sars的传播2003数学建模题目

合集下载

数学建模-赛题-微分方程竞赛试题

数学建模-赛题-微分方程竞赛试题

高教社杯全国大学生数学建模竞赛题目 2003高教社杯全国大学生数学建模竞赛题目(请先阅读 “对论文格式的统一要求”)A题 SARS的传播SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。

SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。

请你们对SARS 的传播建立数学模型,具体要求如下:(1)对附件1所提供的一个早期的模型,评价其合理性和实用性。

(2)建立你们自己的模型,说明为什么优于附件1中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。

附件2提供的数据供参考。

(3)收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。

附件3提供的数据供参考。

(4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。

附件1:SARS疫情分析及对北京疫情走势的预测2003年5月8日在病例数比较多的地区,用数理模型作分析有一定意义。

前几天,XXX老师用解析公式分析了北京SARS疫情前期的走势。

在此基础上,我们加入了每个病人可以传染他人的期限(由于被严格隔离、治愈、死亡等),并考虑在不同阶段社会条件下传染概率的变化,然后先分析香港和广东的情况以获得比较合理的参数,最后初步预测北京的疫情走势。

希望这种分析能对认识疫情,安排后续的工作生活有帮助。

1 模型与参数假定初始时刻的病例数为N0,平均每病人每天可传染K个人(K一般为小数),平均每个病人可以直接感染他人的时间为L天。

则在L天之内,病例数目的增长随时间t(单位天)的关系是:N(t)= N0 (1+K)t如果不考虑对传染期的限制,则病例数将按照指数规律增长。

2003年全国数学建模优秀论文北京SARS的传播研究

2003年全国数学建模优秀论文北京SARS的传播研究

小组成员北京SARS的传播研究摘要SARS从2003年陆续传入,期间先后感染6000多人其中北京感染2847,我国给我过经济·社会带来严重额的影响,为减少疾病的危害,提高人们对疾病的ARS的认识,疫情分析及对北京疫情走势的预测研究也变得尤为重要。

为改善现状并提高人们对疾病的是SARS的认识,我们对北京市的SARS传播问题建立数学模型。

关键词: SARS 人群分类微分模型整体拟合1、问题重述1.1问题的背景严重急性呼吸综合征(Severe Acute Respiratory Syndromes),又称传染性非典型肺炎,简称SARS,是一种因感染SARS冠状病毒引起的新的呼吸系统传染性疾病。

主要通过近距离空气飞沫传播,以发热,头痛,肌肉酸痛,乏力,干咳少痰等为主要临床表现,严重者可出现呼吸窘迫。

本病具有较强的传染性,在家庭和医院有显著的聚集现象。

首发病例,也是全球首例。

于2002年11月出现在广东佛山,并迅速形成流行态势1.2问题的叙述现阶段北京SARS的传播正处于高峰期。

由于人们对该种疾病的传播机理还不太清楚,因此引起人们的恐慌,它关系社会的稳定和经济的发展。

因此对该问题的研究非常有必要,我们把人口分成四类,即:健康人S(t)SARS病人I(t)病人免疫(包括死亡)的人R(t)及疑似病人P(t)四类人,利用现有数据着重从四类人口中:把该传染病进行统计学分析,归纳出主要特征通过假设,参数以及它们的相互联系,进行数据判定,数据假设,数据处理,数据分析,建立模型,数据总结等得出较为科学的SARS问题的分析,相关信息(见附件1、2、3)附件1SARS疫情分析及对北京走势的预测附件2北京市疫情的数据附件3北京市接待海外游客人数附件4相关编程1.3问题的提出问题一:对附件1所提供的一个早期的模型,评价其合理性和实用性。

问题二:建立自己的模型,说明为什么优于附件1中的模型,对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。

2003年全国大学生数学建模竞赛题目

2003年全国大学生数学建模竞赛题目
矿石漏 5.26 5.19 4.21 4.00 2.95 2.74 2.46 1.90 0.64 1.27 倒装场 I 1.90 0.99 1.90 1.13 1.27 2.25 1.48 2.04 3.09 3.51 岩 场 5.89 5.61 5.61 4.56 3.51 3.65 2.46 2.46 1.06 0.57 岩石漏 0.64 1.76 1.27 1.83 2.74 2.60 4.21 3.72 5.05 6.10 倒装场 II 4.42 3.86 3.72 3.16 2.25 2.81 0.78 1.62 1.27 0.50
B 题露天矿生产的车辆安排 铁工业是国家工业的基础之一,铁矿是钢铁工业的主要原料基地。许多现代化铁矿是露 天开采的,它的生产主要是由电动铲车(以下简称电铲)装车、电动轮自卸卡车(以下简称卡车) 运输来完成。提高这些大型设备的利用率是增加露天矿经济效益的首要任务。 露天矿里有若干个爆破生成的石料堆,每堆称为一个铲位,每个铲位已预先根据铁含量 将石料分成矿石和岩石。一般来说,平均铁含量不低于 25%的为矿石,否则为岩石。每个 铲位的矿石、岩石数量,以及矿石的平均铁含量(称为晶位)都是已知的。每个铲位至多能安 置一台电铲,电铲的平均装车时间为 5 分钟。 卸货地点(以下简称卸点)有卸矿石的矿石漏、2 个铁路倒装场(以下简称倒装场)和卸岩 石的岩石漏、岩场等,每个卸点都有各自的产量要求。从保护国家资源的角度及矿山的经济 效益考虑,应该尽量把矿石按矿石卸点需要的铁含量(假设要求都为 29.5%1%,称为品位 限制)搭配起来送到卸点,搭配的量在一个班次(8 小时)内满足品位限制即可。从长远看,卸 点可以移动,但一个班次内不变。卡车的平均卸车时间为 3 分钟。 所用卡车载重量为 154 吨,平均时速 28。卡车的耗油量很大,每个班次每台车消耗近 1 吨柴油。发动机点火时需要消耗相当多的电瓶能量,故一个班次中只在开始工作时点火一次。 卡车在等待时所耗费的能量也是相当可观的,原则上在安排时不应发生卡车等待的情况。电 铲和卸点都不能同时为两辆及两辆以上卡车服务。卡车每次都是满载运输。 每个铲位到每个卸点的道路都是专用的宽 60 的双向车道,不会出现堵车现象,每段道 路的里程都是已知的。 一个班次的生产计划应该包含以下内容:出动几台电铲,分别在哪些铲位上;出动几辆 卡车,分别在哪些路线上各运输多少次(因为随机因素影响,装卸时间与运输时间都不精确, 所以排时计划无效,只求出各条路线上的卡车数及安排即可)。一个合格的计划要在卡车不 等待条件下满足产量和质量(品位)要求,而一个好的计划还应该考虑下面两条原则之一: 1.总运量(吨公里)最小,同时出动最少的卡车,从而运输成本最小; 2.利用现有车辆运输,获得最大的产量(岩石产量优先;在产量相同的情况下,取总运 量最小的解)。 请你就两条原则分别建立数学模型,并给出一个班次生产计划的快速算法。针对下面的 实例,给出具体的生产计划、相应的总运量及岩石和矿石产量。

2003年数学建模A题

2003年数学建模A题

2003高教社杯全国大学生数学建模竞赛题目(请先阅读“对论文格式的统一要求”)A题 SARS的传播SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。

SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。

请你们对SARS 的传播建立数学模型,具体要求如下:(1)对附件1所提供的一个早期的模型,评价其合理性和实用性。

(2)建立你们自己的模型,说明为什么优于附件1中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。

附件2提供的数据供参考。

(3)收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。

附件3提供的数据供参考。

(4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。

附件1:SARS疫情分析及对北京疫情走势的预测2003年5月8日在病例数比较多的地区,用数理模型作分析有一定意义。

前几天,XXX老师用解析公式分析了北京SARS疫情前期的走势。

在此基础上,我们加入了每个病人可以传染他人的期限(由于被严格隔离、治愈、死亡等),并考虑在不同阶段社会条件下传染概率的变化,然后先分析香港和广东的情况以获得比较合理的参数,最后初步预测北京的疫情走势。

希望这种分析能对认识疫情,安排后续的工作生活有帮助。

1 模型与参数假定初始时刻的病例数为N0,平均每病人每天可传染K个人(K一般为小数),平均每个病人可以直接感染他人的时间为L天。

则在L天之内,病例数目的增长随时间t(单位天)的关系是:N(t)= N0 (1+K)t如果不考虑对传染期的限制,则病例数将按照指数规律增长。

SARS的传播问题

SARS的传播问题

实验06 基于微分方程对象建模及实现(二)SARS的传播SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。

SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。

请你们对SARS 的传播建立数学模型,具体要求如下:(1)对附件1所提供的一个早期的模型,评价其合理性和实用性。

(2)建立你们自己的模型,说明为什么优于附件1中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。

附件2提供的数据供参考。

(3)收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。

附件3提供的数据供参考。

(4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。

附件1:SARS疫情分析及对北京疫情走势的预测2003年5月8日在病例数比较多的地区,用数理模型作分析有一定意义。

前几天,XXX老师用解析公式分析了北京SARS疫情前期的走势。

在此基础上,我们加入了每个病人可以传染他人的期限(由于被严格隔离、治愈、死亡等),并考虑在不同阶段社会条件下传染概率的变化,然后先分析香港和广东的情况以获得比较合理的参数,最后初步预测北京的疫情走势。

希望这种分析能对认识疫情,安排后续的工作生活有帮助。

1 模型与参数假定初始时刻的病例数为N0,平均每病人每天可传染K个人(K一般为小数),平均每个病人可以直接感染他人的时间为L天。

则在L天之内,病例数目的增长随时间t(单位天)的关系是:N(t)= N0 (1+K)t如果不考虑对传染期的限制,则病例数将按照指数规律增长。

sars的传播2003数学建模题目

sars的传播2003数学建模题目

sars的传播2003数学建模题目在2003年,严重急性呼吸综合征(Severe Acute Respiratory Syndrome,简称SARS)的爆发引起了全球范围内的恐慌。

为了更好地了解SARS的传播特点和控制措施,我们可以应用数学建模的方法来分析SARS的传播规律,并提出相关的应对策略。

1. SARS的传播模型为了探究SARS的传播规律,我们可以采用传染病的基本传播模型——SIR模型。

SIR模型将人群分为三类:易感者(Susceptible)、感染者(Infected)和康复者(Recovered)。

根据该模型,我们可以列出如下的微分方程:dS/dt = - βSIdI/dt = βSI - γIdR/dt = γI其中,S,I和R分别表示易感者、感染者和康复者的数量;β表示传染率;γ表示康复率。

2. 参数估计与模型拟合要对SARS的传播模型进行参数估计和模型拟合,我们需要收集大量的疫情数据。

通过对实际数据进行统计学分析,我们可以获得β和γ的估计值,并将其代入SIR模型方程中进行模型拟合。

通过与实际数据的对比,我们可以评估模型的拟合效果以及参数的准确性。

3. 传播速率和传播方式SARS的传播速率直接影响到其传播范围和传播强度。

在SARS爆发期间,我们可以通过统计病例的增长速率来估计SARS的传播速率。

此外,研究发现,SARS主要通过空气飞沫传播,在密闭环境中飞沫的传播距离较远,因此需要采取相应的防控措施,如戴口罩、保持良好的通风等。

4. 人群的易感性和免疫力SARS的传播过程中,人群的易感性和免疫力起着重要的作用。

通过研究易感者和感染者的流行病学数据,我们可以了解人群的易感性和免疫力对于传播过程的影响。

同时,针对易感者的接种疫苗和提高人群的免疫力也是有效控制SARS传播的策略之一。

5. 社会干预措施的效果评估为了控制SARS的传播,社会干预措施起到了至关重要的作用。

例如,早期的病例隔离、密切接触者的追踪和隔离、社交距离的维持等都可以有效降低SARS的传播风险。

【数学建模】day14-建立GM(1,1)预测评估模型应用

【数学建模】day14-建立GM(1,1)预测评估模型应用

【数学建模】day14-建⽴GM(1,1)预测评估模型应⽤学习建⽴GM(1,1)灰⾊预测评估模型,解决实际问题:SARS疫情对某些经济指标的影响问题⼀、问题的提出 2003 年的 SARS 疫情对中国部分⾏业的经济发展产⽣了⼀定影响,特别是对部分疫情较严重的省市的相关⾏业所造成的影响是显著的,经济影响主要分为直接经济影响和间接影响。

直接经济影响涉及商品零售业、旅游业、综合服务等⾏业。

很多⽅⾯难以进⾏定量的评估,现仅就 SARS 疫情较重的某市商品零售业、旅游业和综合服务业的影响进⾏定量的评估分析。

究竟 SARS 疫情对商品零售业、旅游业和综合服务业的影响有多⼤,已知某市从 1997 年 1 ⽉到 2003 年 12 ⽉的商品零售额、接待旅游⼈数和综合服务收⼊的统计数据如下⾯三表所⽰。

试根据这些历史数据建⽴预测评估模型,评估 2003 年 SARS 疫情给该市的商品零售业、旅游业和综合服务业所造成的影响。

⼆、模型的分析与假设模型分析: 根据所掌握的历史统计数据可以看出,在正常情况下,全年的平均值较好地反映了相关指标的变化规律。

这样,对于每⼀个经济指标,考虑从两部分着⼿建⽴预测评估模型:1. 利⽤灰⾊理论建⽴GM(1,1)模型,根据1997-2002年的平均值序列,预测2003年的平均值。

2. 通过历史数据计算每⼀个⽉的指标值与全年总值之间的关系,并将此关系拓展到2003年,进⽽预测出2003年每⼀个⽉的指标值。

进⽽与真实数据值作⽐较,从⽽得出结论。

模型假设:1. 假设所有的统计数据真实可靠。

2. 假设该市SARS疫情流⾏期间和结束之后,数据的变化只与SARS疫情的影响有关,不考虑其他随机因素的影响。

三、建⽴灰⾊预测模型GM(1,1) 由已知数据,对于1997-2002年的某项指标记为A= (a ij)6*12,计算每年的平均值作为初始数列。

记为: 并要求级⽐。

对x(0)做⼀次累加得1-AGO序列: 式中: 取x(1)的加权均值序列: 式中,α是确定参数。

大学生数学建模论文:SARS疫情对某些经济指标的影响

大学生数学建模论文:SARS疫情对某些经济指标的影响

37.20833
588.1818
108.475
58.04167
657.8182
118.4167
82.43333
778.3636
132.8083
107.18333
874.9091
145.4083
134.35833
1000.909
再将处理后的数据作图:
140
图四
120
100
80
60
40
20
0
1
1.5
2
2.5
(2)若完全落入该区域,则 x(0) 可以作为模型 GM(1,1) ,进行数据灰色预测。
其次,我们通过 MATLAB 画出通过检验的数列
x (0 ) ( x (0 ) (1), x (0 ) ( 2), , x (0 ) (6))
观察图形,判断数据是否有规律性。两种情况:
(1) 若有规律性,则无需进行数据处理。


x (0 ) (6 ) az (0 ) (6 ) b
相应的白化微分方程为 dx(1) ax(1) b 称之为 GM (1,1) 模型。 dt
x(0) (2)
z(0) (2) 1

X


x(0) (3)
x(0) (6)

294.5917 98.04167 1729.273
413.0083 122.43333 2507.636
545.8167 147.18333 3382.545
691.225 174.35833 4383.455
3、模型求解
对通过极比的数列 x(0) 做一次累加,记作: xk (1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SARS(严重急性呼吸系统综合征)是一种由SARS冠状病毒引起的传染病,曾在2003年引发全球性的疫情。

在数学建模中,研究SARS的传播规律是一个重要且具有挑战性的课题。

通过数学建模可以更好地理
解疫情传播的规律,并为疾病控制和预防提供科学依据。

1. SARS病毒的传播途径
SARS病毒主要通过呼吸道飞沫传播,当感染者咳嗽、打喷嚏或说话时,会释放含有病毒的飞沫,健康人在呼吸这些飞沫或接触污染的物体后
易受感染。

在数学建模中,需要考虑不同人群之间的接触模式以及感
染的概率,这对于评估疫情的传播速度和范围至关重要。

2. SARS病毒的潜伏期和传播特点
SARS病毒有较长的潜伏期,患者在潜伏期内可能没有明显症状,但仍然可以传播病毒给他人。

这增加了疫情控制的难度,也需要数学模型
来估计患者在潜伏期内的传播能力和传播速度。

3. 数学建模在SARS疫情中的应用
数学建模可以帮助我们模拟和预测疫情的传播趋势,包括病毒的传播
速度、传播范围以及传播途径。

通过建立传染病传播模型,可以评估
不同的干预措施对疫情传播的影响,为政府和卫生部门提供科学依据
和决策支持。

总结回顾
通过数学建模,我们可以更好地理解SARS疫情传播的规律,评估干预措施的效果,并为未来类似疫情的防控提供经验和启示。

由于SARS 疫情的传播特点复杂多样,数学建模需要考虑到多种因素的影响,是一项具有挑战性和意义重大的工作。

个人观点与理解
SARS疫情的发生引起了全球范围内的关注和担忧,数学建模在疫情控制和预防中的应用显得尤为重要。

作为一种强大的工具,数学建模为我们提供了一种全新的视角来认识和理解疫情的传播规律,为疾病防控提供了有力的支持。

希望未来能进一步深入研究传染病传播的数学模型,为应对未知疫情做好充分准备。

在这篇文章中,我从SARS疫情传播的数学建模角度对疫情的传播规律进行了探讨,并共享了个人对于数学建模在疫情防控中的重要性的理解。

希望这篇文章能帮助你更好地理解SARS疫情的传播特点以及数学建模的应用。

SARS(Severe Acute Respiratory Syndrome)是由SARS冠状病毒引起的一种急性呼吸道传染病,曾在2003年引发全球性的疫情。

在数学建模中,研究SARS的传播规律是一个重要且具有挑战性的课题。

通过数学建模可以更好地理解疫情传播的规律,并为疾病控制和预防提供科学依据。

SARS病毒的传播途径
SARS病毒主要通过呼吸道飞沫传播,当感染者咳嗽、打喷嚏或说话时,会释放含有病毒的飞沫,健康人在呼吸这些飞沫或接触污染的物体后
易受感染。

在数学建模中,需要考虑不同人群之间的接触模式以及感
染的概率,这对于评估疫情的传播速度和范围至关重要。

SARS病毒的潜伏期和传播特点
SARS病毒有较长的潜伏期,患者在潜伏期内可能没有明显症状,但仍然可以传播病毒给他人。

这增加了疫情控制的难度,也需要数学模型
来估计患者在潜伏期内的传播能力和传播速度。

在数学建模中,需要
考虑潜伏期内的传染性,以及如何合理评估疫情的传播风险。

数学建模在SARS疫情中的应用
数学建模可以帮助我们模拟和预测疫情的传播趋势,包括病毒的传播
速度、传播范围以及传播途径。

通过建立传染病传播模型,可以评估
不同的干预措施对疫情传播的影响,为政府和卫生部门提供科学依据
和决策支持。

在数学建模中,需要学者们收集关于疫情的数据,建立
相应的数学模型,并借助模型来分析疫情的传播规律和趋势。

SARS疫情的数学建模分析
通过数学建模,我们可以更好地理解SARS疫情传播的规律,评估干
预措施的效果,并为未来类似疫情的防控提供经验和启示。

由于SARS 疫情的传播特点复杂多样,数学建模需要考虑到多种因素的影响,是一项具有挑战性和意义重大的工作。

在数学建模分析中,学者们需要考虑患者的潜伏期、传染性和治疗率等因素,以便更好地预测疫情的发展趋势。

个人观点与理解
SARS疫情的发生引起了全球范围内的关注和担忧,数学建模在疫情控制和预防中的应用显得尤为重要。

作为一种强大的工具,数学建模为我们提供了一种全新的视角来认识和理解疫情的传播规律,为疾病防控提供了有力的支持。

希望未来能进一步深入研究传染病传播的数学模型,为应对未知疫情做好充分准备。

结论
通过数学建模可以更好地理解SARS疫情的传播规律,评估干预措施的效果,为未来类似疫情的防控提供经验和启示。

数学建模在疾病防控中的应用具有重要意义,可以帮助政府和卫生部门制定科学合理的防控措施。

希望未来能加强对疾病传播规律的研究,提高数学建模在疫情防控中的应用水平。

相关文档
最新文档