它在A、B之间来回摆动,OA、OB与竖直方向OC的夹角均为,如图所示.(1)如果当它摆动到B点时突然施加一竖直向上的,大小为E=mg/q的匀强电场,则此时线中拉力T1=_________.(2)如果这一电场是在小球从A点摆到最低点C时突然加上去的,则当小球运动到B点时线中的拉力T2=________.【解析】(1)因为匀强电场的方向竖直向上,所以电场力,电场力和重力相平衡,小球到B点时速度为零,因此突然加上电场后使小球在B点保持静止,悬线中的张力T1=0.(2)小球经C点时具有一定的运动速度,突然加上电场,小球所受的合力即为细线对它的拉力,小球以O为圆心做匀速圆周运动,小球到达C时的速率可由机械能守恒定律得到.小球到B点时,v B= v C,由牛顿第二定律得.物体的运动情况由初始条件和受力情况共同决定,尽管加上匀强电场后,电场力总与重力相平衡,但加上匀强电场时小球的速度不同(即初始条件不同),所以运动的情况也不相同.例5如图所示MN是电场中的一条电场线,一电子从a点运动到b点速度在不断地增大,则下列结论正确的是:A.该电场是匀强电场.B.该电场线的方向由N指向M.C.电子在a处的加速度小于在b处的加速度.D.因为电子从a到b的轨迹跟MN重合,所以电场线实际上就是带电粒子在电场中的运动轨迹.【解析】仅从一根直的电场线不能判断出该电场是否为匀强电场,因为无法确定电场线的疏密程度,该电场可能是匀强电场,可能是正的点电荷形成的电场,也可能是负的点电荷形成的电场,因此不能比较电子在a、b两处所受电场力的大小,即不能比较加速度的大小,但电子从a到b做的是加速运动,表明它所受的电场力方向由M指向见由于负电荷所受的电场力方向跟场强方向相反,所以电场线的方向由N指向M,电场线是为了形象地描述电场而假想的曲线,带电粒子的运动轨迹是真实存在的曲线,两者的重合是在特定条件下才成立的,在一般情况下两者并不重合.例如氢原子的核外电子绕核做匀速圆周运动时,轨迹跟原子核(质子)产生电场的电场线垂直.正确选项为B.。
电场线和等势线典型例题(几何法)

电场中的电场线和等势线(解析版) —几何法在物理解题中的应用 例1. 如图所示,在平面直角坐标系中,有方向平行于坐标平面的匀强电场。
其中,坐标原点O 处的电势为0V ,点A 处的电势为6V ,点B 处的电势为3V ,则电场强度的大小为( )A.200m V /B.2003m V /C.100m V /D.1003m V /【解析】作图法取0A 的中点C ,则点C 处的电势为3V ,连接BC ,如图,则BC 为等势线,从0向BC 作垂线0D ,D 为垂足,则0D 为电场线。
在△BOC 中,因为OB=3,OC=3,所以∠BCO=300,在△BOD 中,因为OB=3,∠BOD=300,所以OD=23cm.所以电场强度m V DO U E DO /200102332=⨯==-。
本题选A例2.如图所示,在匀强电场中有一△ABC ,该三角形平面与电场线平行,O 为三角形中线AD 、BE 、CF 的交点。
将一电荷量为C 8100.1-⨯的正点电荷从A 点移动到C 点,电场力做功为J 7100.3-⨯;将该电荷量从C 点移动到B 点,克服电场力做功为J 7100.2-⨯。
设C 点电势为0,求:O 点的电势。
【解析】A 、C 两点的电势差V q W U AC AC 30==,B 、C 两点的电势差V qW U BC BC 20==,因为C 点电势为0,所以A 、B 两点的电势分别为V A 30=ϕ,V B 20=ϕ。
因为E 为BC 的中点,所以E 点的电势为V BE 102==ϕϕ,所以A 、E 两点的电势差V U E A AE 20=-=ϕϕ。
根据几何知识AE OE 31=,所以V U U E A OE 32031==,可得O 点的电势为V V U OE E O 1735032010≈=+=+=ϕϕ. 例3. 空间有一匀强电场,在电场中建立如图所示的直角坐标系O-xyz ,M 、N 、P 为电场中的三个点,M 点的坐标(0,a ,0),N 点的坐标为(a,0,0),P 点的坐标为(a,2a ,2a )。
电场强度的叠加典型例题

电场强度的叠加典型例题电场强度的叠加是电场叠加原理中的一个重要内容,它是指在同一空间内同时存在多个电荷时,每个电荷所产生的电场强度矢量可以分别求得,然后将它们矢量相加得到总的电场强度。
下面我们通过一些典型例题来详细介绍电场强度的叠加方法。
例题1:求解两个等量异号点电荷的电场强度叠加已知空间中有两个等量异号点电荷,一个正电荷q1=2μC位于坐标原点O,一个负电荷q2=-2μC位于坐标(2,0,0)处。
求点P(3,4,0)处的电场强度。
解析:首先根据库仑定律,可以求得q1点电荷在P点产生的电场强度为E1=k*q1/r1^2,其中k为电场常量,r1为q1到P的距离,即√(3^2+4^2+0^2)=5。
代入数据可得E1=9x10^9*(2x10^-6)/25=1.44x10^3N/C,而E1的方向与P点到q1连线的方向相同。
然后求解q2点电荷在P点产生的电场强度E2,由于电荷q2与P点不共线,需要按照矢量加法规则进行计算。
首先求出r2=q2到P的矢量r2=rP-r2=(3-2,4-0,0-0)=(1,4,0),然后根据库仑定律得到E2=k*q2/r2^2,其中k为电场常量,r2为q2到P的距离,即√(1^2+4^2+0^2)=√17。
代入数据可得E2=9x10^9*(-2x10^-6)/17=-0.949x10^3N/C。
最后,将E1和E2相加,即E=E1+E2=(1.44x10^3+(-0.949x10^3))N/C=0.491x10^3N/C,而E的方向与E1和E2的方向相同,即沿着P点到q1和q2连线的方向。
所以,P点处的电场强度大小为0.491x10^3N/C,方向沿着P点到q1和q2连线的方向。
例题2:求解多个点电荷的电场强度叠加已知空间中有三个等量同号点电荷,分别位于坐标原点O、点A(2,0,0)和点B(0,3,0)处,其电荷量分别为q1=q2=q3=2μC。
求点P(1,1,5)处的电场强度。
带电粒子在电场中的运动典型例题

【例1】如图为密立根油滴实验示意图.设两平行板间距d=0.5cm,板间电压U=150V,当电键S断开时,从上板小孔漂入的带电油滴能以速度v0匀速下降.合上S,油滴由下降转为上升.当速度大小达到v0时能匀速上升.假设油滴在运动中所受阻力与速度大小成正比(即f=kv),测得油滴的直径D=1.10×10-6m,油的密度
ρ=1.05×103kg/m3,试算出油滴的带电量并说明电性.
【例5】一根光滑的绝缘直杆与水平面成α=30°角倾斜放置,其BC部分在水平向右的匀强电场中,电场强度E=2×104N/C,在细杆上套一个电荷量等于带负电的小球,m=3×10-2kg.今使小球从静止起沿杆下滑,从B点进入电场,如图,已知AB=s1=1m,试问(1)小球进入电场后能滑行多远?(2)小球从A滑至最远处的时间是多少?
【例6】在间距d=0.1m、电势差U=103V的两块竖立平行板中间,用一根长l=0.01m的细线悬挂一个质量m=0.2g、电量q=10-7C的带正电荷的小球,将小球拉到使丝线恰呈水平的位置A后轻轻释放如图,问:(1)小球摆至最低点B时的速度和线中的拉力多大?(2)若小球摆至B点时丝线忽然断裂,以后小球恰能经过B点正下方的C点,则BC相距多远?(g=10m /s2)。
带电粒子在电场中的运动典型例题

【例1】如图为密立根油滴实验示意图.设两平行板间距d=0.5cm,板间电压U=150V,当电键S断开时,从上板小孔漂入的带电油滴能以速度v0匀速下降.合上S,油滴由下降转为上升.当速度大小达到v0时能匀速上升.假设油滴在运动中所受阻力与速度大小成正比(即f=kv),测得油滴的直径D=1.10×10-6m,油的密度ρ=1.05×103kg/m3,试算出油滴的带电量并说明电性.【例2】图1中A、B是一对平行的金属板.在两板间加上一周期为T的交变电压u.A板的电势UA=0,B板的电势UB随时间的变化规律为:在 0到 T/2的时间内,UB=U0(正的常数);在T/2到T的时间内,UB=-U0;在T到3T/2的时间内,UB=U0;在3T/2到2T 的时间内,UB=-U0…现有一电子从A板上的小孔进入两板间的电场区内,设电子的初速度和重力影响均可忽略,A.若电子是在t=0时刻进入的.它将一直向B板运动B.若电子是在 t=T/8时刻进入的,它可能时而向 B板运动,时而向A板运动,最后打在B板上C.若电子是在t=3T/8时刻进入的,它可能时而向B板运动,时而向A板运动,最后打在B板上D.若电子是在t=T/2时刻进入的,它可能时而向 B板、时而向A板运动【例3】从阴极K发射的电子经电势差U0=5000V的阳极加速后,沿平行于板面的方向从中心射入两块长L1 =10cm、间距d=4cm的平行金属板A、B之间,在离金属板边缘L2=75cm处放置一个直径D=20cm、带有记录纸的圆筒.整个装置放在真空内,电子发射的初速度不计(图1).若在两金属板上加以U2=1000cos2πtV的交变电压,并使圆筒绕中心轴按图示方向以n=2转/s匀速转动,确定电子在记录纸上的轨迹外形并画出1s内所记录到得图形。
【例4】半径为r 的绝缘光滑圆环固定在竖直平面内,环上套有一质量为m、带正电的珠子,空间存在水平向右的匀强电场,如图所示.珠子所受静电力是其重力的3/4倍.将珠子从环上最低位置A点静止释放,则珠子所能获得的最大动能Ek=_____.【例5】一根光滑的绝缘直杆与水平面成α=30°角倾斜放置,其BC部分在水平向右的匀强电场中,电场强度E=2×104N/C,在细杆上套一个电荷量等于带负电的小球,m=3×10-2kg.今使小球从静止起沿杆下滑,从B点进入电场,如图,已知AB=s1=1m,试问(1)小球进入电场后能滑行多远?(2)小球从A滑至最远处的时间是多少?【例6】在间距d=0.1m、电势差U=103V的两块竖立平行板中间,用一根长l=0.01m的细线悬挂一个质量m=0.2g、电量q=10-7C的带正电荷的小球,将小球拉到使丝线恰呈水平的位置A后轻轻释放如图,问:(1)小球摆至最低点B时的速度和线中的拉力多大?(2)若小球摆至B点时丝线忽然断裂,以后小球恰能经过B点正下方的C点,则BC相距多远?(g=10m/s2)例7]一质量为m,带有电荷-q的小物体,可在水平轨道OX上运动,O端有一个与轨道垂直的固定墙。
带电粒子在电场运动规律经典例题及典型习题(附答案)

带电粒子在电场运动规律透析一、带电粒子在电场中的加速1运动状态的分析:带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做加(减)速直线运动。
2用功能观点分析:电场力对带电粒子动能的增量。
2022121mv mv qU -= 说明:①此法不仅适用于匀强电场,也适用于非匀强电场。
②对匀强电场,也可直接应用运动学公式和牛顿第二定律典型例题例1:1:如图所示,两平行金属板竖直放置,如图所示,两平行金属板竖直放置,左极板接地,中间有小孔。
右极板电势随时间变化的规律如图所示。
电子原来静止在左极板小孔处。
(不计重力作用)下列说法中正确的是法中正确的是A.A.从从t=0时刻释放电子,电子将始终向右运动,直到打到右极板上B.B.从从t=0时刻释放电子,电子可能在两板间振动C.C.从从t=T /4时刻释放电子,电子可能在两板间振动,也可能打到右极板上D.D.从从t=3T /8时刻释放电子,电子必将打到左极板上解析:从t=0时刻释放电子,如果两板间距离足够大,电子将向右先匀加速T /2,接着匀减速T /2,速度减小到零后,又开始向右匀加速T /2,接着匀减速T /2直到打在右极板上。
……直到打在右极板上。
电子不可能向左运动;电子不可能向左运动;电子不可能向左运动;如果两板间距离不够大,电子如果两板间距离不够大,电子也始终向右运动,直到打到右极板上。
从t=T /4时刻释放电子,如果两板间距离足够大,电子将向右先匀加速T /4,接着匀减速T /4,速度减小到零后,改为向左先匀加速T /4,接着匀减速T /4。
即在两板间振动;如果两板间距离不够大,则电子在第一次向右运动过程中就有可能打在右极板上。
子在第一次向右运动过程中就有可能打在右极板上。
从从t=3T /8时刻释放电子,时刻释放电子,如如果两板间距离不够大,电子将在第一次向右运动过程中就打在右极板上;如果第一次向右运动没有打在右极板上,那就一定会在第一次向左运动过程中打在左极板上。
静电场综合应用典型例题

静电场综合应用典型例题1.在xOy 平面内,有沿y 轴负方向的匀强电场,场强大小为E (图中未画出),由A 点斜射出一质量为m ,带电荷量为+q 的粒子,B 和C 是粒子运动轨迹上的两点,如图所示,其中l 0为常数。
粒子所受重力忽略不计。
求:(1)粒子从A 到C 过程中电场力对它做的功; (2)粒子从A 到C 过程所经历的时间; (3)粒子经过C 点时的速率。
解析:(1)03)(qEl y y qE W C A AC =-=(2)根据抛体运动的特点,粒子在x 轴方向做匀速直线运动,由对称性可知轨迹最高点D 在y 轴上,设T t t DB AD =,则T t BC = 由ma qE =得mqE a =又202)2(213,21T a l y aT y D D =+=解得:qEml T 02=则C A →过程中所经历的时间qEml t 023= (3)粒子在DC 段做类平抛运动,于是有T a v T v l Cy Cx 2,220⋅=⋅=则mqEl v v v Cy Cx C 217022=+= 2.在一柱形区域内有匀强电场,柱的横截面是以O 为圆心,半径为R 的圆,AB 为圆的直径,如图所示。
质量为m ,电荷量为q(q>0)的带电粒子在纸面内自A 点先后以不同的速度进入电场,速度方向与电场的方向垂直。
已知刚进入电场时速度为零的粒子,自圆周上的C 点以速率穿出电场,AC 与AB 的夹角θ=60°。
运动中粒子仅受电场力作用。
(1)求电场强度的大小;(2)为使粒子穿过电场后的动能增量最大,该粒子进入电场时的速度应为多大?解析:(1)初速度为零的粒子,由C 点射出电场,故电场方向与AC 平行,A 指向C 。
由几何关系和电场强度的定义知R AC = ①qE F = ②由动能定理有2021mv AC F =⋅ ③联立①②③式得qRmvE 220= ④(2)如下图,由几何关系知BC AC ⊥,故电场中的等势线与BC 平行。
电场典型例题精析(附答案)

电场典例精析1.场强公式的使用条件【例1】下列说法中,正确的是( )A.在一个以点电荷为中心,r为半径的球面上各处的电场强度都相同B.E=2rkQ仅适用于真空中点电荷形成的电场C.电场强度的方向就是放入电场中的电荷受到的电场力的方向D.电场中某点场强的方向与试探电荷的正负无关2.理解场强的表达式【例1】在真空中O点放一个点电荷Q=+1.0×10-9C,直线MN通过O点,OM 的距离r=30 cm,M点放一个点电荷q=-1.0×10-10 C,如图所示,求:(1)q在M点受到的作用力;(2)M点的场强;(3)拿走q后M点的场强;(4)M、N两点的场强哪点大;(5)如果把Q换成-1.0×10-9C的点电荷,情况如何.【拓展1】有质量的物体周围存在着引力场.万有引力和库仑力有类似的规律,因此我们可以用定义静电场强度的方法来定义引力场的场强.由此可得,与质量为M的质点相距r处的引力场场强的表达式为E G=(万有引力常量用G表示).3.理解场强的矢量性,唯一性和叠加性【例2】如图所示,分别在A、B两点放置点电荷Q1=+2×10-14 C和Q2=-2×10-14 C.在AB的垂直平分线上有一点C,且AB=AC=BC=6×10-2 m.求:(1)C点的场强;(2)如果有一个电子静止在C点,它所受的库仑力的大小和方向如何.4.与电场力有关的力学问题【例3】如图所示,带等量异种电荷的平行金属板,其间距为d,两板间电势差为U,极板与水平方向成37°角放置,有一质量为m的带电微粒,恰好沿水平方向穿过板间匀强电场区域.求:(1)微粒带何种电荷?(2)微粒的加速度多大?(3)微粒所带电荷量是多少?5.电场力做功与电势能改变的关系【例1】有一带电荷量q=-3×10-6 C的点电荷,从电场中的A点移到B点时,克服电场力做功6×10-4 J.从B点移到C点时,电场力做功9×10-4 J.问:(1)AB、BC、CA间电势差各为多少?(2)如以B点电势为零,则A、C两点的电势各为多少?电荷在A、C两点的电势能各为多少?【拓展1】一带电油滴在匀强电场E中的运动轨迹如图中虚线所示,电场方向竖直向下.若不计空气阻力,则此带电油滴从a运动到b的过程中,能量变化情况为( )A.动能减小B.电势能增加C.动能和电势能之和减小D.重力势能和电势能之和增加6.电势与电场强度的区别和联系【例2】如图所示,a、b、c为同一直线上的三点,其中c为ab的中点,已知a、b 两点的电势分别为φa=1 V,φb=9 V,则下列说法正确的是( )A.该电场在c点的电势一定为5 VB.a点处的场强E a一定小于b点处的场强E bC.正电荷从a点运动到b点过程中电势能一定增大D.正电荷只受电场力作用,从a点运动到b点过程中动能一定增大【拓展2】如图甲所示,A、B是电场中的一条直线形的电场线,若将一个带正电的点电荷从A由静止释放,它只在电场力作用下沿电场线从A向B运动过程中的速度图象如图乙所示.比较A、B两点的电势和场强E,下列说法正确的是( )A.φA<φB,E A<E BB.φA<φB,E A>E BC.φA>φB,E A>E BD.φA>φB,E A<E B7.电场线、等势面、运动轨迹的综合问题【例4】如图虚线a、b、c代表电场中三个等势面,相邻等势面之间的电势差相等,即U ab=U bc,实线为一带负电的质点仅在电场力作用下通过该区域时的运动轨迹,P、Q是这条轨迹上的两点,据此可知( )A.P点的电势高于Q点的电势B.带电质点在P点具有的电势能比在Q点具有的电势能大C.带电质点通过P点时的动能比通过Q点时大D.带电质点通过P 点时的加速度比通过Q 点时大 练习(2009·全国Ⅰ)如图所示,一电场的电场线分布关于y 轴(沿竖直方向)对称,O 、M 、N 是y 轴上的三个点,且OM =MN .P 点在y 轴右侧,MP ⊥ON .则( ) A.M 点的电势比P 点的电势高 B.将负电荷由O 点移动到P 点,电场力做正功 C.M 、N 两点间的电势差大于O 、M 两点间的电势差 D.在O 点静止释放一带正电粒子,该粒子将沿y 轴做直线运动8.综合题 1.如图所示,质量为m 、带电量为-q 的小球在光滑导轨上运动,半圆形滑环的半径为R ,小球在A 点时的初速为V 0,方向和斜轨平行.整个装置放在方向竖直向下,强度为E 的匀强电场中,斜轨的高为H ,试问:(1)小球离开A 点后将作怎样的运动? (2)设小球能到达B 点,那么,小球在B 点对圆环的压力为多少? (3)在什么条件下,小球可以以匀速沿半圆环到达最高点,这时小球的速度多大? 2.如图1.5-12所示,一根长L =1.5m 的光滑绝缘细直杆MN ,竖直固定在场强为E =1.0×105N/C 、与水平方向成θ=30°角的倾斜向上的匀强电场中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于电场的典型例题大题
大题一:
有一点电荷Q1=3μC位于坐标原点处,另一点电荷Q2=-4μC
位于坐标点(3,0)处。
求为空间任一点P的电场强度大小和方向。
解答:首先计算Q1对点P的电场强度的贡献:
根据库仑定律,点P的坐标为(x,y),点P的电场强度可以表示为:
E1 = k * Q1 / r1^2
其中,k为电场常量,Q1为点电荷1的电荷量,r1为点电荷1
到点P的距离。
点P和点电荷1的直线距离r1可以用勾股定理计算:
r1 = sqrt(x^2 + y^2)
则点电荷1对点P的电场强度为:
E1 = k * Q1 / (x^2 + y^2)
接下来计算Q2对点P的电场强度的贡献:
点Q2和点P的直线距离r2可以用勾股定理计算:
r2 = sqrt((x-3)^2 + y^2)
则点电荷2对点P的电场强度为:
E2 = k * Q2 / ((x-3)^2 + y^2)
由于电场是矢量量,所以Q1和Q2对点P的电场强度大小和
方向要进行矢量叠加:
E = E1 + E2
其中,E为点P的电场强度矢量,E1为点电荷1对点P的电场强度矢量,E2为点电荷2对点P的电场强度矢量。
将E1和E2代入上式,并合并同类项可得:
E = k * (Q1 / (x^2 + y^2) + Q2 / ((x-3)^2 + y^2))
以上即为点电荷Q1和Q2对点P的电场强度大小和方向的表达式。
大题二:
一无限长的均匀带电直线上,线密度λ=2μC/m。
求离直线距离为d=5cm的位置的电场强度大小和方向。
解答:
我们可以通过将带电直线剖分成无限多小的电荷段来求解。
首先将无限长带电直线分成小段,每一小段的长度即为dx。
每一小段的电荷量可以用微积分的思想来表示,即dQ = λ * dx。
然后计算每一小段对离直线距离为d的位置点P的电场强度的贡献。
根据库仑定律,点P的电场强度可以表示为:
dE = k * dQ / r^2
其中,k为电场常量,dQ为每一小段的电荷量,r为小段电荷到点P的距离。
点P和小段电荷的距离r可以用勾股定理计算:
r = sqrt(d^2 + (dx)^2)
因此,每一小段电荷对点P的电场强度为:
dE = k * dQ / (d^2 + (dx)^2)
将所有小段电荷的电场强度叠加起来即可得到点P的电场强度:
E = ∫dE
其中,∫表示对所有小段电荷求和。
将dQ和r的表达式代入上式,可得到点P的电场强度大小和方向的表达式:
E = k * λ * ∫dx / (d^2 + (dx)^2)
以上即为离直线距离为d的位置的电场强度大小和方向的表达式。